
Fingerprinting Crowd Events in Content
Delivery Networks: A Semi-supervised

Methodology

Amine Boukhtouta1(B), Makan Pourzandi1, Richard Brunner2,
and Stéphane Dault3

1 Ericsson Security Research,
8275 Trans Canada Route, Saint-Laurent, Montréal, QC, Canada

{amine.boukhouta,makan.pourzandi}@ericsson.com
2 Ericsson Universal Delivery Network,

8275 Trans Canada Route, Saint-Laurent, Montréal, QC, Canada
richard.brunner@ericsson.com

3 Ericsson Business Area Digital Services, R&D Security Operations,
8275 Trans Canada Route, Saint-Laurent, Montréal, QC, Canada

stephane.dault@ericsson.com

Abstract. Crowd events or flash crowds are meant to be a voluminous
access to media or web assets due to a popular event. Even though the
crowd event accesses are benign, the problem of distinguishing them
from Distributed Denial of Service (DDoS) attacks is difficult by nature
as both events look alike. In contrast to the rich literature about how
to profile and detect DDoS attack, the problem of distinguishing the
benign crowd events from DDoS attacks has not received much interest.
In this work, we propose a new approach for profiling crowd events and
segregating them from normal accesses. We use a first selection based on
semi-supervised approach to segregate between normal events and crowd
events using the number of requests. We use a density based clustering,
namely, DBSCAN, to label patterns obtained from a time series. We then
use a second more refined selection using the resulted clusters to classify
the crowd events. To this end, we build a XGBoost classifier to detect
crowd events with a high detection rate on the training dataset (99%).
We present our initial results of crowd events fingerprinting using 8 days
log data collected from a major Content Delivery Network (CDN) as a
driving test. We further prove the validity of our approach by applying
our models on unseen data, where abrupt changes in the number of
accesses are detected. We show how our models can detect the crowd
event with high accuracy. We believe that this approach can further be
used in similar CDN to detect crowd events.

1 Introduction

CDNs are the global networks delivering content from different content providers
to cope with the increasing demand for the QoE required by the commercial

c© IFIP International Federation for Information Processing 2018

Published by Springer International Publishing AG, part of Springer Nature 2018. All Rights Reserved

F. Kerschbaum and S. Paraboschi (Eds.): DBSec 2018, LNCS 10980, pp. 312–329, 2018.

https://doi.org/10.1007/978-3-319-95729-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95729-6_20&domain=pdf


Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 313

content providers. To address the ever increasing demand for content in the
Internet, CDNs turned out to be the de-facto solution to cache content, including
video streaming, news, and social media [5]. CDNs are meant to accelerate the
delivery of content on the Internet to cope with the business-grade performance.
As such, their importance increased within the cyberspace ecosystem over time.
A recent report stipulates that 70% of all Internet traffic will cross CDNs by
2021 [4].

Among the key players in networks deployment, CDNs have been facing many
challenges from the complexity and versatility of emerging online services. Thus,
CDNs are exposed to benign events such as crowd events and cyber-threats
like DoS, DDoS and harmful crawling of cached assets. The CDN operators are
therefore increasingly interested in the prediction of faulty events in CDNs result-
ing from misconfigurations, unpredictable networking conditions, or the result
of cyber-attacks. In recent years, sophisticated malicious artifacts are used by
attackers to take advantage of any vulnerability to conduct sabotaging CDN
itself or target critical infrastructures to cause service unavailability. By meta-
morphosing CDNs to support security as a built-in asset to counter different
cyber-threats have become then of a paramount importance to operators. As
part of this effort, there is a keen interest shown operators to investigate events
logging data for identifying misbehavior of CDNs. Crowd events (flash crowds)
are simultaneous and huge access to web or media based content from legitimate
users. There have been several efforts to predict the DDoS attacks based on
analyzing the event logs. However, few works targeted to distinguish between
the benign crowd events from DDoS attacks. However, this distinction is of high
importance to avoid false positive DDoS attacks and better planning of resources
to address legitimate users during crowd events. To this end, we aim at address-
ing the problem of framing crowd events in CDNs and differentiate them from
unsolicited/malicious activities by exploring CDN’s data obtained from a large
operator. In this research effort, we aim to provide an answer to the follow-
ing questions: (1) What are the key indicators identified in CDNs ecosystem?
(2) Given observable crowd events, how to profile them and isolate them from
normal events? (3) By considering profiles, how to use engineered features to
distinguish between crowd events and anomalies?

To answer these questions, we shape the contributions of this paper as fol-
lows: (1) We draw upon 169 GB of logging data collected from a large CDN
operator to characterize access events in a hybrid CDN, where web and media
assets are cached. The number of events is more than 452 million events (more
than 386 million access events, whereas the rest are routing events). We present
different perspectives to engineer features, namely, delivery, cache, IP and HTTP
based features. (2) We propose a semi-supervised methodology to identify crowd
events with high detection rate on the training dataset (99%). The methodol-
ogy is driven by the number of requests to profile patterns in a timely manner
(time series). By using a density clustering algorithm (DBSCAN), we manage
to create profile normal and crowd accesses. The clustering plays the role of
a first filter layer towards crowd events fingerprinting. The resulted labeling is



314 A. Boukhtouta et al.

then used for classification (XGBoost) which subsequently identifies the crowd
events. We manage to identify two patterns of crowd accesses patterns that can
be considered as a ground truth to potentially identify anomalies. (3) To test
further our methodology, we used anomalous unseen data to test classifiers. We
showed that our methodology allowed to discern crowd events and anomalies.
Thus, we believe our methodology can be used to create multi-level time series
classification system to identify anomalies in CDN’s deployment.

The remainder of this paper is as follows: In Sect. 2, we explain the method-
ology used to discern crowd and normal accesses, as well as the features set used
to characterize. Section 3 puts forward a description of the dataset and exper-
iments layout as well as results obtained from them. In Sect. 4, we expose the
different related works as well as how they compare with our work. In Sect. 5,
we conclude with a few observations and future directions of our research.

2 Methodology

2.1 Overview

The reason behind showing an interest to crowd events, lies in the fact that they
tend to be frequent over time, therefore, prone to be fingerprinted in compari-
son with cyber-attacks like DDoS, where data needs to be recorded during an on-
progress attack (e.g., [6]), or inferred from network telescopes (e.g., [10,11]), or
even simulated through attacking tools (e.g., [12]). Our strategy is to character-
ize thoroughly crowd events through number of accesses, then differentiate them
from anomalies based on attributes collected from different perspectives (delivery,
IP, cache, HTTP). Figure 1 depicts our approach. We pre-process the input logs
and events to extract patterns representing aggregated counters collected during a
time window. We then use them to train a first model to discern between the nor-
mal and crowd accesses (fingerprinting component in Fig. 1). Subsequently, the

Fingerprinting
No

Yes

Model

Normal Event

Potential Crowd

Event
Timestamp: 2016-12-12T00:00:00

Time Window: 1 minute

Time

Multi-level Profiler

Delivery
HTTP

(Application)
IP Cache

No

Crowd Event

Yes

Alert

492,-69,-173,76,14,119,-140,113,-123,-12,

139,-120,175,-198,28,-72,17,-18,77,58,102,

-54,-60,33,-90,33,33,-10,30,43,-123,46,71,8,

-63,-42,-53,11,96,-38,2,7,-5,16,-78,8,80,

-120,26,177,-77,-2,-152,118,-150,44,-33,

-22,35,102,332

Request Variation

Timestamp: 2016-12-12T00:00:00

Time Window: 1 minute

Time

Logs

Fig. 1. General approach.



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 315

potential crowd events are subject to a more in-depth multi-level profiling to check
whether the event is a real crowd event or an alert (Multilevel profiling component
in Fig. 1). In our approach, we use different perspectives to aggregate several fea-
tures (attributes) into new features allowing to detect crowd events. Then, we use
collected aggregates as a downstream outcome to fingerprint crowd events. We
refer readers to Sect. 2.3, where we describe the different features considered in
our work.

2.2 Fingerprinting Crowd Events

Figure 2 illustrates the fingerprinting methodology, which is a semi-supervised
approach, where we use empirically a density clustering algorithm to label crowd
and normal accesses. Based on that, we create a detection model to identify
labeled patterns. As such, we apply a data-driven approach based on logs col-
lected from CDN’s operator. The logs are used to compute different attributes
indexed per time. Given a time granularity and aggregation window, we create
patterns, which are fed to a density clustering algorithm to segregate between
normal and crowd events. However, obtained solution does not allow to bal-
ance between normal and crowd accesses cardinalities. Therefore, we employ
data augmentation technique to increase the number of crowd accesses patterns.
This is done to balance the number of normal access patterns with crowd access
patterns. Afterwards, we label the balanced data to create a ground truth for
classification. The latter’s result is a model that represents a decision system
that discerns crowd events from normal events. It is important to mention that
all these steps are done offline. In the sequel, we detail different components.

Fig. 2. Detailed view of the fingerprinting approach.



316 A. Boukhtouta et al.

492, 2016-12-13T00:00:00

423, 2016-12-13T00:00:01

250, 2016-12-13T00:00:02

…..

…..

333, 2016-12-13T23:59:57

303, 2016-12-13T23:59:58

291, 2016-12-13T23:59:59

492,-69,-173,76,14,119,-140,113,-123,-12,139,

-120,175,-198,28,-72,17,-18,77,58,102,-54,-60,

33,-90,33,33,-10,30,43,-123,46,71,8,-63,-42,-53,

11,96,-38,2,7,-5,16,-78,8,80,-120,26,177,-77,-2,

-152,118,-150,44,-33,-22,35,102,332

…..

366,-65,-35,-96,53,87,-51,-18,-38,108,107,-141,

97,-132,149,-47,-22,-55,-86,141,-48,-87,127,-40,

-10,-14,86,82,-131,37,-117,87,-67,88,-21,-20,-51,

87,-35,55,-60,-50,36,88,-28,-36,-3,129,-201,13,14,

38,-16,125,-98,76,7,-31,-30,-12,291

Granularity: second

Window: 1 minute

Analyst

Fig. 3. Aggregation example.

Aggregation. By aggregation, we mean encompassing observed raw values dur-
ing a granularity time unit (e.g., 1 s) into one value observed during a time
window period (e.g., 1 min). As such, the result of the aggregation is a data
point that reflects a statistical view of raw values, which can be a count, sum,
average, etc. In the context of our work, we consider initially the number of
access requests to CDN, indexed per second. It is important to mention that
the aggregation period ca be adjusted, but, needs to be selected carefully to
obtain a rich set of patterns to fingerprint crowd events. In this work, as a first
attempt, we consider two aggregation time windows, namely, 1 min or 5 min.
Other aggregation periods can be considered, although the aggregation period is
longer (e.g., 10 min), less is the number of collected patterns. Figure 3 illustrates
an aggregation pattern recorded for 1 min aggregation time window. A pattern
is represented by a starting and an ending value, as well as, differences (shifts)
between values observed every second.

Density Clustering. Density clustering is meant to segregate between high and
low density data, thus, we assume that crowd events happen less in comparison
with normal events. As such, we consider using this clustering technique to
characterize normal events as a highly dense data (highly dense core cluster),
whereas crowd events are seen like low dense data (low dense clusters or outliers).
Based on prior usage of DBSCAN [3] in different works [13–15], we exploit it
to cluster data collected from accesses aggregates. DBSCAN algorithm is based
on two parameters, namely, the radius distance and the minimum core number.
Given sampled data points, the algorithm iteratively looks for other data points
located within radius distance to create a cluster. If two data core points are
close within the radius distance, they are merged into the same cluster. Based
on the minimum core number, the algorithm sets a minimal cardinality to create
a cluster. Points that are not enclosed within clusters, are considered as outliers
or singletons. In our case, we target mainly to group normal accesses in a core
cluster and crowd accesses in low density clusters or singletons. Thus, we set
the minimum core number to 1, to find data points representing crowd events
as singletons. As a distance function, we use Euclidean distance between points.
We use the silhouette score to evaluate the quality of clustering solution.



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 317

8104,0

7740,1

9270,2

…..

10819,57

11294,58

11090,59

11070,60

9898,61

11323,62

…..

12778,117

14301,118

13943,119

Ag
gr

eg
at

e 
1

Ag
gr

eg
at

e 
2

8104,-364,1530,3202,488,-1500,235,-167,-672,

-871,354,386,-26,-852,1025,-288,-236,1126,735,

-1500,305,-75,-2,-1029,584,-394,136,60,230,-718,

483,406,-268,-568,1316,-272,339,-866,1098,529,

-323,-1041,815,137,-1005,-379,-84,-404,-442,-874,

2442,264,-583,-163,277,-358,743,-206,475,-204,

11090

11070,-1172,1425,-464,1444,2349,1399,-1122,391,

-825,-192,-1075,176,-1001,537,-201,-456,-1109,

1462,712,489,-1029,1938,-282,-606,-1184,2064,

-63,-919,-517,1443,-1117,-565,-1161,849,253,218,

-204,613,-108,-533,-644,898,277,841,21,-642,-572,

365,-1071,972,230,356,-109,960,-453,-323,-1255,

1523,-358,13943

Adjacent Patterns

8104,0

7740,1

9270,2

…..

10819,57

11294,58

11090,59

11070,60

9898,61

11323,62

…..

12778,117

14301,118

13943,119

Ag
gr

eg
at

e 
1

Ag
gr

eg
at

e 
2

7740,1530,3202,488,-1500,235,-167,-672,-871,

354,386,-26,-852,1025,-288,-236,1126,735,-1500,

305,-75,-2,-1029,584,-394,136,60,230,-718,483,

406,-268,-568,1316,-272,339,-866,1098,529,-323,

-1041,815,137,-1005,-379,-84,-404,-442,-874,

2442,264,-583,-163,277,-358,743,-206,475,-204,

-20,11070

New Pattern

1 
m

in
ut

e

Augmentation

Fig. 4. Augmentation example.

Data Augmentation. Being inspired by works from [16–18], we employ data
augmentation on time series. The main reason behind doing so, lies in the fact
of unbalance between normal accesses and crowd accesses. With this intent, low
density clusters and singletons representing crowd access patterns are used to
create new patterns. Timely adjacent patterns are used to extract new patterns
to create a balanced dataset between normal accesses and crowd accesses. We use
a sliding window (e.g., 1 s) to extract a new pattern, Fig. 4 depicts an example of
two adjacent patterns aggregated during 1 min and used to obtain a new pattern
by utilizing a sliding window of 1 s.

Labeling and Classification. As a downstream outcome from clustering solu-
tion and data augmentation, we label the core cluster patterns representing nor-
mal accesses with 0, whereas singleton and augmented patterns are labeled with
1. Thus, a labeled dataset is created, and used as an input for a binary classifier.
The latter is built by applying the XGBoost algorithm [1], which is based on
optimization through tree models [19,20] and boosting [21]. It supports many
learning and boosting parameters that can be used to build classification models.
XGBoost has three loss functions to control prediction, namely, Mean Square
Error for regression, Log-Loss for binary classification and mLog-Loss for multi-
classification. XGBoost uses regularization functions to control the complexity
of the model to avoid over-fitting. Both loss function and regularization terms
to define the objective function. The latter is optimized by using the gradient
descent algorithm to compute gradients. XGBoost builds the boosting tree by
computing predictions of leaves and greedily finding splitting points optimiz-
ing the objective function. In [22], the authors enumerated the advantages of
XGBoost: (1) Tree models have rich representational abilities. (2) The boost-
ing is adaptive, thus, models are flexible to determine neighborhoods in different
parts of the input space. (3) Bias-Variance trade-off control, XGBoost starts with
low variance and high bias model and reduces the bias accordingly by decreasing
the size of neighborhoods in the input space.



318 A. Boukhtouta et al.

Table 1. Features description.

Perspective Feature Description

Delivery Hit ratio The number of caching hits divided by the total number
of requests during a time period

Volume sum The sum of bytes saved by caching during a time period,
it is negative if content assets are fetched from the origin

Volume average The average value of volume records during a time period

Volume
deviation

The standard deviation of volume records during a time
period

Volume
minimum

The minimum value of volume records during a time
period

Volume
maximum

The maximum value of volume records during a time
period

Duration
average

The duration average for content assets delivery during a
time period

Duration
deviation

The standard deviation of content assets’ delivery
duration during a time period

Duration
maximum

The maximum value of delivery duration records during a
time period

IP Number of
requests

The total number of requests observed during a time
period

Number of
distinct IPs

The total number of requesting unique IPs during a time
period

Maximum
requesting IP

The maximum number of requests issued by the most
accessing IP during a time period

IPs entropy The number of unique IPs divided by number of requests
issued by IPs during a time period

Average request
per IP

The average value of requests issued per IP during a
period of time

Deviation
request per IP

The standard deviation value of requests issued per IP
during a period of time

Cache Number of
distinct caches

The total number of unique caches serving requests
during a time period

Maximum
requested cache

The maximum number of requests observed on the most
serving cache during a time period

Caches entropy The number of unique caches divided by number of
requests served by caches during a time period

Average request
per cache

The average value of requests served by a cache during a
period of time

Deviation
request per
cache

The standard deviation value of requests served by a
cache during a period of time

HTTP Ratio status The HTTP status (20X, 40X, 50X) observed requests
divided by the total number of requests

Ratio HTTP
method

The HTTP method (GET, POST, HEAD, DELETE,
PUT) observed requests divided by the total number of
requests



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 319

2.3 Features Engineering

The features engineering aims to the creation of attributes from the domain
knowledge, namely, log traces collected from CDN deployment. Based on inter-
nal experts’ inputs, we define four perspectives based on field attributes: deliv-
ery perspective, IP perspective, cache perspective, and HTTP perspective (see
Table 1). We consider these metrics as an increase in the delivery duration met-
rics indicates a bandwidth saturation indicating a possible crowd event. From
a delivery perspective, we are interested in: (1) the hit ratio through count-
ing how frequent the content assets are found in caches, (2) the cached volume
through computing saved bytes (content objects’ size) as well as different statis-
tical metrics, and (3) the delivery duration of different content assets as well as
the average, the standard deviation and the maximum values. As the delivery
perspective asses the effectiveness of CDNs, we propose to use those features for
fingerprinting.

The IP perspective is meant to monitor clients requesting content from CDN.
The metrics associated with IPs help to describe the dynamics of accessing con-
tent, thus, they are potential indicators for DDoS attacks or massive contents’
crawling. From IP perspective, we are interested in: (1) the total number of
requests produced by clients (IP addresses), (2) the total number of distinct
IP addresses observed during aggregation time, and (3) the maximum number
of requests generated by the most occurring IP address, (4) IPs entropy score,
which represents the total number of distinct IP addresses divided by the total
number of requests, (5) the average of requests’ number generated per IP, and
(6) the standard deviation of requests’ number generated per IP.

The cache perspective represents how cached content is served to clients
instead of accessing the content from origin servers. As such, being aware how
content is distributed can help detection of caching anomalies. For instance,
the distribution of requests through caches pinpoints to how fairly or unfairly
requests are distributed to caches. Low cached volume metric indicates potential
high number of requests to unpopular content indicating possible DDoS events.
From cache perspective, we are interested in: (1) the total number of distinct
caches serving requests during aggregation time, (2) the maximum number of
requests observed on the most serving cache, and (3) caches entropy score, which
represents the total number of distinct caches divided by the total number of
requests, (4) the average of requests’ number served by a cache, (5) the standard
deviation of requests’ number served by a cache.

The HTTP perspective is meant to be aware of the application protocol used
to request content from CDN. A drastic change in the number of POST or GET
can indicate the presence of a flooding attack; thus a misuse of HTTP protocol.
From HTTP perspective, we are interested in: (1) the ratio of HTTP status codes
(e.g., 200 or 404), and (2) the ratio of HTTP methods (e.g., GET, POST ). At
the end, we discard some constant features: (1) the minimum delivery value since
it tends to 0, (2) the number of requests from the less requesting IP addresses
since it tends to 1, and (3) the number of requests observed on less accessed
caches, which tends to 1.



320 A. Boukhtouta et al.

3 Experiments

3.1 Experiments Setup

We run the experiments on a virtual machine deployed on Intel Xeon CPU E5-
2060 2 GHz, consisting of 12 virtual CPUs and 32 GB of memory. The experi-
ments are done on a dataset collected from the 12th to 19th of December 2016. It
represents Web access logs collected from a large operator hosting a sport league
website. The size of the data is 169 GB of logs, which corresponds to 386, 396, 885
access events. We enumerate 1, 268, 160 IPs spanning over 200, 634 “/16” sub-
nets, geo-located in 219 countries and 15, 646 cities. The crowd events were
observed on 14th and 15th of December 2016, whereas anomalies were observed
the 12th of December 2016. Figure 5 represents the distribution of requests’ num-
ber between 13th to 19th December 2016. We notice two peaks of the request
number in the 14th and 15th of December, these peaks represent crowd accesses
during games. We consider then data collected from 13th to 19th December 2016
to cluster normal and crowd accesses. The clustering is done on the patterns as
described in Sect. 2.2. Once the clustering is done, we augment the patterns col-
lected from the original data, then, label different patterns to create the classifier.
To build the latter, we use a 10 rounds’ classification process with a 5-fold cross
validation. To test our approach, we apply the classifier on the anomalous day
(12th of December 2016, not used for the training) to check, if the model detects
abrupt changes. As such, we can use patterns extracted from other features, to
see which ones can segregate between crowd accesses and anomalies.

50000

40000

30000

20000

10000

0

Fig. 5. Number of requests (13th to 19th December 2016).



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 321

3.2 Clustering and Augmentation Results

We apply DBSCAN algorithm on patterns extracted from two aggregation peri-
ods (1 min and 5 min). The intent is to find empirically a core cluster grouping
normal accesses, and discerning crowd accesses. To do so, we tweak the distance
parameter of DBSCAN and check the quality of clustering solutions through
silhouette scores and how many patterns are enclosed in the core cluster. The
intent is to find a distance parameter that produces a good quality of clustering,
meanwhile segregating crowd accesses from normal ones. For each distance, we
compute clustering execution time, silhouette score and core clustering cover-
age. Figure 6 depicts clustering running time, silhouette score and core cluster
coverage with respect to distance parameter, which varies from 5 to 65 for 1
min patterns, and from 5 to 110 for 5 min patterns. The running time to build
clustering solutions spans from 10.7 to 28.25 s for 1 min patterns, and from
2.69 to 5.01 s for 5 min patterns. The clustering running time average is 14.2 s
for 1 min patterns and 3.71 s for 5 min patterns. Regarding silhouette scores,
we observe that it tends to 1, which means that clustering quality is good and
therefore no need to increase the distance beyond the current distances used for
our experiments. The core cluster is discernible, since the majority of patterns
are grouped together (core cluster covers the majority of patterns). We observe
that the silhouette scores increase when the distance gets higher, but we need
to monitor a trade-off between high silhouette scores and missing patterns rep-
resenting crowd accesses. To illustrate this trade-off, we consider two clustering
solutions for both 1 min (distances equal to 25 and 65, silhouette scores equal to
0.855 and 0.931, coverage values equal to 9965 and 10055) and 5 min (distances
equal to 80 and 110, silhouette scores equal to 0.877 and 0.909, coverage values
equal to 1995 and 2002) patterns (see Fig. 6).

1 Minute

5 Minutes

0.877 0.909

1995 2002

0.855 0.93114.20

3.71

9965
10055

Fig. 6. Clustering: running time & silouhette scores & core cluster coverage.



322 A. Boukhtouta et al.

Aggregation Period ID

5 Minutes

Distance=80

Silhouette=0.877

5 Minutes

Distance=110

Silhouette=0.909

0 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 20000
0.0

0.2e7

0.4e7

0.6e7

0.8e7

1.0e7

1 Minute

Distance = 25

Silhouette=0.855

1000080006000400020000
0

25e4

20e4

15e4

10e4

5e4

0

25e4

20e4

15e4

10e4

5e4

1000080006000400020000

1 Minute

Distance = 65

Silhouette=0.931

N
um

be
r o

f R
eq

ue
st

s

0.0

0.2e7

0.4e7

0.6e7

0.8e7

1.0e7

Fig. 7. Silhouette & distance vs. Crowd events identification.

We refer to Fig. 7 to depict the trade-off between solutions for different pat-
terns. Based on observations inferred from aforementioned illustration, we select
two solutions, meaning a distance equals to 25 for 1 min patterns and a dis-
tance equals to 80 for 5 min patterns. Despite the fact that these distances do
not output the best silhouette score, their values manage to segregate better
between core cluster patterns (normal accesses) and singleton patterns repre-
senting crowd accesses (see circled peaks in Fig. 7). In the second case observed
in Fig. 7, where distance values are respectively 65 and 110 for 1 min and 5 min
patterns, the silhouette scores are slightly better, but the clustering solutions
do not segregate effectively between normal and crowd accesses. We can observe

Fig. 8. Patterns augmentation (1 min & 5 min).



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 323

that some peaks are not distinguishable from normal accesses (the peaks that
are not circled in Fig. 7).

We apply augmentation to balance between the patterns belonging to the core
cluster (normal accesses) and other patterns (crowd accesses). The motivation
behind doing so, is to infer more crowd access patterns from existing patterns
and scale their cardinality with normal access patterns in order to label them for
classification. Figure 8 illustrates the plotting of magnitude values of raw values
and difference values within patterns. Data points at the bottom of both plots
represent the core cluster, whereas data points in the middle up to the top of
plots represent crowd accesses. Augmentation of crowd accesses can be observed
in the right hand side, where new patterns are created to balance classification
dataset.

Table 2 shows the number of patterns before and after augmentation. In this
experiment, we randomly select some adjacent crowd access patterns and infer
augmented data. For 5 min aggregation period, data augmentation is used for
both normal and crowds accesses to increase the number of samples to more
than 5, 000; whereas for 1 min aggregation, we consider increasing the number
of crowd accesses patterns since we already have more than 9, 000 patterns for
normal accesses. However, the data augmentation process is to subject for refine-
ment, since we can infer more normal access and crowd patterns, thus, increasing
number of patterns in the classification dataset. Moreover, we need to carefully
label patterns in the border between normal and crowd accesses. This is depicted
in the grey zone illustrated within the right hand side of Fig. 8, where normal
and crowd accesses can be mixed, therefore a potential over or under fitting of
the classification model can take place.

Table 2. Number of patterns before and after data augmentation.

Patterns Normal access
(before)

Crowd access
(before)

Normal access
(after)

Crowd access
(after)

1 min 9, 965 115 9, 965 7, 015

5 min 1, 992 24 5, 893 5, 409

3.3 Classification Results

We apply the XGBoost algorithm by considering its default execution layout.
We use first and second order gradients (grad and hess) by applying logistic
transformation (sigmoid) [2] on LogLoss function. To evaluate trained models,
we consider stacking, an ensemble learning technique, where the predicted value
is computed from cross validation. The number of learning rounds is 10, where
the number of folds within the dataset is 5. The evaluation metrics are: (1) the
Area Under Curve (AUC ) of Receiver Operating Characteristic (ROC ) func-
tion, which represents the trade-off between sensitivity (fall-out) and specificity
(recall), and (2) the accuracy average for both training and testing.



324 A. Boukhtouta et al.

Table 3. 10 rounds of 5 fold cross validation results (Tr. Training Phase, Te. Testing
Phase).

Period AUC Mean (Tr.) AUC Std (Tr.) AUC Mean (Te.) AUC Std (Te.) Acc. Mean (Tr.) Acc. Mean (Te.)

1 min %99.9128 %0.0144 %99.7489 %0.0766 %99.8274 %99.6370

%99.9552 %0.0168 %99.8066 %0.0964 %99.8542 %99.6489

%99.9814 %0.0075 %99.8740 %0.1108 %99.1070 %99.6608

%99.9831 %0.0048 %99.9125 %0.1063 %99.9137 %99.6371

%99.9838 %0.0050 %99.9200 %0.1187 %99.9420 %99.6906

%99.9861 %0.0037 %99.9442 %0.0773 %99.9509 %99.7144

%99.9861 %0.0037 %99.9665 %0.0528 %99.9524 %99.7263

%99.9872 %0.0033 %99.9661 %0.0536 %99.9628 %99.7203

%99.9945 %0.0040 %99.9667 %0.0529 %99.9673 %99.7204

%99.9980 %0.0026 %99.9663 %0.0533 %99.9702 %99.7322

5 min %99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%99.9915 %0.0217 %99.9739 %0.0214 %99.9911 %99.9735

%100 %0.0217 %99.9738 %0.0214 %99.9911 %99.9735

%100 %0.0217 %99.9738 %0.0214 %99.9911 %99.9735

%100 %0.0217 %99.9736 %0.0216 %99.9911 %99.9735

%100 %0.0217 %99.9736 %0.0216 %99.9911 %99.9735

Table 3 depicts classification results for both 1 min and 5 min patterns. Each
row contains a round of 5 fold cross validation, where we consider AUC mean and
standard deviation, as well as accuracy mean. These metrics are computed for
both training and testing phases. From results observed in the table, we notice
that for each round, AUC statistics are maintained, since the mean tends to 1,
whereas the standard deviation tends to 0. We also observe that the accuracy
is high and tends to 1 for both training and testing. Regarding 5 min patterns
classification, the results are constant; consequently, any round can be consid-
ered. Regarding 1 min patterns classification, the results change slightly from
a round to another. Usually, the model with the highest accuracy rate, or with
the lowest difference between AUC mean and standard deviation (best sensitiv-
ity and specificity trade-off), can be selected. As such, we can consider models
obtained from the 10th round, which has the best AUC and high accuracy rate
metrics. To test their detection of abrupt changes, the models are then tested on
unseen data (12th of December). Figure 9 illustrates patterns detected by models
as abrupt changes in the number of requests for two training days (14th and 15th

of December 2016) and unseen data (12th of December 2016).
Regarding crowd accesses, we notice 2 types of patterns illustrated in the

top and bottom plots within Fig. 9 (dashed ellipses). The first crowd accesses’
patterns illustrate a continuous periodic access to a sport event, whereas the
second ones illustrate some crowd accesses at the beginning of the game, then,
another set of crowd accesses during up to the end of the game. This can be
explained as people followed up the first game continuously at the opposite of



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 325

Table 4. Classification runtime (milliseconds) per pattern.

Patterns Minimum Maximum Average Deviation

1 min 0.715971 3.186941 0.749865 0.103742

5 min 0.961065 2.573013 1.008195 0.123094

the second one. In the latter, people were more interested to know what is the
issue of the game than following it continuously. The abrupt changes present in
the middle plot are different than the aforementioned crowd accesses’ patterns.
As such, we will consider studying other attributes during the period, where
we observed crowd accesses and suspicious patterns. Regarding the classification
runtime, we compute the time taken to predict each pattern. Table 4 illustrates
different statistics observed on classification runtime expressed in Milliseconds.
We notice that the average time to classify 1 min pattern is in the range of

Fig. 9. Prediction on 12th 14th 15th December 2016 Patterns (1 min & 5 min).



326 A. Boukhtouta et al.

0.75 ms, whereas it is in the range of 1 ms for 5 min pattern. The standard
deviation is in the range of 0.1 ms for both 1 min and 5 min pattern.

4 Related Work

Several works considered studying abnormal access patterns to the web sites in
order to detect DDoS attacks. In [23], authors analyzed IBM Olympic Games
Web site, and developed models to predict seasonal patterns based on peak
request rates and traffic variation. The study did not consider the implication
of CDNs, or DoS attacks. In [24], authors studied a peak workload analysis of
the football World Cup 1998 Web site [9]. They focused on the reference of
few extremely popular webpages, where clients inter-session time were short.
The authors considered the workload observed on the world cup website as an
initial characterization of how future workloads look like. They profiled HTTP
server response codes, type of content, unique file distribution and, files’ refer-
ence behavior (temporal locality and concentration of references). In [28], the
authors proposed a behavior based detection that can discriminate DDoS attack
traffic from traffic generated by real users. Their detection method relies on the
repeatable features of the packet arrivals. They used Pearson’s correlation coeffi-
cient to define a segregation threshold between predictable and non-predictable
data. They used [8,9] datasets to test thresholds defined from simulated inter-
arrival time data. This work did not consider CDNs’ logs and consider traffic
flows. The inter-arrival time can be subject to other networking constraints like
congestion, type of content (e.g. Video) and cached and non-cached web objects.
In addition, as any correlation analysis, an error metric needs to be considered
to support threshold decision. In [29], the authors used also Pearson coefficient
on users’ activity through number of requests. In [30], the authors introduced a
method to detect application-layer DDoS attack based on the entropy of HTTP
GET requests per source IP address. They used adaptive auto-regressive model
to transform time series into a multi-dimensional vector, then, applied SVM clas-
sification to identify the attacks. The authors utilized NS-2 simulator to create
attacks ground truth and considered World Cup 1998 Web dataset [9] for crowd
events. The approach is promising, however, the use of simulated data can be
biased or noisy. None of the mentioned studies considered patterns to build a
crowd events detection model.

In [25], the authors considered crowd events analysis, where they studied
two HTTP log traces collected from a popular TV show (24 h) and Chilean
election site (approximately 33 h). They showed that number of clients was in
the proportion of request rate. They studied also the number of clients’ clusters
during crowd events, the clusters overlap, and request rate, as well as reference to
files access. They also considered datasets representing password cracking and
five web servers disabling traces to characterize DoS attacks. They looked at
the same perspectives, clients and files, and drew upon results some differentia-
tion between crowd events and DoS. They proposed an enhancement to CDNs,
namely, adaptive CDN, by using collected trace-driven simulation to study their



Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 327

enhancement. Despite the fact the study considered clustering clients, it has not
investigated temporal aggregation of counters to create a crowd event detection
model. In [26], the authors examined usage patterns, files’ characteristics (pop-
ularity and referencing), transfer behaviors of YouTube, and compare them to
traditional Web and media streaming workload. The data were collected from a
university network, where staff and students accessed two Youtube’s points of
presence. This work focused more on usage patterns and file referencing with-
out elaborating predictive tasks. In [27], the authors differentiated DDoS and
crowd access flows by considering the fact that generated flows from DDoS tools
can be fingerprinted (high level of similarity), whereas crowd accesses are ran-
domly distributed (low level of similarity). The authors used Jeffrey distance,
Sibson distance, and Hellinger distance to measure the similarity among flows.
They concluded that Sibson distance is the most suitable, after applying exper-
iments on two distinctive datasets, Aukland VIII [7] representing crowd events
and Lincoln Laboratory DDoS scenario [8]. Despite the fact that the approach
is interesting, they used old datasets (collected on 2003 and 1999 respectively).
As explained above, none of the previous works, consider using a temporal set
of patterns as we use in our approach to detect crowd events.

In [31], the authors applied a discrimination algorithm based on a similar-
ity metric, namely, entropy variations to identify suspicious flows. They formu-
lated the problem in the Internet with botnets, and presented theoretical proofs
for the feasibility of their method. In this work, the authors relied on simula-
tions to prove their approach. For our work, we used a recent dataset collected
from a major operator, and applied a semi-supervised approach to profile crowd
accesses.

5 Conclusion and Future Work

The distinction between crowd events and DDoS attacks is difficult, making it
of an increasing interest to CDN operators. In this paper, we applied a semi-
supervised approach on a sport league dataset collected from a major operator
to identify normal and crowd access patterns. The patterns are represented by
number request shifts during 1 and 5 min. We first used DBSCAN to group
normal accesses into a core cluster, a crowd accesses into low dense clusters and
singletons. By applying data augmentation, we balanced classification vectors
representing 1 min and 5 min patterns. Then, we utilized XGBoost to finger-
print crowd and normal accesses. The results of the classification (99% accuracy)
showed the great potential of our approach. We tested our approach by applying
it to unseen data. The approach detected abrupt changing patterns, even though
these change patterns do not have the same shape like the ones identified in
the training dataset. We believe our approach can be successfully used to detect
crowd events in other CDN environments. Despite of our initial good results, the
diversity of CDN environments would necessitate more investigation. We frame
our future works to consider other features described in Sect. 2.3 to distinguish
anomalies (e.g., DDoS) from crowd events. We will rely on patterns found on



328 A. Boukhtouta et al.

unseen data to carry on this research. In addition, we plan to tweak XGboost
models to study the trade-off between their complexity and performance. More-
over, we want to thoroughly test the classification model on additional data, as
well as deploy it in online mode.

References

1. Tianqi, C., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM (2016)

2. Chen, T., He, T., Benesty, M.: xgboost: Extreme gradient boosting, pp. 1–4. R
package version 0.4-2 (2015)

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp.
226–231 (1966)

4. Cisco, Cisco Visual Networking Index: Forecast and Methodology 2016–2021.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html

5. Stocker, V., Smaragdakis, G., Lehr, W., Bauer, S.: The growing complexity of
content delivery networks: challenges and implications for the internet ecosystem.
Telecommun. Policy 41, 1003–1016 (2017)

6. The CAIDA UCSD “DDoS Attack 2007” Dataset. http://www.caida.org/data/
passive/ddos-20070804 dataset.xml

7. WITS: Waikato Internet Traffic Storage. https://wand.net.nz/wits/auck/8/
8. Lincoln Laboratory MIT. DARPA Intrusion Detection Evaluation. https://www.

ll.mit.edu/ideval/data/2000/LLS DDOS 1.0.html
9. The Internet Traffic Archive, WorldCup98. http://ita.ee.lbl.gov/html/contrib/

WorldCup.html
10. Fachkha, C., Bou-Harb, E., Debbabi, M.: Fingerprinting internet DNS amplifica-

tion DDoS activities. In: The 6th International Conference on New Technologies,
Mobility and Security (NTMS), pp. 1–5. IEEE (2014)

11. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:
Proceedings of the 21st Network and Distributed System Security Symposium
(NDSS) (2014)

12. Moustis, D., Kotzanikolaou, P.: Evaluating security controls against HTTP-based
DDoS attacks. In: 2013 Fourth International Conference on Information, Intelli-
gence, Systems and Applications (IISA). IEEE (2013)

13. Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algo-
rithms. In: Proceedings of the 2006 SIGCOMM Workshop on Mining Network
Data. ACM (2006)

14. Manh, T.T., Kim, J.: The anomaly detection by using DBSCAN clustering with
multiple parameters. In: 2011 International Conference on Information Science and
Applications (ICISA). IEEE (2011)

15. Shahaboddin, S., Amini, A., Anuar, N.B., Kiah, M.L.M., Teh, Y.W., Furnell, S.:
D-FICCA: a density-based fuzzy imperialist competitive clustering algorithm for
intrusion detection in wireless sensor networks. Measurement 55, 212–226 (2014)

16. Le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series
classification using convolutional neural networks. In: ECML/PKDD Workshop on
Advanced Analytics and Learning on Temporal Data (2016)

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://wand.net.nz/wits/auck/8/
https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html
https://www.ll.mit.edu/ideval/data/2000/LLS_DDOS_1.0.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html


Fingerprinting Crowd Events in CDNs: A Semi-supervised Methodology 329

17. Howard, A.G.: Some improvements on deep convolutional neural network based
image classification. arXiv preprint arXiv:1312.5402 (2013)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

19. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

20. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press,
Cambridge (2012)

21. Breiman, L.: Arcing classifier (with discussion and a rejoinder by the author). Ann.
Stat. 26(3), 801–849 (1998)

22. Nielsen, D.: Tree Boosting With XGBoost-Why Does XGBoost Win Every Machine
Learning Competition? MS thesis. NTNU (2016)

23. Iyengar, A.K., Squillante, M.S., Zhang, L.: Analysis and characterization of large-
scale web server access patterns and performance. World Wide Web 2(1–2), 85–100
(1999)

24. Arlitt, M., Jin, T.: A workload characterization study of the 1998 world cup web
site. IEEE Netw. 14(3), 30–37 (2000)

25. Jaeyeon, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: characterization and implications for CDNs and web sites. In: Proceedings
of the 11th International Conference on World Wide Web. ACM (2002)

26. Phillipa, G., Arlitt, M., Li, Z., Mahanti, A.: Youtube traffic characterization: a
view from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement, pp. 15–28. ACM (2007)

27. Yu, S., Thapngam, T., Liu, J., Wei, S., Zhou, W.: Discriminating DDoS flows from
flash crowds using information distance. In: Proceedings of the 3rd IEEE Inter-
national Conference on Network and System Security (NSS 2009), 18–21 October
2009 (2009)

28. Thapngam, T., et al.: Discriminating DDoS attack traffic from flash crowd through
packet arrival patterns. In: 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE (2011)

29. Chuan, X., Du, C., Kong, X.: An application layer DDoS real-time detection
method in flash crowd. In: IACSIT Hong Kong Conferences, pp. 68–73 (2012)

30. Ni, T., Gu, X., Wang, H., Li, Y.: Real-time detection of application-layer DDoS
attack using time series analysis. J. Control Sci. Eng. 2013, 4 (2013)

31. Prasad, K.M., Munivara, K., Reddy, A.R.M., Rao, K.V.: Discriminating DDoS
attack traffic from flash crowds on internet threat monitors (ITM) using entropy
variations. Afr. J. Comput. ICT 6(2), 53 (2013)

http://arxiv.org/abs/1312.5402
https://doi.org/10.1007/978-0-387-84858-7

	Fingerprinting Crowd Events in Content Delivery Networks: A Semi-supervised Methodology
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Fingerprinting Crowd Events
	2.3 Features Engineering

	3 Experiments
	3.1 Experiments Setup
	3.2 Clustering and Augmentation Results
	3.3 Classification Results

	4 Related Work
	5 Conclusion and Future Work
	References




