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Abstract. We present TYPPETE, a sound type inferencer that auto-
matically infers Python 3 type annotations. TYPPETE encodes type con-
straints as a MAXSMT problem and uses optional constraints and spe-
cific quantifier instantiation patterns to make the constraint solving pro-
cess efficient. Our experimental evaluation shows that TYPPETE scales
to real world Python programs and outperforms state-of-the-art tools.

1 Introduction

Dynamically-typed languages like Python have become increasingly popular in
the past five years. Dynamic typing enables rapid development and adaptation
to changing requirements. On the other hand, static typing offers early error
detection, efficient execution, and machine-checked code documentation, and
enables more advanced static analysis and verification approaches [15].

For these reasons, Python’s PEP484 [25] has recently introduced optional
type annotations in the spirit of gradual typing [23]. The annotations can be
checked using MYPY [10]. In this paper, we present our tool TYPPETE, which
automatically infers sound (non-gradual) type annotations and can therefore
serve as a preprocessor for other analysis or verification tools.

TYPPETE performs whole-program type inference, as there are no princi-
pal typings in object-oriented languages like Python [1, example in Sect. 1]; the
inferred types are correct in the given context but may not be as general as
possible. The type inference is constraint-based and relies on the off-the-shelf
SMT solver Z3 [7] for finding a valid type assignment for the input program.
We show that two main ingredients allow TYPPETE to scale to real programs: (1)
a careful encoding of subtyping that leverages efficient quantifier instantiation
techniques [6], and (2) the use of optional type equality constraints, which con-
siderably reduce the solution search space. Whenever a valid type assignment for
the input program cannot be found, TYPPETE encodes type error localization
as an optimization problem [19] and reports only a minimal set of unfulfilled
constraints to help the user pinpoint the cause of the error.
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class Item(metaclass=ABCMeta) : class Even(Item):
@abstractmethod def compete(self, item):
def compete(self , item): return item.evalEven(self)
pass
class Odd(Item):
def evalEven(self , item): def compete(self, item):
return "WIN” return item.evalOdd(self)
def evalOdd(self , item): def match(iteml, item2):
return "LOSE” return iteml.compete(item2)

Fig. 1. A Python implementation of the odds and evens hand game.

TYPPETE accepts programs written in (a large subset of) Python 3. Having a
static type system imposes a number of requirements on Python programs: (a) a
variable can only have a single type through the whole program; (b) generic types
have to be homogeneous (e.g., all elements of a set must have the same type);
and (c¢) dynamic code generation, reflection and dynamic attribute additions and
deletions are not allowed. The supported type system includes generic classes
and functions. Users must supply a file and the number of type variables for any
generic class or function. Typpete then outputs a program with type annotations,
a type error, or an error indicating use of unsupported language features.

Our experimental evaluation demonstrates the practical applicability of our
approach. We show that TYPPETE performs well on a variety of real-world open
source Python programs and outperforms state-of-the-art tools.

2 Constraint Generation

TYPPETE encodes the type inference problem for a Python program into an
SMT constraint resolution problem such that any solution of the SM'T problem
yields a valid type assignment for the program. The process of generating the
SMT problem consists of three phases, which we describe below.

In a first pass over the input program, TYPPETE collects: (1) all globally
defined names (to resolve forward references), (2) all classes and their respective
subclass relations (to define subtyping), and (3) upper bounds on the size of cer-
tain types (e.g., tuples and function parameters). This pre-analysis encompasses
both the input program—including all transitively imported modules—and stub
files, which define the types of built-in classes and functions as well as libraries.
TYPPETE already contains stubs for the most common built-ins; users can add
custom stub files written in the format that is supported by MyYPY.

In the second phase, TYPPETE declares an algebraic datatype Type, whose
members correspond one-to-one to Python types. TYPPETE declares one
datatype constructor for every class in the input program; non-generic classes are
represented as constants, whereas a generic class with n type parameters is rep-
resented by a constructor taking n arguments of type Type. As an example, the
class 0dd in Fig. 1 is represented by the constant classpqq. TYPPETE also declares
constructors for tuples and functions up to the maximum size determined in the
pre-analysis, and for all type variables used in generic functions and classes.
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The subtype relation <: is represented by an uninterpreted function subtype
which maps pairs of types to a boolean value. This function is delicate to define
because of the possibility of matching loops (i.e., axioms being endlessly instanti-
ated [7]) in the SMT solver. For each datatype constructor, TYPPETE generates
axioms that explicitly enumerate the possible subtypes and supertypes. As an
example, for the type classpqq, TYPPETE generates the following axioms:

Vt. subtype(classodd, t) = (t = classoqgd V t = classiem V t = classopject)
Vt. subtype(t, classodd) = (t = classpone V t = classpdd)

Note that the second axiom allows None to be a subtype of any other type (as
in Java). As we discuss in the next section, this definition of subtype allows us to
avoid matching loops by specifying specific instantiation patterns for the SMT
solver. A substitution function substitute, which substitutes type arguments for
type variables when interacting with generic types, is defined in a similar way.

In the third step, TYPPETE traverses the program while creating an SMT
variable for each node in its abstract syntax tree, and generating type constraints
over these variables for the constructs in the program. During the traversal, a
context maps all defined names (i.e., program variables, fields, etc.) to the corre-
sponding SMT variables. The context is later used to retrieve the type assigned
by the SMT solver to each name in the program. Constraints are generated for
expressions (e.g., call arguments are subtypes of the corresponding parameter
types), statements (e.g., the right-hand side of an assignment is a subtype of
the left hand-side), and larger constructs such as methods (e.g., covariance and
contravariance constraints for method overrides). For example, the (simplified)
constraint generated for the call to iteml.compete(item2) at line 21 in Fig.1
contains a disjunction of cases depending on the type of the receiver:

(Vitem1 = classodd A competegyq = f-2(classodd, arg, ret) A subtype(vitem2, arg))

V (Vitem1 = classgyen A competeg,.,, = f-2(classgyen, arg, ret) A subtype(Vitemz, arg))

where f_2 is a datatype constructor for a function with two parameter types (and
one return type ret), and Vitem1 and Vitemz2 are the SMT variables corresponding
to iteml and item?2, respectively.

The generated constraints guarantee that any solution yields a correct type
assignment for the input program. However, there are often many different valid
solutions, as the constraints only impose lower or upper bounds on the types rep-
resented by the SMT variables (e.g., subtype(Vitem2, arg) shown above imposes
only an upper bound on the type of vitem2). This has an impact on performance
(cf. Sect. 4) as the search space for a solution remains large. Moreover, some type
assignments could be more desirable than others for a user (e.g., a user would
most likely prefer to assign type int rather than object to a variable initial-
ized with value zero). To avoid these problems, TYPPETE additionally generates
optional type equality constraints in places where the mandatory constraints only
demand subtyping (i.e., local variable assignments, return statements, passed
function arguments), thereby turning the SMT problem into a MAXSMT opti-
mization problem. For instance, in addition to subtype(Vitem2, arg) shown above,
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TYPPETE generates the optional equality constraint viem2 = arg. The optional
constraints guide the solver to try the specified exact type first, which is often
a correct choice and therefore improves performance, and additionally leads to
solutions with more precise variable and parameter types.

3 Constraint Solving

TYPPETE relies on Z3 [7] and the MaxRes [18] algorithm for solving the gener-
ated type constraints. We use e-matching [6] for instantiating the quantifiers used
in the axiomatization of the subtype function (cf. Sect.2), and carefully choose
instantiation patterns that ensure that any choice made during the search imme-
diately triggers the instantiation of the relevant quantifiers. For instance, for the
axioms shown in Sect. 2, we use the instantiation patterns subtype(classpqq, t) and
subtype(t, classpdq), respectively. Our instantiation patterns ensure that as soon
as one argument of an application of the subtype function is known, the quan-
tifier that enumerates the possible values of the other argument is instantiated,
thus ensuring that the consequences of any type choices propagate immediately.
With a naive encoding, the solver would have to guess both arguments before
being able to check whether the subtype relation holds. The resulting constraint
solving process is much faster than it would be when using different quantifier
instantiation techniques such as model-based quantifier instantiation [12], but
still avoids the potential unsoundness that can occur when using e-matching
with insufficient trigger expressions.

When the MAXSMT problem is satisfiable, TYPPETE queries Z3 for a model
satisfying all type constraints, retrieves the types assigned to each name in the
program, and generates type annotated source code for the input program. For
instance, for the program shown in Fig. 1, TYPPETE automatically annotates the
function evalEven with type Even for the parameter item and a str return type.
Note that Item and object would also be correct type annotations for item; the
choice of Even is guided by the optional type equality constraints.

When the MAXSMT problem is unsatisfiable, instead of reporting the unful-
filled constraints in the unsatistiable core returned by Z3 (which is not guaran-
teed to be minimal), TYPPETE creates a new relazed MAXSMT problem where
only the constraints defining the subtype function are enforced, while all other
type constraints are optional. Z3 is then queried for a model satisfying as many
type constraints as possible. The resulting type annotated source code for the
input program is returned along with the remaining minimal set of unfulfilled
type constraints. For instance, if we remove the abstract method compete of class
Item in Fig. 1, TYPPETE annotates the parameters of the function match at line
20 with type object and indicates the call compete at line 21 as problematic. By
observing the mismatch between the type annotations and the method call, the
user has sufficient context to quickly identify and correct the type error.
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\ T(SMT) | T(MaxSMT) | Unfulfilled | T(Relaxed) | PYTYPE

adventure 2.99s / 6.30s 3.27s / 6.76s 42 /2| 1.95s / 8.83s 0 [0]
icemu 9.45s / 6.79s 9.51s / 3.63s 4/2|0.08 / 21.76s 18 [2]
imp | 16.88s / 59.95s | 16.91s / 15.87s 67 / 2| 0.82s / 82.56s 3[2]

scion 4.65s / 3.35s 4.72s / 2.97s 28 /2| 0.16s / 3.39s 0 [0]

test suite | 14.66s / 1.63s | 14.66s / 2.17s - -| 55 [34]

Fig. 2. Evaluation of TYPPETE on small programs and larger open source projects.

4 Experimental Evaluation

In order to demonstrate the practical applicability of our approach, we evaluated
our tool TYPPETE on a number of real-world open-source Python programs that
use inheritance, operator overloading, and other features that are challenging for
type inference (but not features that make static typing impossible):

adventure [21]: An implementation of the Colossal Cave Adventure game (2
modules, 399 LOC). The evaluation (and reported LOC) excludes the mod-
ules game.py and prompt.py, which employ dynamic attribute additions.

icemu [8]: A library that emulates integrated circuits at the logic level (8 mod-
ules, 530 LOC). We conducted the evaluation on revision 484828f.

imp [4]: A minimal interpreter for the imp toy language (7 modules, 771 LOC).
The evaluation excludes the modules used for testing the project.

scion [9]: A Python implementation of a new Internet architecture (2 modules,
725 LOC). For the evaluation, we used path_store.py and scion_addr.py
from revision 6f60ccc, and provided stub files for all dependencies.

We additionally ran TYPPETE on our test suite of manually-written programs
and small programs collected from the web (47 modules and 1998 LOC).

In order to make the projects statically typeable, we had to make a num-
ber of small changes that do not impact the functionality of the code, such as
adding abstract superclasses and abstract methods, and (for the imp and scion
projects) introducing explicit downcasts in few places. Additionally, we made a
number of other innocuous changes to overcome the current limitations of our
tool, such as replacing keyword arguments with positional arguments, replacing
generator expressions with list comprehensions, and replacing super calls via
inlining. The complete list of changes for each project is included in our artifact.

The experiments were conducted on an 2.9 GHz Intel Core i5 processor with
8 GB of RAM running Mac OS High Sierra version 10.13.3 with Z3 version
4.5.1. Figure2 summarizes the result of the evaluation. The first two columns
show the average running time (over ten runs, split into constraint generation
and constraint solving) for the type inference in which the use of optional type
equality constraints (cf. Sect.2) is disabled (SMT) and enabled (MAXSMT),
respectively. We can observe that optional type equality constraints (consid-
erably) reduce the search space for a solution as disabling them significantly
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increases the running time for larger projects. We can also note that the con-
straint solving time improves significantly when the type inference is run on
the test suite, which consists of many independent modules. This suggests that
splitting the type inference problem into independent sub-problems could fur-
ther improve performance. We plan to investigate this direction as part of our
future work.

The third column of Fig. 2 shows the evaluation of the error reporting feature
of TYPPETE (cf. Sect. 3). For each benchmark, we manually introduced two type
errors that could organically happen during programming and compared the
size of the unsatisfiable core (left of /) and the number of remaining unfulfilled
constraints (right of /) for the original and relaxed MAXSMT problems given
to 73, respectively. We also list the times needed to prove the first problem
unsatisfiable and solve the relaxed problem. As one would expect, the number
of constraints that remain unfulfilled for the relaxed problems is considerably
smaller, which demonstrates that the error reporting feature of TYPPETE greatly
reduces the time that a user needs to identify the source of a type error.

Finally, the last column of Fig. 2 shows the result of the comparison of TyP-
PETE with the state-of-the-art type inferencer PYTYPE [16]. PYTYPE infers
PEP484 [25] gradual type annotations by abstract interpretation [5] of the
bytecode-compiled version of the given Python file. In Fig. 2, for the considered
benchmarks, we report the number of variables and parameters that PYTYPE
leaves untyped or annotated with Any. We excluded any module on which
PYTYPE yields an error; in square brackets we indicate the number of mod-
ules that we could consider. TYPPETE is able to fully type all elements and thus
outperforms PYTYPE for static typing purposes. On the other hand, we note that
PyTyPE additionally supports gradual typing and a larger Python subset.

5 Related and Future Work

In addition to PYTYPE, a number of other type inference approaches and tools
have been developed for Python. The approach of Maia et al. [17] has some
fundamental limitations such as not allowing forward references or overloaded
functions and operators. Fritz and Hage [11] as well as STARKILLER [22] infer sets
of concrete types that can inhabit each program variable to improve execution
performance. The former sacrifices soundness to handle more dynamic features of
Python. Additionally, deriving valid type assignments from sets of concrete types
is non-trivial. MYPY and a project by Cannon [3] can perform (incomplete) type
inference for local variables, but require type annotations for function parameters
and return types. PYANNOTATE [13] dynamically tracks variable types during
execution and optionally annotates Python programs; the resulting annotations
are not guaranteed to be sound. A similar spectrum of solutions exists for other
dynamic programming languages like JavaScript [2,14] and ActionScript [20].
The idea of using SMT solvers for type inference is not new. Both F* [24] and
LiquidHaskell [26] (partly) use SMT-solving in the inference for their dependent
type systems. Pavlinovic et al. [19] present an SMT encoding of the OCaml type



18

M. Hassan et al.

system. TYPPETE’s approach to type error reporting can be seen as a simple
instantiation of their approach.

As part of our future work, we want to explore whether our system can be

adapted to infer gradual types. We also aim to develop heuristics for inferring
which functions and classes should be annotated with generic types based on the
reported unfulfilled constraints. Finally, we plan to explore the idea of splitting
the type inference into multiple separate problems to improve performance.
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