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1 Introduction

The clustering of trajectories has gained much interest in recent years from the
scientific community, especially in the social sciences, because the number of
longitudinal studies, as compared to cross-sectional ones, has been constantly
increasing. As regards categorical data, the most common approach relies on the
Optimal Matching (OM) to compute a distance between each pair of trajectories
before clustering them, whereas the Growth Mixture Model (GMM) can be applied
for continuous data. However, these two approaches suffer from some shortcomings,
calling for the need to develop and apply alternative approaches. For instance, OM
requires the choice of a substitution cost measure and other parameters. GMM gives
a lot of importance to the shape of sequences. Therefore, there is a risk to overfit the
data when nonlinear trajectories are considered on quite short sequences. The other
issues of GMM include computational load, presence of local optima, missing data
treatment, model selection criteria, the need for large sample size, and unclear Type
I error rates (Wang and Bodner 2007).

In this paper, we study the use of a specific class of Markovian Models called
the Hidden Mixture Transition Distribution (HMTD) model (Bolano and Berchtold
2016) for clustering purpose. Even if this model-based approach was developed as a
tool for the analysis of continuous trajectories, it also allows for their clustering
without a priori knowledge of cluster membership. Moreover, covariates can be
easily included in the model.

The HMTD and GMM clustering approaches are applied and compared on a
dataset of trajectories of the Internet Addiction Test (IAT). Excessive Internet use,
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especially among youths, is an emerging health issue in the medical literature, with
studies showing contrasting results. Surís et al. (2014) show a significant association
between problematic Internet use and several somatic disorders, including back,
weight, musculoskeletal, and sleep problems. Moreover, several chronic conditions
are also significantly associated with problematic Internet use. In contrast, another
study finds no significant Internet use effect on the development of overweight
among youths (Barrense-Dias et al. 2015).

While several alternative approaches (e.g. Skarupova et al. 2015) have been
introduced over the years, the tool most often used to quantify the degree of
addiction to Internet is still the Internet Addiction Test (IAT), developed by Young
(1998). However, since the test’s scale is based on 20 items and is quite long, its
psychometric properties are matters of controversy (Faraci et al. 2013) and the test
is not considered suitable for the successive measurement of the same subjects (test-
retest). Its use in longitudinal contexts remains problematic because of the difficulty
to distinguish between the real evolution of subjects and changes due to behavior of
the IAT itself.

To gain information on the behavior of the IAT in longitudinal studies, we need
to compare the typical trajectories of the repeated IAT measurements with other
characteristics of the subjects under study. Thus, we first cluster the IAT trajectories
into a finite set of meaningful groups and then compare these groups with the
known characteristics of subjects that are either time-invariant or evolve over
time. Specifically, the goals of this study are (1) to separate the Internet addiction
trajectories into an optimal number of meaningful categories using HMTD, (2)
to explore how does the introduction of the covariates influence the previous
optimal partition, and (3) to compare the HMTD clustering with an equivalent
GMM clustering in order to gain information on the respective strengths of both
approaches. We hypothesize that (1) the IAT scores computed for the same person
can vary considerably over time, implying that the trajectories are difficult to
classify; (2) a classification using covariates is easier to interpret than a classification
without any additional information on the clustered variable itself; and (3) the
HMTD approach can lead to more sound and easier-to-use solutions as compared to
the solutions obtained using GMM. However, we must stress that it is impossible to
conclude that one method is superior to another, especially using real data, without
knowing the true cluster membership. So this work must be considered as a first step
in the comparison of HMTD and GMM as clustering tools.

2 Data and Methods

2.1 Data

The data we considered are from ado@Internet.ch (Surís et al. 2012), a longitudinal
study on the use of Internet among youths in the Swiss canton of Vaud (the largest
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canton in the French-speaking part of Switzerland). The data were collected five
times every six months from Spring 2012 (T0, baseline) to Spring 2014 (T4) using an
online questionnaire. The data for the first time were collected from schools during
the computerlab periods. Then, the students who agreed to participate in the study
were contacted again by email from T1 to T4 to answer follow-up questionnaires on
their home computer. A convenience sample of n = 185 adolescents who answered
all five questionnaires is used for the present study (67% females; mean age at T0:
14.1 years). For more details on the overall design of the study and data collection,
(see Surís et al. 2012; Piguet et al. 2016).

The main outcome is the IAT score measured at each wave for each subject. The
IAT developed by Young (1998) and validated in French by Khazaal et al. (2008)
is a scale ranging from 0 to 100, based on the answers to 20 items whose possible
answers range from Never (coded 0) to Always (5). Examples of items are, How
often do you find yourself staying online longer than you intended? and How often
do you fear that life without the Internet would be boring, empty, and joyless?

In addition to the IAT, we also considered several important characteristics of
the subjects, either fixed in time—gender, age at baseline, and education track at
baseline (extended requirements vs. basic requirements)—or evolving over time—
emotional well-being (measured by the WHO-5 index) and Body Mass Index (BMI,
computed from auto-reported measures of height and weight). Note that the WHO-5
index was not evaluated on the third wave of the study, and so for the present paper,
we imputed values as the simple mean between the values of the second and fourth
waves. Similarly, we imputed the BMI for the second wave of the study as the mean
between the values of the first and third waves.

2.2 Clustering Using the HMTD Model

We used a specific class of Markovian Models, the HMTD model, to cluster
the longitudinal sequences of continuous data. This model combines a latent and
an observed level (Bolano and Berchtold 2016). The visible level is a Mixture
Transition Distribution (MTD) model that was first introduced by Raftery in 1985 as
an approximation of high-order Markov chains Raftery (1985) and then developed
by Berchtold (2001, 2003) and Berchtold and Raftery (2002). Here, we used a
Gaussian version of the MTD model, where the mean of the Gaussian distribution
is a function of past observations. Because of the small size of each sequence
of the observed outcome (five data points, from T0 to T4), long dependencies
between successive observations could not be considered, and therefore we fix the
dependence order for the mean of the Gaussian distributions of each component
to one:

μg,t = ϕg,0 + ϕg,1 xt−1
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where ϕg,0 is the constant for the mean for component g and ϕg,1 is the autore-
gressive parameter indicating the dependence from the previous observation xt−1.
Similarly the variance of each component can be written as a function of the past
periods variability: σ 2

g,t = θg,0 + ∑S
s=1 θg,s x2

t−s . However given the small number
of time periods in our dataset, and for the sake of simplicity, we decided to treat the
variance as a constant: σ 2

g,t = θg,0.
In the HMTD model, the latent level is a homogeneous Markov chain. Each state

of the chain is associated with a different Gaussian component at the visible level,
with the transition matrix used to determine which component best represents the
current observation. To use the HMTD model as a clustering tool, we assume the
hidden transition matrix to be the identity matrix. Consequently, each sequence of
successive observations is associated with only one component of the model, thus
generating a clustering of sequences into mutually exclusive groups. Notice that in
this case, the resulting model is no more a hidden Markov model, but a mixture of
Gaussian distributions. However, it is still interesting to view it as a HMTD, because
it is then possible to compare the clustering model with other models, especially
with semi-clustering models whose transition matrix is not the identity matrix, but
a triangular matrix letting data trajectories move from one group to another in a
specific order.

In addition to the clustering based on the IAT variable only, we performed
a second clustering adding information from five covariates (gender, age at T0,
education track at T0, WHO-5, and BMI). These covariates are introduced as
additional terms in the specification of the mean of each visible component of the
model, and the categorical variables are introduced as dummy variables. We then
rewrite the mean of the g-th component as

μg,t = ϕg,0 + ϕg,1 xt−1 + ϕg,2 Gender(male) + ϕg,3 Age

+ϕg,4 Education(extended) + ϕg,5 WHO-5 + ϕg,6 BMI

with female and basic requirements used as reference modalities for Gender and
Education, respectively.

In practice, continuous covariates are centered around the sample mean before
computing the clustering model in order to allow for a better convergence of the
estimation algorithm. A comparison of the two specifications of the mean, with and
without covariates, illustrates whether the inclusion of covariates in the model helps
to improve the clustering process. It must be mentioned that, in addition to these
two HMTD models, many other specifications were tried, following a hierarchical
approach (Bolano and Berchtold 2016), but none of these alternative specifications
seemed to give a more useful clustering of IAT trajectories.

The HMTD model is estimated by maximizing its log-likelihood. When the
variance of each component of the model is constant, the log-likelihood can be
derived with respect to all parameters, but in the general case of time-varying
variances (Berchtold 2003), the log-likelihood is generally not differentiable, and
the solution space can be very complex. A specific heuristic is then applied to obtain
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the solution (Taushanov and Berchtold 2017). Since this heuristic can accommodate
to all possible specifications of the HMTD model, we used it for all computations.
Regarding cluster assignation, we used the standard Viterbi algorithm which is able
to find the best sequence of hidden states in function of the observed data and of the
current model (Forney 1973). In the specific case of clustering, the Viterbi algorithm
simply assign each observed trajectory to the most likely component.

We used a bootstrap procedure to obtain confidence intervals for each parameter,
but since our goal here was to validate not the initial classification itself, but the
parameters associated with the model describing each visible component of the
model, we adopted the following approach: Instead of performing the bootstrap
on the whole original sample, we divided the original sample into as many groups
as can be retained in the final classification. We then applied a single-component
version of the HMTD model to each sub-sample separately in order to estimate the
coefficients using bootstrap. By applying the model on the sub-samples separately,
instead of on the initial sample, we avoided the so-called label-switching problem
that is very common in latent variable clustering. The inconvenient of separate
bootstrapping is that since we rely on the validated clustering solution, we ignore
the model uncertainty including the weights of each cluster. We computed the
confidence intervals using 1000 bootstrap samples, and we used the results to
evaluate the significance of the estimated parameters.

All computations were done using R, and a specific package should be released
soon. In the meantime, a first version of the R syntaxes is available on https://github.
com/ztau/5352.

2.3 GMM as a Gold Standard Alternative

To evaluate the HMTD approach as a tool for clustering sequences of continuous
data, we need a gold standard alternative. We choose the Growth Mixture Model
(GMM) approach for that purpose, since it is the only true longitudinal clustering
tool used in the social sciences.

Growth modeling includes several similar frameworks aiming to model and
discover the patterns of individual changes in a longitudinal data framework
(Reinecke and Seddig 2011; McArdle and Epstein 1987). The basic growth model
assumes that all trajectories belong to the same population and that they may be
approximated by a single average growth trajectory using a single set of parameters.
However, several models extend these assumptions; for example, the latent class
growth analysis (LCGA) model, which assumes null variance-covariance for the
growth trajectory within each class (Nagin 1999; Jung and Wickrama 2008), and
the heterogeneity model (Verbeke and Lesaffre 1996), which goes a bit further but
still imposes the same variance-covariance structure within each group of subjects.
Therefore, we discuss the more flexible GMM in this section and use it in our
analysis as gold standard.

https://github.com/ztau/5352
https://github.com/ztau/5352
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The GMM developed by Muthén and Shedden (1999), Bauer and Curran (2003),
and Wang and Bodner (2007) is designed to discover and describe unknown groups
of sequences that share a similar pattern. This method may be represented as a
mixture of mixed-effects models in which each of the unknown subpopulations
follows a distinct linear mixed-effects model. Its main advantage over other similar
models—like the heterogeneity model (Verbeke and Lesaffre 1996)—is that it
allows for estimation of a specific variance-covariance structure within each class
(Francis and Liu 2015). Within-class inter-individual variation is possible for latent
variables via distinct intercept and slope variances, represented by a class-specific
fixed-effects and random-effects distribution. In other words, the variation in an
expected group-specific trajectory is distinct for each group (heterogeneity in
growth trajectories). Because of these advantages, the model is a reference point
in continuous longitudinal data modeling with various applications in criminology
(Francis and Liu 2015; Reinecke and Seddig 2011), health and medicine (Muthén
and Shedden 1999; Ram and Grimm 2009), psychology, and social science (Muthén
2001), among others.

The GMM approach uses both observed and latent variables. The observed
variables consist of a p-dimensional vector of continuous dependent variables
Y (often a variable with repeated measurements) and a q-dimensional vector of
covariates X. The latent variables are represented as a continuous m-dimensional
vector η. Finally, to indicate the group in which each subject is included, we use
a dummy variable with multinomial distribution stored in a k-dimensional binary
vector c (Muthén and Shedden 1999). The equation of the GMM approach for
individual i then becomes

Yi = Ληi + εi, (1)

where Λ is a p ×m parameter matrix (or matrix with basis vectors) that can be seen
as a matrix of factor loadings, ηi is a vector of latent continuous variables, and εi is
an error term vector with zero mean.

In our case, the latent variable parameter matrix Λ has one column with
parameters for the latent factor accounting for the intercept and another for the latent
factor accounting for the slope. The general equation for every η is

ηi = Aci + Γ xi + ζi, (2)

where A is a matrix with columns of intercept parameters for each class, Γ is an
m × q parameter matrix and ζi is an m × 1 vector of zero mean residuals (and
covariance matrix Ψ ).

If we assume that some time-independent covariates z could influence the
group membership ci , a multinomial logistic regression can be considered (with
parameters a and b) as follows:

P(ci = K|zi) = expak+bkzi

∑K
c=1 expac+bczi
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An alternative notation of the model for subject i as part of class k at time t is

Yi,t |ci=k = X1i (t)
T β + X2i (t)

T γk + Vi(t)
T uik + wi(t) + εi,t , (3)

where X1i is a vector of covariates with common fixed effects β, X2i is a vector of
covariates with class-specific fixed effects γk , and Vi is a set of covariates with
individual class-specific random effects uik . Finally, wi(t) is an autocorrelated
Gaussian process with null mean and covariance equal to cov(wi(t)wi(s)) =
σ 2

w exp(−ρ|t − s|).
The GMM is estimated by maximizing its likelihood using an ordinary EM

algorithm. The continuous latent variables η and group membership variables c are
considered missing data. The R package lcmm (Proust-Lima et al. 2017) was used
to compute the GMM.

2.4 Statistical Analyses

To start with, we used the HMTD model to identify the best clustering of the IAT
dataset without covariates, considering solutions from two to five groups. The best
solution was selected on the basis of the Bayesian Information Criterion (BIC)
(Raftery 1995). We then added covariates to this first model and analyzed the two
resulting models, with and without covariates, particularly focusing on the IAT
trajectories that did change group when covariates were added to the initial model.
In order to isolate the impact of the covariates from any other computational issue
or local optimum, we used the optimal solution obtained without covariates as a
starting point for the full model. Therefore, we observe how this new model escapes
the previous optimum.

We then computed the GMM models using the same dataset, and we compared
the classifications obtained with the HMTD and GMM approaches. The usefulness
of each covariate for discriminating between groups was evaluated using either a
chi-square test for categorical covariates, or a single factor ANOVA for continuous
ones. Notice that since it is not easy to compare two solutions with different number
of clusters, we chose to compute a four-cluster GMM solution with all covariates
instead of finding its own optimal number of clusters.

Our results are presented as figures displaying the IAT trajectories, and as
tables describing the characteristics of subjects classified into groups and giving
the HMTD model parameters.
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3 Results

We provide here the results of the various clustering performed using the HMTD
and GMM approaches, and we compare the resulting classifications. Notice however
that given the iterative nature of the optimization algorithms, it is never possible to
be sure that the final models are the best possible ones. Therefore, results should
never be overinterpreted.

3.1 HMTD Clustering

Without covariates, the best model identified by the BIC is a four-component model
(model 1). Figure 1 shows the IAT trajectories in each group. We clearly differentiate
a group with average volatility and IAT level (group 1), a group with relatively
low scores and variability (group 2), a group with very low variability and a low
and constantly diminishing IAT score (group 3), and a group with more complex
trajectories and hence variability (group 4).
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Fig. 1 IAT trajectories associated with each group in the four-group HMTD solution without
covariates (model 1)
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When we include the covariates in model 1 (Fig. 2) and relabel the four groups
of the solution in order to match the groups of model 1, we obtain a similar four-
group structure (model 2). As a comparison of the two figures might show, the most
important difference is with the first two groups: group 2 of model 2 lost its higher-
valued trajectories and focused more on a low IAT-level and stable trajectories. This
change will be explored in more details later.

Table 1 provides the parameter estimation for both models. In addition to the
point estimates, we also provide the 95% bootstrap confidence intervals.

As regards the first model without covariates, the θ0 parameters giving the
variance of each component of the model confirm the first impression given by
Fig. 1: Group 4 is characterized by a much higher variability than the three other
groups, and group 3 has the lowest variance, indicating less variation among the
successive observations of a single individual. Parameters ϕ0 corresponding to the
constant in the modeling of the mean of each component also take expected values,
with higher values associated with groups showing higher average IAT level. Finally,
the autoregressive parameter ϕ1 takes a value closer to one for the groups with
trajectories showing smoother evolutions from one wave to the next, that is groups
1 and 3. All parameters of this first model are significant at the 95% level, as
demonstrated by the confidence intervals.
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Fig. 2 IAT trajectories associated with each group in the four-group HMTD solution with five
covariates (model 2)
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As regards model 2, even if the first three parameters (θ0, ϕ0, and ϕ1) take
values different from those of model 1, θ0 and ϕ1 take values in the same range
as of model 1. On the other hand, important differences are found for the constant
parameter ϕ0, and this parameter is no more significant in any group. Note that
θ0 and ϕ1 tend to take smaller values in model 2. This can be interpreted as the
first proof of interest of the covariates included in model 2: the groups are now
more homogeneous (lower intra-group variance) and the explanation of a specific
trajectory relies less on the immediately preceding observation. As regards the
covariates, Age is never significant and could be eventually removed from the
model. This could be due to the lack of a real age difference between participants
(from 13 to 15 years old at baseline). However, the four other covariates remain
significant for at least one of the groups.

When we consider each component of model 2 separately, the changes occurring
in the trajectories associated with the first component are found related to the well-
being of the concerned adolescents: a higher well-being such as measured by the
WHO-5 index is significantly associated with a lower IAT-level. Males tend to have
a lower IAT level than females, and a higher BMI is associated with higher IAT
level. In group 3, a higher WHO-5 or BMI is associated with reduced IAT level, but
being in the extended requirement school track is associated with a higher IAT level.
Finally, in group 4, a higher WHO-5 or BMI is associated with reduced IAT level,
and males tend to show a much higher IAT level than females.

Table 2 provides the main characteristics of the subjects classified into each
group. For time-dependent variables, we considered the average value of each
individual. A comparison is performed for each variable separately to test whether
the groups are significantly different with regard to the variable. Considering only
the two HMTD models, we observe that in addition to the expected differences in
IAT level, the only other variable with significantly different values across groups
is the WHO-5 measure of well-being. For both models, we observe two groups (2
and 3) with lower average IAT scores. The same two groups also display higher
emotional well-being, as compared to the other groups, confirming previous results
(Surís et al. 2014). No differences are observed for the other covariates, even if
Gender comes close to significance in model 1. Even if not significant at the 95%
level, probably because of the reduced sample size, we find a gender separation at
the sample level; groups 2 and 4 contain a higher proportion of boys compared to the
other two groups. The education track also shows a difference at the sample level:
the first two groups contain more individuals following the highest education track
as compared to groups 3 and 4. On the other hand, no notable difference is observed
between the groups for Age and BMI, even if BMI, used as a covariate in model 2,
is statistically significant in the modeling of the mean of each component.
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Table 2 Characteristics of subjects classified into groups for different clustering. The p-value
gives the result of the test comparing the different groups for each variable. The number of
sequences classified into each group is provided in brackets after the group number

IAT WHO-5 BMI Gender Age at T0 Educ. at T0
mean (sd) mean (sd) mean (sd) % male mean (sd) % extended req.

HMTD model 1

Group 1 (46) 30.94 (11.7) 63.43 (15.6) 19.97 (2.35) 24 14.13 (0.50) 80.5

Group 2 (56) 20.29 (9.78) 71.01 (15.6) 20.02 (3.30) 45 14.05 (0.59) 67.9

Group 3 (50) 13.31 (9.88) 72.28 (13.6) 20.45 (2.57) 24 14.14 (0.67) 64.0

Group 4 (33) 34.69 (16.1) 63.49 (16.8) 20.06 (3.03) 39 14.27 (0.45) 60.6

p <0.001 <0.001 0.764 0.055 0.381 0.214

HMTD model 2

Group 1 (52) 27.43 (11.3) 67.35 (16.6) 20.12 (2.40) 31 14.19 (0.60) 71.2

Group 2 (45) 18.57 (8.41) 70.85 (15.2) 19.96 (3.53) 40 14.02 (0.45) 73.3

Group 3 (48) 13.62 (9.97) 70.64 (14.0) 20.46 (2.54) 21 14.10 (0.69) 64.6

Group 4 (40) 36.36 (15.6) 63.06 (16.4) 19.96 (2.86) 43 14.22 (0.48) 65.0

p <0.001 0.015 0.741 0.113 0.331 0.746

GMM 2

Group 1 (169) 22.08 (13.2) 68.79 (15.8) 20.20 (2.90) 32 14.15 (0.57) 0.68

Group 2 (16) 39.90 (14.8) 61.13 (13.9) 19.40 (2.12) 43 14.00 (0.52) 0.75

p <0.001 0.022 0.210 0.496 0.322 0.771

GMM 4

Group 1 (76) 13.35 (8.97) 73.32 (14.2) 20.69 (2.75) 32 14.09 (0.61) 0.63

Group 2 (31) 38.98 (11.2) 58.48 (16.2) 20.15 (2.40) 29 14.16 (0.52) 0.74

Group 3 (75) 26.46 (10.2) 67.09 (15.4) 19.62 (2.98) 33 14.17 (0.55) 0.73

Group 4 (3) 54.06 (18,3) 62.40 (9.66) 18.78 (3.30) 100 14 (0) 2/3

p <0.001 <0.001 0.043 0.094 0.802 0.593

GMM 4 cov

Group 1 (98) 18.79 (10.6) 69.64 (14.6) 20.06 (2.90) 29 13.91 (0.32) 77.9

Group 2 (44) 18.58 (10.5) 68.88 (17.8) 20.85 (2.95) 24 15.16 (0.55) 44.0

Group 3 (28) 39.38 (12.9) 64.95 (18.2) 20.14 (2.73) 48 14.24 (0.44) 48.3

Group 4 (15) 41.98 (14.8) 60.00 (13.7) 19.36 (2.05) 54 14.00 (0.41) 76.9

p <0.001 0.032 0.321 0.058 <0.001 <0.001

3.2 Usefulness of the Covariates

From the results of the previous section, we find that the inclusion of covariates in
the first classification obtained with the HMTD model helped us better differentiate
the four groups, but without entirely changing their interpretation. We would like
to better understand the changes in trajectory classification that occurred between
these two models. Table 3 indicates how many subjects changed groups between the
initial model without covariates and model 2 with covariates. As noted earlier, most
of these changes occurred between groups 1 and 2. In particular, 19 second-group
subjects of model 1 were transferred to the first group in model 2, and the steady
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Table 3 Number of IAT
trajectories associated with
each group in HMTD models
1 (without covariates, rows)
and 2 (including covariates,
columns)

Model 2
Model 1 Group 1 Group 2 Group 3 Group 4

Group 1 31 6 2 7

Group 2 19 34 1 2

Group 3 2 3 45 0

Group 4 0 2 0 31

Table 4 The characteristics of 19 subjects moving from group 2 to group 1 (group 2→1) as
compared to subjects staying in the same group (either 1 or 2) in both HMTD classifications. The
means (numerical variables) or proportions (categorical variables) are provided, and differences
with the subjects remaining in the same group (either 1 or 2) are assessed using t-tests and χ2-tests
with continuity correction: ns: non-significant

IAT WHO-5 BMI Sex (% male) Age Education

Group 2→1 22.76 72.93 19.69 57.9 14.26 52.6

vs group 1 31.26** 62.77** 20.41 ns 9.70*** 14.16 ns 80.6 ns

vs group 2 18.72 ns 71.42 ns 20.30 ns 38.2 ns 13.97 ns 73.5 ns

*p <0.05; **p < 0.01; ***p < 0.001

low Internet addiction profile of the second group became even more pronounced,
with the higher Internet addiction subjects joining the first group. However, since
some trajectories simultaneously left group 1 for the three other groups, the average
IAT level of group 1 also decreased. Overall, the inclusion of covariates appears
beneficial for the differentiation of trajectory features among groups.

The 19 individuals who switched from group 2 to group 1 represent the main
difference between the two models, with all the other changes concerning at the most
seven subjects. Thus, it is interesting to explore how these individuals differed from
those who remained in the first or second group in both classifications. Table 4 sum-
marizes our findings using t-tests and χ2-tests to compare the different variables.
The average IAT scores are quite different between the three considered sub-groups,
and, as expected, the “moving” sub-group shows an Internet dependence level
between the two “stable” sub-groups. Thus, the moving individuals were among the
most Internet-problematic members of the full second group of model 1, and even
if the average IAT score is not the only indicator of group affiliation, a visualization
of the trajectories would confirm the ambiguous nature of these individuals. The
moving subgroup is also significantly different from the group of individual staying
in group 1 as regards the WHO-5 index of well-being and the gender ratio, with a
higher well-being and higher proportion of males among the moving subgroup. No
other significant differences are observed.
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3.3 GMM Clustering

Without covariates, the best GMM solution in terms of BIC is a two-group solution,
but given the high difference in number of trajectories associated to each group
(169 vs 16), this solution in not really interpretable and hence less useful than the
four-group solution given by the HMTD approach. Therefore, we also estimated a
four-group GMM (Fig. 3).

In the two-group solution, a large majority of trajectories are associated with
group 1, and only 16 sequences are associated with group 2. The average IAT
level is higher in group 2, but both groups exhibit an important variability, as
indicated in Table 2. Moreover, in terms of interpretation, one can only say that
IAT sequences with a clear increasing trend are separated from the other sequences.
In the four-group solution, even if the number of groups is the same as in the HMTD
models, there is no a priori correspondence between the HMTD and GMM groups.
In the four-group GMM solution, the number of subjects per group shows much
more variability than that observed with the HMTD group, with the majority of
individuals classified in groups 1 or 3, and only three subjects in group 4.
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Fig. 3 IAT sequences associated with each group in the four-group GMM solution without
covariates
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Fig. 4 IAT sequences associated with each group in the four-group GMM solution with four
covariates

Finally, as with the HMTD approach, we enhanced the four-group solution
by adding covariates. Four of the five covariates used in the HMTD approach
appeared useful in the GMM solution as well. Figure 4 displays the resulting groups
obtained after adding Gender and Education as predictors for group membership
(multinomial regression on ci), and WHO5 and BMI as fixed effect. On the other
hand, Age was not included in the final model because the estimation process would
then lead to a one-group solution. Another important issue with the GMM approach
is the results’ sensitivity to the order in which the covariates are included in the
model. Various covariate combinations were tested before we chose the above-
mentioned combination as the best one in terms of clustering results. For instance,
classmb = gender + education sector does not give the same results as classmb
= education sector + gender. This surprising result may be due to a bug in the
lcmm R package, but in our opinion the reason could rather be the optimization
procedure. It is well known that EM-type algorithms converge to the nearest local
optimum, and that this optimum is not always the global one. Therefore, the solution
depends on the initial values of the parameters, especially when the solution space
is complex, which is the case here.

As Fig. 4 shows, the number of trajectories associated with each group is quite
variable, with the large majority assigned to group 1. The first two groups are
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characterized by low variability and an overall low IAT level. The trajectories in
these two groups seem very similar, but since this four-group solution might be
suboptimal and is computed only for the purpose of comparison with HMTD models
1 and 2, a three-group solution could merge these two groups into one group. The
last two groups have a higher average IAT level, both exhibiting a general linear
trend over time, decreasing in group 3 and increasing in group 4.

Table 2 gives the characteristics of individuals classified in each group of the
GMM models and compares the groups for each variable. Note that given the large
differences in group size, the test results for the GMM models should be interpreted
with caution. As observed earlier in the HMTD case, significant differences exist
between groups for both the IAT and WHO-5 variables. A significant difference
exists also for BMI in the four-group GMM model without covariates. More
interestingly, the Age and Education track at baseline also show significantly
different values across groups, with one of the variables (Education track) being
included in the model as covariable, but not the other. This difference between
the HMTD and GMM clustering points to the fact that the solutions provided by
both approaches are not identical or interchangeable, and that the two models used
information in a different manner to provide usable data sequence clusterings.

4 Comparison of HMTD and GMM

When used for clustering purposes, the HMTD and GMM models share some
characteristics: They both represent a kind of mixture model, they can include
covariates of any type at the visible level, and they can also include covariates at the
latent level and use them to estimate the initial probability of each cluster. However,
HMTD and GMM also have several differences. First of all, since GMM is a
mixture of mixed models, it is able to accept both fixed and random effects. Another
difference is the possibility of HMTD to include an autoregressive specification for
the variance and thus to allow for the clustering of longitudinal sequences whose
variance evolves in time. For instance, sequences becoming more instable over time
can more easily be grouped together. However, to exploit this feature, it is necessary
to work with long data sequences, what was not the case here with the IAT example.

Another feature of HMTD that is worth stressing is the possibility of using it to
perform different kind of clustering (Bolano and Berchtold 2016). The transition
between components is driven by the hidden transition matrix A. In this paper, A

was constrained to be a diagonal identity matrix, implying that each sequence was
assigned to one and only one group, and all sequences assigned to the same group
were described by the same visible model. However, there are several alternatives.
For instance, different latent states may be required to alternate over time in order
to find the optimal modeling of a given sequence. If A is constrained to have the
following structure:
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A =

⎛

⎜
⎜
⎝

a1 1 − a1 0 0
a2 1 − a2 0 0
0 0 a3 1 − a3

0 0 a4 1 − a4

⎞

⎟
⎟
⎠

where a1, a2, a3 and a4 are transition probabilities, then one performs at the same
time a modeling and a clustering of the data sequences. The first two states are used
to model the first cluster, and states 3 and 4 are used to model the second cluster.
In other words, data sequences are clustered into two groups, but inside each group
there are two different visible models allowing for a better representation of these
sequences when their behavior evolves over time.

Another specification of A would allow some sequences to remain always in the
same cluster, whereas other ones could transit at some point in time from the first to
the second cluster:

A =

⎛

⎜
⎜
⎝

a1 1 − a1 0 0
a21 a22 1 − a21 − a22 0
0 0 a3 1 − a3

0 0 a4 1 − a4

⎞

⎟
⎟
⎠

5 Conclusion

Hidden Markovian models are known to be valuable tools to analyze the dynamics
in longitudinal continuous data and in life course data (e.g. Helske et al. 2018). The
present study demonstrates that the sequences of continuous longitudinal data can
also be classified into as many groups as required, and that the HMTD model can be
used as a valid alternative to GMM. The inclusion of covariates has beneficial effects
on clustering, because the resulting groups have lower intra-variability compared to
the solution without covariates.

In a comparative study involving the use of GMM for clustering, our first finding
is that the HMTD approach is a good alternative to GMM, because in terms of
interpretability its results are at least as interesting as the results given by GMM.
However, on the basis of just one practical example, we obviously cannot conclude
that one approach is better than the other; moreover, this is not the purpose of this
study. What we can conclude is that the HMTD approach is not only theoretically,
but also practically useful to classify sequences of continuous data in mutually
excluding groups.

In the literature, excessive Internet use has been found to be highly related to
several somatic conditions, sleep disturbance in particular. However, in this paper,
our main objective is not to explain IAT trajectories, but to find ways to classify
such trajectories into meaningful groups. Moreover, there is still an ongoing debate
on the direction of the relationship between Internet use and sleep disturbance, not
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to speak of causality. Therefore, we chose not to consider sleep disturbance in this
analysis, but to concentrate on other covariates that are more neutral to IAT scores.
Nevertheless, even with this restriction, the results obtained with the HMTD model
are highly significant and allow for a sound interpretation. The four resulting groups
differ in terms of average value and variability. The relationship observed between
IAT and the emotional well-being of subjects suggests that both concepts are linked
and that a higher risk of Internet addiction is related to poorer well-being. Gender
is also a discriminating factor between groups, with a lower proportion of males in
the first and third groups, but, given the small sample size, the differences are not
significant at the population level.

The main strength of this study is the demonstration of the usefulness of the
HMTD approach as a valuable alternative to the GMM approach for clustering con-
tinuous data sequences. Researchers would be advised to consider both approaches
to take full advantage of the information in their data. However, some weaknesses
of this study are to be mentioned. At the theoretical level, we include covariates in
the HMTD model only at the visible level, but it is also possible to include them
at the latent level as well in order to enhance the prior probabilities of each cluster.
As regards the application of the model to IAT trajectories, we used a rather small
convenience sample; this is not representative of the population of adolescents living
in the canton of Vaud. More analyses need to be conducted with larger databases to
define a real typology of IAT trajectories.

Overall, in spite of some shortcomings, the HMTD model can be considered
as a complete framework for the analysis of continuous data sequences. It is an
explanatory tool as well as a clustering tool, and by adding covariates, constraints
on the transition matrix, and autoregressive modeling of the mean and variance of
each component, the model goes well beyond the traditional Markovian models such
as homogeneous Markov chains or hidden Markov models.
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