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Abstract. Food sampling programs are implemented from time to time in local
areas or throughout the country in order to guarantee food safety and to improve food
quality. The hidden patterns in the accumulated huge amount of data and their
potential values are worthy to research. In this paper, Extreme learning machine
(ELM) is employed on real data sets collected from the food safety inspections of
China in recent two years, in order to mine the relationship between food quality and
food category, manufacturing site and season, inspection site and season, and many
other attributes. Experimental results indicate that the ELM approach has better
prediction precision and generalization ability than Logistic regression that was
adopted in preceding work. The patterns obtained are helpful for making more
effective food sampling plans and for more targeted food safety tracing.
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1 Introduction

Food safety issues have aroused world-wide attention since it is closely related to public
and household health and interests [1]. Most countries have implemented systems for
food safety supervision and inspection, in order to reduce the quantity, strength, and
impact of food safety incidents, and to improve the quality of food finally delivered to
the end users [2]. However, food quality testing and food safety inspections are time-
consuming, labor-intensive tasks, and they could sometimes be a heavy financial burden.
Therefore, much research work has been done in order to improve inspection efficiency
and effectiveness without increasing inspection quantity and strength, or even with
reduced quantity and strength of food safety inspections [1, 3].

In China, many food safety incidents have occurred in recent years [3]. To deal with
these problems, China government has taken a lot of measures to guarantee food safety
and quality, and all levels of food testing laboratories in China carry out every day a
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great deal of testing work. As a result, a large amount of food testing data is accordingly
recorded and collected, and as a matter of fact, after years of accumulation, a huge data
warehouse has come into being with rich information about food quality and safety and
with many other properties. Initially, these accumulated data were only a matter of
recording, and gradually they were utilized for inquiry and statistical purposes. The
accumulated data, however, were found to be much more valuable than that [3], since
the obtained patterns or rules underlying the data did provide us useful and helpful
knowledge about the relationship among the attributes, which are able to help us make
more effective and powerful inspection plans to expose more food safety problems, and
hence to reduce consumption of time, labor, and financial burden.

Nevertheless, with the size of the data growing steadily in the course of food produc‐
tion, processing distribution and trading, the huge amount of data cannot be handled by
conventional computing methods, which are by and by replaced by the technology of
big data [4]. After the technologies of cloud computing and internet of things, big data
technologies are another profound revolution that have penetrated into a variety of areas
and given rise to dramatic changes in these areas. Big data is an abstract concept, with
the characteristics of great quantity, rich variety, semi-structured and unstructured data,
fast-growing, and that the traditional database management software cannot process it
pragmatically with single-node computing resource. Consequently, distributed
computing is the core method and key means in the bunch of big data technologies.
Reference [5] examined the potential for big data application in the agriculture sector,
including the variety and velocity characteristics in the sector and the integration of data
and analysis that will be needed for successful implementation.

With the big data of food safety inspections accumulated, managed, preprocessed
and analyzed, a variety of applications could be implemented, including dynamic and
comprehensive food safety analysis, foodborne disease study, early warning and assess‐
ment of food safety, and so on. Fulfillments of these applications are helpful for boosting
food quality level and improving food safety tracking. In order to implement these
applications, however, a bunch of approaches are needed such as data preprocessing,
statistical analysis, machine learning, and data mining [3, 6, 7].

Before applying methods mentioned above, complex processes should be taken for
data preparation, including data cleaning, data normalization, and missing data impu‐
tation. In most cases, the phenomenon of missing data is inevitable in a real data set,
and therefore missing value imputation is an essential preprocessing step in data mining
and machine learning. The imputation methods of kNNI [8] in recent years have been
widely applied because of its easy operating. The result and hence the accuracy of kNNI,
however, are dependent of the parameter k, which means that each k should be tried in
order to get an optimal one. Moreover, the result of kNNI is a biased estimation since
the neighbors of the targeted point with missing value may lie unevenly around the point.
Two variations [9, 10] of kNNI were proposed to overcome the defects of previous
versions and they both perform satisfactory. Only after the preprocessing step, are the
data sets of food safety inspections ready for further analyzing and mining.

The rest of the paper is organized as follows. Section 2 introduces research work
related to this paper, including those on missing data imputation, Logistic regression,
neural network, and extreme learning machine. In Sect. 3, the ELM framework is
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described in detail that is employed to mine the patterns hidden in the big data of food
safety inspections. Section 4 presents the experiments on real data sets and the corre‐
sponding results. And Sect. 5 concludes the paper.

2 Related Work

A variety of methods and technologies have been studied, tested and/or implemented to
analyze and utilize the data collected from food safety inspections, and many exciting
results and conclusions have been obtained.

Khosa and Pasero [6, 7] used an artificial neural network (ANN) as a classifier to
predict at an early stage of processing or manufacturing whether important food ingre‐
dients, pine and pistachio nuts, are healthy. X-ray images of the nuts were used, and
texture features were extracted from the images. In that work, the texture features and
the sample labels were used as the training data, and the texture features were inde‐
pendently used as the basis for making predictions and classifications. As a result, the
ANN classifier achieved false negative rates of 0% and 6.8% for the pine nuts and pista‐
chio nuts, respectively. The results imply that food quality has good predictability and
good describability, at least in certain cases.

Reference [1] focused on a safety risk assessment of dairy products for a single
corporation, also in the background of big data. That work used a classic classifier,
the support vector machine (SVM). However, instead of using a serial algorithm for
the SVM, a parallel cascade SVM was implemented on the platform of Apache
Hadoop [11], which is an open-source distributed computing framework that is typi‐
cally used to process big data by distributing the data in a large-scale cluster plat‐
form. The results from [1] demonstrate that when the number of cluster nodes
increases steadily, the saved run time decreases steadily compared with the runtime
for a single node. The SVM has been a successful classifier in many cases and in
many areas due to its good classification accuracy, generalizability and stability.
Despite this success, SVM does not perform satisfactorily when the positive and
negative samples have more detailed relationships.

Statistical methods are most frequently used to analyze the data obtained from food
safety inspections, with [3] being a typical study. Based on the food sampling results of
the city of Shenzhen, China, that study first investigated the annual and inter-annual
changing tendency of 11 food categories and analyzed the data using the t-test. Then, a
logistic regression model was constructed, and the quantitative relationships between
food quality and four attributes (namely, food origin, inspection season, sales site, and
food packaging) were established. Instead of the result category (qualified/unqualified),
the concept of “exceeded percentage” was used to measure the degree of unqualified
food. Logistic regression is a powerful classifier that can be applied to both continuous
and discrete variables. Although that work is a good application of logistic regression
to predict which food products are most likely to be unqualified, the data for both training
and testing are simulated data sets, not real data sets, which indicates that the work
remains unsatisfactory.
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Logistic regression, like many other regression methods, is essentially linear regres‐
sion; it is aided by some nonlinear transformations, and it can capture the nonlinear
relationships between the dependent variable and causative (independent) variables. The
ANNs in [1, 7] used a considerable number of nonlinear transformations to capture more
detailed relationships. However, as demonstrated earlier, the learning speed of feed-
forward ANNs is considerably slower than that of regression learning algorithms, which
take the least squares method (LSM) as the core technique. Considering both the speed
advantage of the LSM and the nonlinearity advantage of the ANN, Huang et al. proposed
the ELM with a single layer of hidden nodes in their two pioneering works [12, 13].
Compared with its predecessor learning techniques, the ELM improves the training
speed by hundreds of times by randomly setting the weights between the input nodes
and hidden nodes and by computing the weights between the hidden nodes and output
nodes using the LSM. Other researchers have supported their work, particularly the
random assignment of weights, by mathematical proofs, such as in [14], which provides
a geometric perspective.

After these pioneering studies, a variety of variations and improvements in the ELM
were presented. Reference [15] proposed an inverse-free ELM that further improved the
computational speed of the training process, as computing the inverse of a square matrix
is the most time-consuming part of the LSM. Accounting for the architecture of the sub-
network nodes, Y. Yang and Q. M. Jonathan Wu designed a variation of the ELM, ML-
ELM, that exhibits competitive accuracy and speed compared with other conventional
feature learning methods with sub-network nodes [16, 17].

The ELM has a notable defect, namely, that the number of hidden nodes must be
manually assigned or assigned by other state-of-the-art methods. In fact, the optimal
number of hidden nodes plays a decisive role in the ELM, as an insufficient number of
hidden nodes could lead to underfitting, whereas an excessive number of hidden nodes
could cause overfitting. Based on this observation, [18] presented an adaptive and auto‐
matic selection algorithm that can obtain a suitable or even an optimal number of hidden
nodes for each learning case. This method can markedly reduce the degree of artificial
participation and hence reduce the burden of human operators.

In addition, there are many applications of the ELM to different types of domains.
The ELM was applied to predict soil moisture in an apple orchard [19], taking both the
weather factors and the time series of the soil moisture as inputs. Compared to the
conventional method of the SVM, the ELM exhibits a higher prediction accuracy over
a larger forecast range with a higher speed. Reference [20] proposed a new classification
algorithm for food classification based on both spectroscopy and the ELM, and the
experimental results indicated that the ELM is typically more precise and robust than
its competitors, including k-nearest neighbor, partial least-squares discriminant analysis,
back propagation ANNs, and least-squares support SVMs.

3 ELM Approach Specification

In this section, we will present in detail the ELM-based classifier for predicting
whether a sample food to be inspected is qualified or not. Firstly, in Sub-Sect. 3.1,
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the cause variables are selected according to whether it is likely to affect the food
quality. And then data preprocessing techniques are presented in Sub-Sect. 3.2.
After that in Sub-Sect. 3.3, the main framework of the ELM method is described
based on the discussion of the former two sub-sections.

3.1 Selecting Relevant Factors

According to the food safety inspection data, the result variable that we are most inter‐
ested in is quite simple: it has binary values for whether the food is qualified or not.
However, the causative variables are more complex and involve many factors. We
eliminate the factors that are not related to the ability to predict the food quality, such
as the sampling number and name of the manufacturer. After the elimination operation,
9 causative variables are retained, as listed in Table 1.

Table 1. Causative (dependent) variables selected for the modela.

Selected factor/variable Meaning of the variable
Food category There are 6 categoriesa in the inspection data
Manufacturing date The date when the product was manufactured
Manufacturing site The place where the product was manufactured
Inspection date The date when the product was sampled and inspected
Inspection site The place where the product was sampled and inspected

a The 6 categories are T0, dairy products; T1, aquatic products; T2, infant formula; T3, meat products; T4,
liquor; T5: edible oil.

3.2 Preprocessing Technique

When all the factor variables are determined, the data are processed to eliminate the
noise data. The missing values are completed with the imputation techniques proposed
in [10] while considering the representative point and the densities of the points in each
quadrant compared to the targeted point for the missing values.

New causative variables can be generated based on the variables listed in Table 1.
For example, from the manufacturing date and inspection date, a new variable, the
elapsed days, can be generated; this variable refers to the time span between the manu‐
facturing time and inspection time. Another example is “Whether in the same province”,
which is generated from the two variables “Manufacturing site” and “Inspection site”;
this variable indicates whether the two sites are in the same province or not.

To date, certain variables have not yet been useful for the models of either logistic
regression or ELM, as they are category variables, not numeric variables. For example,
the manufacturing date appears to be a numeric variable, but in fact, it is more likely to
be a categorical variable because it implies the seasonal information of the manufac‐
turing time. Thus, we transform the variable “Manufacturing date” into four variables,
namely, “Spring”, “Summer”, “Autumn” and “Winter”, with each having binary values
of true or false. The four new variables are called dummy variables, and they are gener‐
ated in the same manner as described in [21].
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After the preprocessing stage, the data are ready for training, testing, and predicting
using both the ELM method and its competitors.

3.3 Framework of ELM Method

In this paper, we also use one-hidden-layered nodes, as shown in [18–20]. The structure
of the network is illustrated in Fig. 1.

Input

Random
Weights

Learned
Weights

Output

Fig. 1. Structure of the ELM. There is only one hidden layer and only one output node.

Each input node in Fig. 1 represents a causative variable. The causative variables
selected and the variables generated by them are each represented by an input node.
There are considerably more hidden nodes than input nodes; but it is not a fixed number.
Instead, it varies according to the number of inputs and the structure of the training data
based on the adaptive strategy given in [18]. As described in [13], the weights between
the input nodes and the hidden nodes are set to random values (see Fig. 1), which implies
that the output value of one hidden nodes may be proportional (or nearly proportional)
to that of another hidden node. Therefore, at least one of them is useless to capture the
relationship between the input and the output. The optimization algorithm in [18] first
generates a large number of hidden nodes and then selects the nodes one by one, making
the newly selected one least linear-correlated to the previously selected node. By taking
into account the input data and the output data an optional number of hidden nodes can
be obtained. We employ this optimization method to form the structure of ELM. The
single output node represents the result of a record, which means whether a food sample
is qualified.

The weights between the input nodes and hidden nodes are assigned randomly as
described in [12, 13], and they are all set to be in the range [−1, 1]. However, all weights
between the hidden nodes and output node are obtained by learning and computing based
on the training data.
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Suppose that the number of input nodes is n and the number of hidden nodes is h,
the input of the jth hidden node is calculated as follows:

Gj = 𝛽

n∑

i=1

Wi,j (1)

where β is a parameter that will be discussed later, Wi,j is the weight between the ith input
node and the jth hidden node.

Each hidden node processes its input by the following equation and then outputs the
following:

Hi =
2

1 + e−Gi

− 1 (2)

Hi will always lie between −1 and 1, which makes its value distribution approxi‐
mately symmetric about the y-axis. Equation (2) is often called the activation function,
which is a highly nonlinear function. All activation functions in the hidden nodes
together make the system capable of approximating nearly any nonlinear relationship
between the input nodes and output node.

Parameter β in Eq. (1) will affect the effectiveness of the system. If β is not sufficiently
large, the relationship between the input and output will degenerate to a linear relation‐
ship. However, if β is excessively large, all the inputs of the hidden nodes will be trans‐
formed by the activation function into either −1 or 1. Thus, we set parameter β in this
paper according to the following empirical formula:

𝛽 =
10
n

(3)

where n is the number of input nodes.
In the step of the LSM for calculating the weights between the hidden nodes and

output node, the inverse of a square matrix must be computed, which will not be execut‐
able if the matrix is irreversible. If this problem occurs, we will change the square matrix
slightly and make it reversible by using the method suggested in [22], which overcomes
a significant shortcoming of the ELM.

The overall framework of the ELM approach is shown in Fig. 2.
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Fig. 2. Overall framework of the ELM approach.

4 Experiments and Results

The data sets used are publicly available from the State Food and Drug Administration
of China. For these samples, the manufacturing date ranges from November 26, 2014
to September 1, 2016, whereas the inspection date ranges from October 29, 2015 to
September 9, 2016.

The two methods applied to the data sets are logistic regression presented in [3] and
the ELM. The variable selection and data preprocessing are same for the two methods.
For each category of food, all data are partitioned into training data and testing data. The
training set and testing set are identical for the two methods. The testing results are listed
in Table 2.

Table 2. Comparison of experimental results.

Category Number of
testing cases

Number of
correct cases
for LR

Number of
correct cases
for ELM

Accuracy of
LR (%)

Accuracy of
ELM (%)

T0 1376 1196 1212 86.9 88.1
T1 873 777 791 89.0 90.6
T2 1403 1260 1310 89.8 93.4
T3 4058 3633 3656 89.5 90.1
T4 2730 2615 2618 95.8 95.9
T5 2063 1785 1798 86.5 87.2
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The data listed in Table 2 are shown in Fig. 3.

Fig. 3. Comparison of the experimental results from logistic regression and the ELM. The black
bar represents the accuracy percentage of the logistic regression, whereas the white bar represents
that of the ELM.

Figure 3 shows that the ELM has better accuracy than logistic regression for all food
categories, although they perform nearly the same for certain categories, such as T4.

5 Conclusions

ELM is employed in this paper to describe the big data collected from the food safety
inspections of China in recent two years. The trained model is used to predict the food
quality and it performs better than Logistic regression that was implemented and tested
on simulated data sets. Results from a series of experiments show that ELM is better in
accuracy than Logistic regression for each of the 6 food categories. And both of the
methods run very fast because they all take the advantage of optimized calculating steps.
The success of the ELM owes much to the large number of hidden nodes and the
nonlinear activation functions in them are able to capture the nonlinear components in
the relationship between the inputs and the outputs.

With the ELM model and the according prediction system, food samples can be taken
no longer randomly; on the contrary, food products could be filtered by the prediction
system and only those with least qualification probabilities will be selected for sampling
test. Therefore, aided by the ELM prediction and classification system, more effective
inspection plans can be made which mean less labor input and more food safety problems
exposed.
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