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Abstract. Access control systems are nowadays the first line of defence
of modern IT systems. However, their effectiveness is often compromised
by policy miscofigurations that can be exploited by insider threats. In
this paper, we present an approach based on machine learning to refine
attribute-based access control policies in order to reduce the risks of users
abusing their privileges. Our approach exploits behavioral patterns rep-
resenting how users typically access resources to narrow the permissions
granted to users when anomalous behaviors are detected. The proposed
solution has been implemented and its effectiveness has been experimen-
tally evaluated using a synthetic dataset.
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1 Introduction

Data are recognized as the most vital asset of an enterprise and, thus, their
protection is of paramount importance. Access control systems are typically
employed as the first line of defence for the protection of data as they guarantee
that only authorized users can gain access to sensitive resources. Over the past
few years, Attribute-Based Access Control (ABAC) [1] has gained in popularity
due to its flexibility and expressiveness, allowing the specification of fine-grained
and context-aware access control policies.

Despite this flexibility and expressiveness, ABAC (and access control in
general) has an intrinsically static nature that makes it difficult to adapt poli-
cies in order to timely response to critical events, e.g. a cyber attack. At the
same time, policies can become out-of-dated quickly, thus requiring continuous,
manual maintenance, which makes policy management and administration a
cumbersome and error-prone task. These issues can lead to policy misconfigu-
rations that leave organizations exposed to attacks against data confidentiality
and integrity.
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A study conduced by SANS in 2017 on threats against sensitive data1 showed
that insider threats are the top concern for organizations, followed by ran-
somware and denial of service attacks. Insider threats are current or former
employees, contractors or business partners who have or had authorized access
to the organization’s network, system or data, and intentionally exceeds or mis-
uses their privileges in a manner that negatively affected the confidentiality,
integrity or availability of the organization’s information or information system
[2]. Thus, organizations need to reinforce their access control systems with pro-
cedures to identify policy misconfigurations that could be exploited by an insider
threat and update the policies to prevent such exploitations.

Detecting and preventing insider threats by analyzing access control
policies and monitoring user behavior have been an active area of research. Com-
mon approaches rest on rule mining techniques to discover harmful exploitable
policy faults [3,4] or on monitoring systems based on behavioral models to detect
insider threats [5–8]. Other works [5,9] have also exploited knowledge from access
control policies to detect insider threats. However, these approaches only aim at
threat detection and do not focus on the adaptation of access control policies.
To date, only a few works (e.g., [10,11]) have exploited user behavior to gener-
ate and adapt access control policies. However, these approaches either require
human intervention for policy update [10] or build models that do not properly
discriminate behaviors of different types of users [11].

Contribution. In this paper, we propose an approach based on machine learn-
ing to dynamically refine policies to prevent misconfiguration exploitation. The
proposed approach allows the refinement of access control rules according to
behavioral features monitored at run-time. The designed system, named ML-AC,
exploits a white-box decision learning approach whose aim is to learn behav-
ioral profiles of users accessing resources so to accurately refine policies. There
might exist different behavioral profiles, here called classes of interaction, that
can be determined based on the analysis of contextual knowledge that concerns
users and resources. Such knowledge has proven to be a valuable source of infor-
mation for approaches devoted to improve insider threat detection and access
control [6,12].

ML-AC uses access pattern knowledge learned at run-time to introduce
controls on behavioral features into access control rules to avoid abuse of granted
rights. Behavioral features refine access policies by introducing controls like fre-
quency of access, amount of data, location, etc. By building an access control
knowledge model, this work poses the basis towards machine-assisted adminis-
tration procedures to support timely changing of access rights.

Paper Structure. Section 2 provides a motivating example. Section 3 provides an
overview of ML-AC and details how machine learning is empowering access con-
trol. Section 4 describes the implementation and evaluation of the performance
of ML-AC. Section 5 concludes the paper and outlines directions for future work.

1 https://www.sans.org/reading-room/whitepapers/analyst/sensitive-data-risk-2017
-data-protection-survey-37950.

https://www.sans.org/reading-room/whitepapers/analyst/sensitive-data-risk-2017-data-protection-survey-37950
https://www.sans.org/reading-room/whitepapers/analyst/sensitive-data-risk-2017-data-protection-survey-37950
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2 Motivating Example

To outline our approach, we introduce an ABAC system managing accesses to
software projects within an organization where users’ permissions depend on
their role and on the projects they are assigned to.

Let us assume an access control policy allowing users assigned to role junior
manager to read resources of type R1. However, only junior managers working
on ProjectA and from Department 1 can actually access those resources. This
policy can be represented in the FACPL language [13], an XACML-like ABAC
language that we use for its conciseness, as follows:

policy policy1 {deny-unless-permit

rule rule1(permit

target:

equal ("read", action/id) && equal ("R1", resource/type)

&& equal ("Junior manager", subject/role)

&& equal ("Department1", subject/department)

&& equal ("ProjectA", subject/project))}

Intuitively, our sample policy consists of a policy element (policy1 ) comprising a
permit rule (rule1 ) whose target defines an access condition built on attributes
describing which action a certain subject can perform on a resource.

Let us assume that Bob, a junior manager of Department 1, attempts to read
a resource of type R1, represented by the following access request (req1 ):

(subject/department,"Department 1")

(subject/role, "Junior manager")

(subject/project, "ProjectA")

(action/id="read")

(resource/type,"R1")

It is easy to observe that the attributes in the request match the rule target,
thus yielding a permit decision.2

Suppose now that Bob attempts to retrieve a large amount of sensitive
project documents without a plausible reason. As the previous request exem-
plifies, policy1 would allow him to do so regardless of how many documents he
has retrieved. This situation, however, may indicate that the junior manager is
abusing his access privileges for personal interests and benefits (e.g., to sell the
documents to a competitor).

These insider threats cannot be prevented by existing access control systems.
The main problem lies in the fact that access control is static in the sense
that the enforced access conditions do not change dynamically according to user
behaviour. We argue that contextual features, such as the number of accesses
and amount of accessed data, should be taken into account in access decision
making. For instance: Could a user perform multiple read queries in a given
time window? Could a user access large amounts of data? Failing to answer

2 We overlook combining algorithm deny-unless-permit as it yields permit if the
enclosed rule returns permit, and yields deny otherwise.
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these questions can lead to neglect anomalous behaviour representing the abuse
of granted access privileges from insider threats.

To reduce the risks of users abusing their privileges, we need to empower
access control with proactive measures that adapt policies according to user
behavior. Specifically, our goal is to dynamically refine access control policies
based on user behaviour monitored at run-time by narrowing granted privileges.

To achieve this goal, we need to equip access control systems with a means to
build user profiles representing how users normally access resources and use those
profiles to dynamically refine access rules. This requires extracting contextual
features that capture the behavior exhibited by users accessing a specific set of
resources by means of a selected set of operations.

For the sake of exemplification, let us assume that contextual features
feature/NumberOfReadsPerHour and feature/BytesReadPerHour are moni-
tored by the system and can be checked via new attributes in access rules.
In particular, it is observed that every hour junior managers typically access at
most 14 project documents for a total 345.6 KB. This knowledge can be exploited
to refine policy1 as follows:

policy policy2 {deny-unless-permit

rule rule2 (permit

target:

equal ("read", action/id) && equal ("R1", resource/type)

&& equal ("Junior manager", subject/role)

&& equal ("Department1", subject/department)

&& equal ("ProjectA", subject/project))}

&& less-than (feature/BytesReadPerHour, 345.6)

&& less-than (feature/NumberOfReadsPerHour, 14)

Intuitively, policy2 narrows the access conditions of policy1 through contex-
tual features by imposing additional constraints on how much and how often
resources are typically accessed by junior managers. Consider, for instance, the
case where Bob attempts to access 50 project documents within 10 min. Based
on the updated policy, this behavior would be deemed as anomalous and thus
denied, preventing Bob to access all documents.

3 Adaptive Access Control

In this section, we introduce ML-AC, a system for adaptive access control that
aims to reduce the risks of users abusing their privileges. Figure 1 presents the
ML-AC architecture. It comprises the following components:

– Authorization Server is a standard ABAC infrastructure à la XACML based
on PEP/PDP.

– Policy Administration Point (PAP) features the proactive policy refinement
functionalities proposed in this work.

– Monitoring System supervises the whole system and provides the informa-
tion needed to build behavioral profiles used by Policy Administration in its
refinement process.
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Fig. 1. The ML-AC system

Once an access request is received by the Authorization Server (step 1), it is
evaluated following typical PEP/PDP evaluation frameworks. If access is granted
(i.e., a permit decision is returned) by the Authorization Server, the request,
together with the corresponding behaviour provided by the Monitoring system,
is forwarded to the PAP (step 2) to determine whether it is anomalous. The
PAP dynamically refines the access control policies based on the user behavior
and enforce them in the Authorisation Server (steps 3–4). Administrators are
informed of the changes (step 5).

Our contribution lies in the Policy Administration component. Specifically,
we equip PAPs with the Contextual Behaviour Learning component, which is
responsible to build user profiles according to the monitored behavior and refine
access control policies based on those profiles. The Concept Drift component
detects the evolution of the learned user profiles and inform the Contextual
Behavior Learning component when new behaviors are detected (step 3).

In the remaining, we introduce our representation of behavioral models
and present the mechanics of the Contextual Behaviour and Concept Drift
components.

3.1 Behavioral Model

To build the behavioral models used to identify anomalous accesses, we introduce
the notion of user behavior. Behaviours, denoted as b, represent how users are
utilizing resources. They are defined in terms of the attributes forming access
requests (i.e., user, resource and action) and of any contextual knowledge features
that can be exploited by the access control system for decision making (e.g.,
working time, working location, types of activities). Formally, a behaviour is
defined as:

b � 〈Au
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z the con-
text. An attribute is an expression of form A � name op value , where op is a
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relational operator (e.g., =, >) between an attribute name and a value from the
attribute’s codomain. For instance, the following behaviour (we shorten attribute
names for ease)

b1 = 〈role = jnr-mng, act = read, res = R1 ,#byte = 250,#read = 10〉

corresponds to the access request reported in Sect. 2, where #byte and #read
are contextual features provided by the Monitoring System.

Behaviors are grouped into so-called class of interactions. Each class repre-
sents a group of homogeneous behaviours (i.e., whose representation involves the
same set of attribute name) that are considered normal. We assume that the set
of initial classes are defined according to the access policy rules, hence on the
basis of the controls on user, action and resource attributes. Changes at runtime
to the classes are managed by the Concept Drift component (Sect. 3.3).

3.2 Contextual Behavior

Our approach builds behavioral profiles of normal accesses in the form of class of
interactions. To determine to which class of interaction a given behavior belong,
we relies on Random Forest (RF) [14], where each RF is used to characterize a
class of interaction. Based on this matching, the knowledge on the corresponding
contextual features is used to refine access control policies.

Learning Practicalities. Given a class of interactions Ci, our goal is to recognize
whether a user behavior bi is similar to those represented by Ci or not, i.e.
whether bi is anomalous. Practically, being bi a potentially anomalous behavior,
we cannot assume it will always match (the attributes of) Ci. It follows that
this problem cannot be addressed as a multi-class classification (labels would be
represented by the classes of interactions and our goal would be to determine if
the label of a test sample bi is Ci or another Cj , with i �= j), but as a One Class
Classification (OCC) problem [15] for each of class of interaction Ci individually.

Solutions for the OCC problem are numerous. However, being our goal to
obtain learning outputs that can be used to refine policies, we opted for the
white-box approach of RF. Specifically, each RF is an ensemble of Decision
Tree (DT) each of which models the conditions on the attributes identifying
the normal behaviors of a class. Each DT produces an output of the form of
antecedent ⇒ consequent rules [16]. The antecedent consists of logical conjunc-
tions stating under which conditions a behavior can be classified as normal or
anomalous, as indicated by the consequent.

It is worth noting that each DT produces its own output, leading to poten-
tial inconsistencies. For instance, let us suppose a RF with three DTs. Given a
behavior b, each DT produces its own decision, e.g. DT1(b) = 1, DT2(b) = 0 and
DT3(b) = 1, where 1 and 0 denote normal and anomalous behavior, respectively.
To solve this problem RF relies on a majority vote algorithm among DTs; hence
b is classified as normal. Notably, a final decision can always be guaranteed by
using a known RF voting solution [17].
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Access Control Refinement. The DT outputs, hereafter called ML-rules, is used to
bridge from the machine learning world to the actual refinement of access control
policies. Practically, they encode the obtained knowledge in terms of additional
conditions to add to the access control policy. The syntax of ML-rules is defined
by the following grammar:

ML-rule ::= Antec ⇒ Consec
Antec ::= Cnd {&& Cnd} Cnd ::= name op value

Op ::= = | > | < | ≤ | ≥ | in Consec ::= true | false

where true (resp., false) identifies a normal (resp., anomalous) behavior. The
antecedent consists of a conjunctive sequence of conditions, whereas the conse-
quent is a Boolean value stating whether a behavior satisfying the antecedent
is normal or anomalous. For instance, the following ML-rule represents the
refinement leading from policy1 to policy2 of the example

role = jnr -mng && act = read && res = R1
&& #read < 14 && #byte < 345.6 ⇒ true

Therefore, ML-rules are used to transfer the contextual knowledge learned by
the RFs into the access control policies. Policy refinement occurs on the basis of
the conditions on the contextual features present in an ML-rule (e.g., the #read
and #byte above). Practically, the access control rules to refine correspond to
those matching the conditions on user, action and resource attributes present in
the ML-rule. The refined rules contain the additional controls on the contextual
features as per the example of policy2.

3.3 Concept Drift

After the behavioral models have been build, the system starts monitoring the
evolution of user behaviors to detect concept drifts in order to maintain the RF
models accurate over time. It follows from the RF design that concept drifts can
only be detected on the contextual features.

To this aim, we rely on Olindda [18], a clustering-based approach similar
to the one followed by BBNAC [11]. Olindda uses the well-known k-means
algorithm (or one of its extensions, e.g. k-modes for categorical features) to
cluster behaviors of the classes of interactions and detect the emergence of new
classes (aka new clusters) based on the distance among clusters.

Figure 2(a) depicts a scenario where concept drift can be observed. For
instance, given three classes of interactions C1, C2 and C3, at the beginning
just three groups of user behaviors, respectively the clusters A, B and D of
blue-filled shapes, are identified. After a certain amount of time, the behaviors
in the cluster D change to the point that concept drift is detected: the red-filled
shapes. Therefore, these behaviors are used by the RF modelling the class C3 to
update its knowledge accordingly. Additionally, when behavior like those repre-
sented by red cross shapes are observed, i.e. not forming any cluster, Olindda
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Fig. 2. Detection of concept drift

deems them as anomalies. This is the key assurance to avoid RF to refine access
control policies with conditions allowing anomalous behaviors.

Notably, emerging concepts may overlap among classes leading to difficulties
in their classification. For instance, Fig. 2(b) depicts new concepts emerging from
the cluster D that present similarities to both cluster D (circle shapes) and
cluster B (square shape). All emerging concepts like the latter are treated as
anomalies.

Divergence in Clusters. A key aspect of concept drift is the emergence of sub-
clusters within an existing cluster. Given a class Ci, it may happen that a subset
of its users start behaving significantly different from the remaining users, over
time. This would lead to the discovery of new classes of interactions detailing
different behavioral profiles.

Our approach aims to build classes of interactions that are characterized
by behaviors that are very similar to each other. Therefore, in the light of the
new discovered sub-clusters, we derive two new classes of interaction from Ci,
namely Cn

i and Co
i , representing behavior related to the new and old concepts,

respectively. This has the consequence of introducing a new RF modelling the
new class. In order to keep updating the policy refinements generated by the
initial Ci, it is required a layered RF modelling able to discriminate between the
two new classes. Further details are left to future work.

4 Evaluation

To evaluate the effectiveness of our approach, we have implemented it3 and
performed experiments using a synthetic dataset. The goal of the experiments
is to demonstrate the benefits of combining domain context knowledge (inferred
using machine learning) with knowledge based on access control rules (used to
create classes of interaction) for the detection of anomalies. In particular, we

3 The tool is freely available at https://github.com/cybersoton/ml-ac/.

https://github.com/cybersoton/ml-ac/
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Fig. 3. Comparison among ML-AC, BBNAC and ML-ACnok

assess the detection accuracy of ML-AC by analyzing the number of true and
false positive. This will allows us to demonstrate how the refinement based on
this detection approach will prevent anomalies to happen a priori. Note that we
do not evaluate the use of machine learning to classify user behavior, being this
extensively reported in the literature (e.g., [19]).

In the experiments, we compared our approach for anomaly prevention with
two other approaches. We took BBNAC [11], the closest approach from the
literature. To avoid bias in the experimentation, we re-implemented BBNAC in
Matlab. Additionally, we performed a comparison with ML-ACnok, a variant of
ML-AC where a priori knowledge on the policy is not used. This allows us to
better assess the role of contextual knowledge.

Dataset. We generated a synthetic dataset whose data instances represent user
behaviors, under the assumption that there are two classes of interactions. The
behaviors are represented as three-dimensional points and based on numerical
features. We generated over 3000 behaviors, with almost an equal number of
normal and anomalous instances. Intuitively, about 2000 behaviors were used
for training, while the rest for testing.

Results. To evaluate the accuracy of the approaches, we computed the ROC
curve for the three evaluated approaches (Fig. 3). The ROC curve is a graphical
plot we use to evaluate how well the classifier we defined distinguishes between
normal and anomalous behaviors, based on a varying discrimination thresh-
old (i.e., the value used to deem a behavior anomalous). Specifically, it shows
the true positive rate or TPR (y-axis) against the false positive rate or FPR
(x-axis) with respect to different threshold settings. These performances can also
be reduced to a single scalar value, called area under the ROC curve (AUC),
which represents the probability that a classifier will rank a randomly chosen
anomalous instance higher than a randomly chosen normal instance. This gives
better insights on the number of false positive detected.

As can be seen in Fig. 3, ML-AC achieves the best performance. ML-AC
significantly surpasses the others due to the use of a priori knowledge on the
policy. This allows ML-AC to create more accurate profiles and hence to discern
more precisely among groups of behaviors. Specifically, we have that the AUC
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drops from the 99% of ML-AC to the 87% and 85% of ML-ACnok and BBNAC,
respectively. The main cause is that both BBNAC and ML-ACnok classify most
of the anomalous behaviors of each class as a normal behavior of the other class.

5 Conclusion

In this paper we proposed ML-AC, an approach to refine and update access
policies in order to eliminate policy misconfigurations that can be exploited by
insider threats. ML-AC builds behavioral models representing the normal usage
of resources and exploits these models at run-time to prevent anomalous accesses.
Our approach has been implemented and validated using a synthetic dataset.

Future Work. There are a number of interesting aspects to address as future
work. Firstly, we plan to conduct more extensive experiments based on real-life
datasets and measure the number of refinement applied in practice to the access
control policies.

Moreover, we would like to study further the presence of an adversarial
attacker [20], who may try to deceive the machine learning algorithm in order
to bypass security controls. ML-AC employs different machine learning algo-
rithms to achieve its goals, therefore it may incur in the risk of being subject
to adversarial attacks. The definition of class of interaction may constitute a
starting point for devising strategies to hinder typical attacks such as causative
and exploratory. The fact that user behaviors are split based on the classes,
may make the task of deceiving ML-AC quite difficult. Many anti-adversarial
algorithms have been proposed in literature, like those presented in [11] that
effectively mitigate threats related to concept drift.

Another aspect concerns classes of interactions. It might not always be pos-
sible to clearly define those classes based only on the knowledge derived from
the context and access control policies. There may be some classes that should
be merged or split, hence we plan to design a preprocessing step to support the
classes definition process.
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