
AODV–Based Routing for Payment
Channel Networks

Philipp Hoenisch and Ingo Weber(B)

Data61, CSIRO, Sydney, Australia
philipp@hoenisch.at, ingo.weber@data61.csiro.au

Abstract. Payment Channel Networks such as the Lightning Network
(LN), Raiden or COMIT were created to tackle the scalability prob-
lems of their underlying blockchains, by moving from expensive and slow
on-chain transactions to inexpensive and fast off-chain ones. However,
those networks are unregulated and decentralised, comprise point-to-
point channels that may be opened or closed without coordination or
warning, and fees may change at any time – making routing over these
networks a hard problem. In addition, by connecting different blockchains
using such off-chain networks, an immense network of channels will evolve
which is under continues change. Routing needs to take into account the
current network status, availability and distributions of channels’ fund-
ing, fees for each node, and exchange rates between different currencies.
In this work, we identify requirements for such a routing protocol and
adapt the Ad-hoc On-Demand Distance Vector Routing (AODV) proto-
col to this end by enhancing the messages with information on fees and
exchanges rates. This approach allows finding suitable routes through the
network, while intermediate nodes can maintain their economic incen-
tives. We simulate different network topologies and evaluate the adapted
AODV protocol on 3 different networks of 500, 1,000 and 5,000 nodes.

1 Introduction

Ever since the first appearance of Bitcoin in 2008 [16] a multitude of blockchain
derivatives and other implementations have emerged. The general purpose is to
decentralise the management of a particular asset, such as a cryptocurrency,
by removing the need of a trusted central entity and to create a network of
untrusted nodes. However, common problems of blockchains include slow confir-
mation and commit times and high transaction fees. For Bitcoin, a transaction
is often regarded as committed (irreversible) after 6 confirmation blocks, taking
on average 60 min. Due to this commit delay and high transaction fees (recently
between USD 0.50 and 50 on Bitcoin), small payments and particularly micro-
payments (i.e. payments of a few cents or even a fraction of a cent) are not
very economical. In addition, many blockchains have a throughput (7 to 20
transactions per second, tps) that is many orders of magnitude below that of
payment networks like VISA (up to 47,000 tps).

c© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 107–124, 2018.
https://doi.org/10.1007/978-3-319-94478-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_8&domain=pdf

108 P. Hoenisch and I. Weber

In order to tackle this problem, researchers proposed to not settle every trans-
action on the chain but rather move some transactions off-chain, allowing two
parties to interact with each other directly. By tracking their payments between
each other on their own, the two parties are able to avoid expensive and time-
consuming interactions with the blockchain. Should there be a dispute regarding
the balance or should one party become unresponsive, the most recent balance
sheet provided by either of the two parties can be settled on the blockchain (on-
chain). The Lightning Network (LN) is the most prominent of these off-chain
solutions [20]. It proposes to create an overlay network of off-chain payment chan-
nels – i.e. Payment Channel Network (PCN) – where transaction between two
parties are not recorded on the Bitcoin blockchain. For that, two parties create a
pair of transactions first: a funding transaction and a spending transaction. The
former one specifies the total amount held in the channel, i.e. either one or both
of the participants pay an arbitrary amount into this channel. The other transac-
tion specifies the output, i.e. it defines which party receives how much from the
total amount. Only the funding transaction is settled directly on the blockchain
whereas the output transaction can be delayed to a point of time in the future. If
one of the party wants to pay the other party, it updates the output transaction
mirroring the actual state. Note, the actual output transaction involves a com-
plex reconciliation between the two parties, its process is described in detail in
[20]. Decker et al. in [4] presented an alternative. While the LN was specifically
designed for Bitcoin, PCNs can be realised on other blockchains as well if they
provide a minimal scripting language that allows realising so called Hash-time
Lock Contract (HTLC). Alternatives include the Raiden Network (Ethereum)
[22], Sprites (Bitcoin) [12] or COMIT (cross-chain) [8].

Opening a channel only makes sense for recurring payments to (or through)
the respective other party. To transact with parties where no direct channel
exists, multiple payment channels can be chained together. The payment is then
routed through the network with one or more intermediaries. This however gives
rise to a major challenge: how to find an optimal (or acceptable) route through
the network, i.e., from the sender of a payment to the recipient. The route needs
to be acceptable (and ideally optimized) in terms of to specific criteria such as
routing fees, exchange rates, and reliability. The routing within the LN applies
a proactive routing protocol: each node broadcasts the information about its
neighbours (e.g. the nodes which itself is connected to via a channel) through
the network. Hence, the downside of this is that a lot of information needs
to be send around prior a route can be established. Consequently, each node
has complete knowledge about the network topology. So far, only information
about the channel funding is included, but not the funding distribution, i.e. how
much of the funding is currently on which side and the solution is limited to
the Bitcoin blockchain. Obviously broadcasting global topology information is
costly and introduces its own scalability limits, which are particularly severe
when considering a cross-chain network.

We argue that, without a fully automated solution for payment routing, with
localized routing and the ability to adapt to the ever-changing environment of

AODV–Based Routing for Payment Channel Networks 109

such a network, PCNs cannot realize their true potential or achieve meaningful
coverage on a global scale. Hence, we make the following contributions:

– We present an adaptation of an Ad-hoc On-demand Distance Vector (AODV)-
based routing algorithm for a network of off-chain payment channels.

– Our approach can cater for different currencies, hence allowing to route pay-
ments across multiple blockchains.

– We evaluate the applicability of our routing protocol experimentally and dis-
cuss advantages and disadvantages.

In the next section, we discuss related work in the field of (payment) rout-
ing. Afterwards we formulate the requirements of the routing protocol in Sect. 3
followed by the protocol in Sect. 4 and its evaluation in Sect. 5. We discuss the
results in Sect. 6 and conclude in Sect. 7.

2 Related Work

Routing can be described as the technique of “[...] sending a unit of information
from point A to point B by determining a path through the network, and by
doing so efficiently and quickly [...]” [11, Chap. 1, p. 3]. This topic has received
a lot of attention in research and industry resulting in various different routing
algorithms as routing is fundamental to power almost any small to large network
efficiently. Examples range from Circular Switched Telephone Networks (PSTN)
over Mobile Ad Hoc Network (MANET) to packet routing on the Internet. How-
ever, routing on payment channels has hardly been examined. Hence, we expand
our search into the other fields. Especial the area of MANET networks is relevant,
as these show similar characteristics as PCNs: Nodes may appear and disappear
irregularly, be offline for a while (e.g. as do connections do in MANET) or the
channel balances might change frequently. Routing protocols can be classified
into five major types: reactive, proactive, hybrid (i.e. a combination out of both:
reactive and proactive), hierarchical and coordinate-based.

Reactive protocols perform route discovery on-demand. They do so by flood-
ing the network with route discovery requests. Two famous examples are Ad-hoc
On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) [9,19].
They work best in a highly dynamic environment (in cases where the network
topology changes quickly). In contrast to that proactive routing protocols work
well in static scenarios (whenever an update occurred, information is spread).
In most cases, each single node maintains a routing table and can decide on the
route on its own. Examples of such routing protocols are Destination-Sequenced
Distance Vector routing (DSDV) and Wireless Routing Protocol (WRP) [15].
The offsite of re- and pro-active protocols is that excessive flooding can lead to
network clogging. Hence, a combination of both achieves a better performance
across a wide range of scenarios. Hybrid routing protocols such as Zone Rout-
ing Protocol (ZRP) or Enhanced Interior Gateway Routing Protocol (EIGRP)
in which each node maintains a routing table on the routes inside its zone, for
destinations outside the zones, a route discovery procedure is employed [1,7]. In

110 P. Hoenisch and I. Weber

contrast to these kind of algorithms, hierarchical and coordinated-based proto-
cols rather use location-based algorithms than flooding the network with mes-
sages. Two examples of hierarchical routing protocols are LANMAR [18], L+[14]
and two coordination-based protocols are GPSR [10] and BVR [5]. These kinds
of algorithms use location-dependent addresses to route information.

These routing protocols were mostly designed for MANET, however, PCN
may differ, e.g., additional hops may increase the overall expanses, a route
response changes the networks state as funds will need to be locked or a found
route might be only usable up to a certain amount of times as the involved
channels might run out of funding. Nevertheless, routing in off-chain channel
networks can benefit from ideas of MANET routing protocols.

An example for hybrid routing is the protocol Flare which is meant to replace
the current DSR-based routing protocol employed in the LN [21]. Nodes pro-
actively gather information about the network topology from neighbour nodes
(as in DSR) and from beacons which are close (in the sense of Bitcoin addresses).
Hence, a sender can decide on the route and issue the payment. Each node
broadcasts in a regular interval (or when a change occurred) its local information
to their neighbours. If a node receives an update message it first updates its local
routing table and enhances the information in the received message with its local
information and forwards it to its neighbours. Messages can be encrypted using
onion routing [23]. The Ripple Network integrates a path-finding algorithm called
ripple paths [24]. Payments can be rippled through several nodes. This involves
moving debt around. Cross currency payments are possible through so called
order books. However, how exactly a path is found is not clearly defined.

Flare is closest to our work. However, the fundamental difference to our
assumptions is that while Flare focuses primarily on security and censorship
resistance for the sending node, we focus on the autonomy of each single inter-
mediate node. Each node should not be forced to forward a payment into a cer-
tain direction. This decision is driven from the economical point of view, as we
assume, nodes primarily focus on profit maximisation and hence are more likely
to select routes which ensure high profit. Notably, we covered mostly abstract
algorithm of each category within this section. There are various adaptations
focusing on more concrete problems, e.g. an improved AODV protocol against
’black hole’ attacks [13], reducing the message overhead of AODV using availabil-
ity prediction [2], adaptive multipath source routing for DSR [28] or an anony-
mous DSR protocol or AODV routing [26,30]. We argue that if the most abstract
protocol is suitable, the improved version might lead to even better results.

3 Requirements and Algorithm Selection

In order to find a suitable routing algorithm for transferring values (in the form of
cryptocurrencies) from a sender to a receiver via one or more intermediate nodes
in an inexpensive and reliable way we define the requirements for the routing
protocol similar to the ones in Flare in [21]. These requirements were formed from
community beliefs [17]. Hence, we derived the following requirements which are
imposed directly in the LN:

AODV–Based Routing for Payment Channel Networks 111

1. Autonomy and self-reliance: In order to provide high availability and a
failure resistant network, the nodes need to be self-configurable: each node
should be able to act autonomously and independently. Hence, a node should
be able to act as a sender or recipient at the same time and should be able
to route payment requests in any direction. In addition, the functionality of
the network must be preserved despite of random changes in the network’s
topology or due Byzantine behaviour of some nodes.

2. Cost guaranties: Each node in this network may charge a certain fee to
forward a payment. In addition, when crossing different blockchains, the
bridging node will ask for a specific exchange rate between two currencies.
Hence, it is essential that the overall cost to issue a payment across the
network from a sender to the final recipient is known prior to its execution.
This is required, as the sender wants to ensure that the desired amount
arrives at the final recipient and is not eaten up by fees or exchange rates.

3. Time-lock guaranties: It is required that each payment (channel update)
is assigned with a time-lock (compare HTLC [20]). This serves two purposes,
first, the receiver needs enough time to redeem the payment, and second,
the sender needs to have enough time to rollback in case a failure occurred.

4. Flexibility: The routing protocol needs to be flexible enough to take fre-
quent changes into account. Changes in a huge network are likely to happen
in various aspects: channels may appear or disappear, the channel’s fund-
ing distribution may change, nodes may update their fees or nodes between
blockchains may change the rates in order to not lose money.

5. Prevent network partitioning: A single (or several) failing nodes should
not forestall payment routing or split the network in sub-networks. A node
should always be able to find a route to a desired opponent, i.e. no other
node should be able to prevent a payment. In other words: if a route exists
between two nodes, the routing protocol should be able to find it.

6. Real-time: A major goal of PCNs is to enable instant micropayments.
Hence, it is natural that the routing protocol needs to be very fast. Hence,
network traffic delays are the only timely constraints which are allowed, i.e.
the routing should take less than a few seconds.

7. Up-to-dateness: Having up to date information available is crucial for
finding the best route through the network. Hence, a requirement is that a
found route contains up to date information about fees and exchange rates.

8. Lightweight and scalable: It is expected that the off-chain channel net-
work will grow over time. Hence, routing should be able to adapt and scale
with it. In addition, routing should only use a moderate amount of resources.

9. Trustlessness: Routing should withstand when nodes show Byzantine
behaviour (i.e. are lying about fees or routes).

10. Optimal solution for each node: The routing protocol should allow each
node to act within its own economic incentives. These will differ from node
to node, e.g. a node issuing a payment may want to send the payment
along the cheapest, fastest or the path with the highest success rate. Con-
trary, intermediate or forwarding nodes are driven by different incentives.
For example, some may provide the cheapest route or aim for high reliability.

112 P. Hoenisch and I. Weber

Hence, intermediate nodes may not forward routes if this compromises their
reputation.

Algorithm Selection – AODV. We have chosen the above mentioned 10
requirements in order to have a reliable and usable network. It should be noted
that especially the last point is from highest priority as we want to guarantee
each participant’s economic incentives. The point lead to the routing protocol
selection of AODV. AODV is a routing protocol originally designed for MANET
and other wireless ad hoc networks. Key features are the ability to quickly adapt
to dynamic condition changes, a low processing and memory overhead and loop
freedom at all times [19]. As the name implies, a route is established only on
demand on a hop-by-hop basis. Each node should only have one option to send
the message through the network (notable, a sending node which is connected
to multiple neighbours might end up with multiple routes) as each intermediate
node can decide how to forward the message to the final receiver.

One of our main assumption about the network is that it is under continue
change. Even more, we assume that network changes are more likely to happen
than nodes are sending payments around. Examples for frequent changes are (I)
Channel balances change frequently, i.e. a route which was valid before a payment
must not necessarily be valid after that payment. (II) Fees may change frequently.
Each intermediate node can charge an arbitrary amount of fee when forwarding
a payment. This node may regularly update that fee in order to keep its channels
balanced. For example, if one channel is at risk of running out of liquidity, the
node could charge a higher fee when forwarding payments through that channel.
(III) Exchange rates may change quickly. Nodes between two blockchains will
need to adapt the exchange rate frequently. Otherwise this node may be at risk of
losing money. (IV) Nodes may be offline (or not reachable) for some time. While
it is fundamental that nodes are online at all time during a payment as this node
needs to accept and forward payment request, if an intermediate node is offline
(even for a short amount of time), the network should adapt accordingly.

An alternative would have been a proactive routing algorithm similar to Flare
which is based on source routing [21]. In contrast to AODV, source routing can
be easily combined with Onion Routing and brings a higher level of security to
the network participants. It allows to encrypt the payment message in different
layers so that no intermediate node in between is aware of what the message’s
final destination will be or who the original sender was. However, the downside
of this is that a sending node can indirectly attack an arbitrary node in the
middle, e.g. by draining its liquidity (locking it up) for some time so that it can-
not forward any more payments. Even worse, if the message is encrypted, the
attacked node will not even know who it gets attacked from in the first place. A
more detailed discussion of this attack can be found in Sect. 6. The other main
difference between a reactive and a proactive approach is that reactive rout-
ing eliminates the need of periodically flooding the network with table update
messages. However, the disadvantage of this approach is that a route request
messages may flood the network, i.e. a large amount of messages may be sent

AODV–Based Routing for Payment Channel Networks 113

around until a suitable route has been found. We have decided for a reactive
routing algorithm as it has the abilities of obtaining an up to date route, being
loop free and a quick adaptation to the ever-changing network conditions. In
addition, as each node can decide on its own how and where to route a payment
to, it is easier to maintain its economic incentives.

4 AODV-Based Routing in PCN

System Model. Before defining to the routing protocol in pseudo code in
Sects. 4.1 and 4.2 we define our PCN as an undirected graph G = (N,C) whereas
N is the set of all nodes and C is the set of channels between the nodes C ⊆
{(n1, n2) | n1, n2 ∈ N}. Each node n represents an independent party who wants
to participate in the network either by playing an active role as payer or payee, or
passively by earning money as an intermediate node which forwards payments.
Each node is assigned with a globally unique id. Further, for ∀c ∈ C we define
bal(n, c) as a the current balance of node n in channel c as a binary function
Bal : N × C → [0,+∞). If a node n is not part of the channel the balance
function is not defined, i.e. ∀n ∈ N, c = (n1, n2) ∈ C, n /∈ {n1, n2} ⇐⇒
↑bal(n, c) (read as bal(n, c) is not defined). When forwarding a payment over a
channel c an intermediate node n may charge a fee f ∈ (−∞,+∞) and provide
a rate r ∈ [0,+∞). This means, the cost to send an amount x via a node ni

is pi = ri × x + fi, i.e. the sending node has to pay pi so that x arrives at
the next node while the intermediate node will deduct fi for itself. Hence, the
total cost p (for payment) to send a payment from a starting node n1 over the
intermediate nodes n2 and n3 to node n4 can be expressed as p = p3(p2(x)) or
p = r3 × (r2 × x + f2) + f3. Notably, if an intermediate node is in between two
blockchains, the arriving amount x is in a different currency. Note that nodes are
deliberately enabled to offer a negative fee for forwarding a request. By providing
this incentive, i.e. making routes through them cheaper compared to potential
other available routes, the forwarding node is able to rebalance its channels in a
specific way.

The payment process consists of two phases: first, the route discovery phase
(Sect. 4.1) and second, the route selection phase (Sect. 4.2).

4.1 Route Discovery

As designed in the RFC of AODV a route discovery is only issued when a node
decides to send a payment over the network: a route request is broadcast to
each connected node, i.e. nodes which are connected via a payment channel:
REQ = <no, nd, nl, nrd, nro, dreq, droute,#max,#rate,#fee,#hops>. The route
request is defined as REQ whereas no defines the route request originator. This is
needed so that each node can update its local routing table with a path towards
no. nd is the desired recipient and nl is the last hop, i.e. the node this request was
send from. nrd and nro define a sequence number. The former one is the latest
sequence number received in the past by the originator no for any route towards

114 P. Hoenisch and I. Weber

the destination nd. The latter one is the sequence number to be used in the route
towards the originator no of the route request. dreq defines the lifetime of the
request, i.e. how long this request is valid. These fields can be found in the original
AODV as well. #hops defines the amount of intermediate nodes (or hops) to the
request originator no. However, in order to have a more sophisticated algorithm
we enhanced the REQ with additional fields. Whenever a node sends out a
route request, we use this chance to establish a route backwards (i.e. towards
the originator) on each node which receives the request. Hence, we added 3 more
fields: droute defines how long the route towards no is valid, #rate is the rate to
reach this node and #fee represents the cost to reach this node.

As by definition of the channel network, each channel has a certain capacity,
hence each node has a certain maximum it can pay over a specific channel
(bal(n, c)). While this is the overall maximum, a specific node may only be
willing to forward a fraction of it, i.e. #max. Notably, #max ≤ bal(ni, c) where
i is the current node forwarding this request over channel c. This value varies
depending on the request. Further, if a node receives a REQ and is not the
destination node, it first updates the REQ before forwarding it. The fields no

and nd remain unchanged, nl is set to the current node. The rate #rate is updated
with its local rate times the former rate and so is the new fee the sum of the
local fee and the former fee. In order to compute the new #max the current node
checks how much it can send over the channel to nl (#maxOld) and takes the
minimum of those two values, i.e. #maxNew = Min(#maxOld,#maxCur). The
same applies for the expiry time droute, i.e. the current node updates this field
with the minimum between the last droute and the time it is willing to offer this
route to no. Hence, using REQ each receiving node receives the information of
how much it can send towards the originator no (#maxNew), for how long the
route is valid droute. In terms of units, the expiry date is expressed using the
unix timestamp format. The rate and the fee are floating-point numbers in order
to be able to represent the smallest unit of an arbitrary currency, e.g. 1 Satoshi.

Algorithm 1 shows a pseudo code of how a REQ is handled if received by a
node. Lines 1 and 2 perform validation steps. First, the local node checks the
req is still valid, i.e. if req.dreq has not been expired and the max amount of
hops has not been reached (#hops ≤ MAX HOPS), i.e. if the REQ is dropped
if it has traversed more than MAX HOPS intermediate nodes. Afterwards, it
checks if a valid channel exists to the last hop and if this channel has enough
balance. Thereupon, the local node checks in its routing table if a route towards
no is already present (line 3). If this is the case, the node checks whether the
current req is better than the routing table entry. Within this check, the local
node can follow its own economic incentives, e.g. take a lower rate and fee, a
longer time expiry date, etc. The new routing table entry is created in line 5. In
the next line 7, it is checked if this req has already been handled before, i.e. for
this case the req.nrd is taken. If so, no further actions are performed. In line 8
it is checked whether the local node is already the final recipient. If this is the
case, a REP is returned to the last hop nl (see Sect. 4.2). Similar, in line 11
the local node checks if a route is already known to the destination node nd.

AODV–Based Routing for Payment Channel Networks 115

Algorithm 1. handleRouteReq(req)
Input: req: Route Request data

1 if !isValid(req) then return;
2 if !channelToExists(req.nl) OR bal(req.nl,c) ≤ 0 then return;
3 to = getRoutingTableTo(req.no);
4 if to != null AND req is better than routing table entry then
5 to = updateTable(req.no, req);
6 end
7 if reqAlreadyHandled(req.nrd) then return;
8 if this == req.nd then
9 sendRouteRep(req.nl); //node is destination, send rep to requester;

10 end
11 td = getRoutingTableTo(req.nd);
12 if td != null then
13 sendRouteRep(to.nn); //take from routing table and send response;
14 end
15 req.#rate *= this.#rate; req.#fee += this.#fee; req.#max = Min(req.#max,

this.#max); req.nl = this; req.#hops++;
16 lockFunding(req.nl, req.#max, req.droute);
17 for c in outgoingChannels do
18 sendReq(req, c.counterNode);
19 end

If so, a REP is returned to the next hop in the routing table entry. If the local
node is an intermediate node the REQ will be forwarded to all nodes to which
the local node has a channel to. Hence, starting from line 15, the REQ will be
updated, i.e. the new rate and fee to the next node is calculated and the last hop
nl is set to the current node. Also, the hop count (req.#hops) is updated and
incremented by 1. Since within the REQ the node also promises a route towards
no, the local node has to lock up some funds for some time (line 16). This is
needed, in order to ensure enough funding is available for a payment over this
route. Notably, as it is required to lock funds up, a node can decide on its own
whether it will forward the REQ or not. So, at any time, a local node can decide
not to forward a REQ at all, this is however not depicted in the algorithm.

4.2 Route Selection

As soon the REQ has reached its destination node nd, or if a route towards
the destination was already known by an intermediate node, the route responds
message (REP) is returned towards the originator. REP has a similar format
as REQ: REP = <no, nd, nl, nrd, nro, droute,#max,#rate,#fee>.

The field no defines the originator of the message, i.e. it is the destination
node nd of the REQ message. Similar to that, nd is the destination of REP (or
the originator no of REQ). nl follows the same principle, i.e. it is always set to
the last hop the message was send from. nrd and nro define sequence numbers.

116 P. Hoenisch and I. Weber

Algorithm 2. handleResponse(rep)
Input: rep: Route Response

1 if !isValid(rep) then return;
2 if !channelToExists(rep.nl) ‖ !channelIsFunded(rep.nl) then return;
3 to = getRoutingTableTo(rep.no);
4 if to == null ‖ rep is better than to then
5 updateTable(rep.no, rep); //new rep is better, update table;
6 else
7 return; //known route is better;
8 end
9 if this == rep.nd then

10 return; //local node was original requester

11 end
12 td = getRoutingTableTo(rep.nd);
13 if td == null then
14 return;//error, no route to origin found

15 end
16 rep.#rate *= this.#rate; rep.#fee += this.#fee; rep.#max = Min(rep.#max,

this.#max); rep.#hops++; rep.nl = this;
17 lockFunding(to.nextHop, rep.#max, rep.droute);
18 sendRep(rep, td.nextHop);

The former one is the latest sequence number of the route’s destination node
and the latter one is the sequence number to be used in the route towards the
originator no of the route request. droute defines how long the route towards no

is valid, #rate is the rate to reach this node and #fee represents the fee.
Algorithm 2 shows the pseudo code of how a REP message is handled: similar

to handling the route request message, in line 1 and 2 the REP is verified to
be valid. In this case, the field droute is checked, i.e. if the route promised in
REP has not yet expired. If this is the case it is checked if enough funding is
available in the channel towards the last hop. In line 3 the local routing table is
checked whether a route is already present to the node rep.no and if the known
route is better than the new route in REP . Again, the local node can follow its
own economic incentives and accept only routes which are suitable. If the new
route is better, or no routing table entry exists, the routing table is updated with
a new entry towards the destination node. On the contrary, if a route already
exists, the process ends here (line 7). In line 9 it is verified if the local node is
the destination, i.e. the REP has reached the original requester of this route
request. If this is the case, the process ends here and the local node can issue a
payment along this route. Alternatively, the local node is an intermediate node
and is meant to forward the REP . For that, it checks in the routing table if a
route is known towards nd (see line 12). If no route is found, the process ends
here as it is not possible to forward the REP . Consequently, if the route towards
nd is known, the REP message is updated. Starting from line 16 to 16 the rate
(rep.#rate), fees (rep.#fee), the max amount for this route (rep.#max), the last

AODV–Based Routing for Payment Channel Networks 117

hop (rep.nl) and the hop count (rep.#hops) is updated. Afterwards, the node
locks the max amount of the promised route (rep.#max) in line 17 and forwards
the route to the next node according to the routing table entry (td.nextHop)
in line 18. Similar to the route discovery phase, the most important part is
the locking of the funds in a specific channel for the time the route is valid
(rep.droute) as can be seen in line 17. Since this information is only kept offline
in a local node, it only represent a promise that the funds are available but it
does not give a 100% guarantee that the route is valid until rep.droute expired.

Figure 1a show the process of how a route from node A to node E is estab-
lished. For that, node A sends a route request (REQ1) to its connected neigh-
bours, i.e. B. In turn, B forwards this request to C and D (REQ21 , REQ22) and
so on. Eventually, the REQ arrives at node E which returns a REP message
towards the originator A. Notable, since each REQ contains the information
of how to reach the originator node, every node in this example has now the
information of how to route towards A. The path the REP message follows is
comparably simpler. As it can be seen in Fig. 1b, node E issues the first REP1

message along the path towards A. Hence, the message first passes node D
(REP1), then node B (REP2) and eventually arrives back at node A (REP3).
If node C now wants to pay A it can do so immediately as it has already all the
information. If C wants to pay E, it will only need to issue one REQ towards B.
B knows already the required information and returns REP immediately. Hence,
the more active the overall network is, the less messages will be needed to find
a route. After having explained the algorithm, we will evaluate it in Sect. 5.

A

B

C

D

E

R
E

Q
1

R
E
Q

2
1

REQ22

R
E
Q

3

(a) REQ phase

A

B

C

D

E

R
E

P
3

REP2

R
E
P
1

(b) REP phase

A

B C

D

E

R
Q

E
1
1

REQ21

R
E
Q
2
2

R
E
Q
2
3

R
E
Q12

(c) Ig. redundant messages

Fig. 1. REQ and REP phase, and ignoring redundant messages

5 Evaluation

In order to understand if the adapted AODV routing protocol (i.e. by enhancing
the messages with information on fees and exchanges rates) is applicable for
payment routing in PCNs we evaluated it in a simulated environment. As at the
time of writing the LN just went live on the Bitcoin main net1, no real data
about how the network will look like in big scale was available. Hence, we have
to come up with some assumptions in regard to the network topology in Sect. 5.
The results of the evaluation are discussed in Sect. 6.
1 https://lnmainnet.gaben.win/.

https://lnmainnet.gaben.win/

118 P. Hoenisch and I. Weber

Setup. We evaluate our routing protocol on 3 different network topologies, with
500 nodes, 1,000 nodes, 5,000 nodes. In regards of the network, we divide the
nodes among 3 different blockchains, e.g. BTC, ETH and LTC. Each node is
placed at random in one of these 3 blockchains with a uniform probability of
p = 0.3. In the next step we take the smallest blockchain (i.e. the one with the
least amount of nodes n#) and select randomly between 1 and |n#| nodes. These
nodes are Liquidity Providers between two blockchains, i.e. they have a wallet on
both blockchains enabling routing between them. We repeat the same procedure
and connect the smallest chain with the second chain. The same is repeated
between the remaining two blockchains. In the next step we randomly connect
the nodes within each chain according the dynamics of small-world networks as
presented by Watts and Strogatz [29]. We chose k = 4 as the average connection
between each node within each chain and a probability of rewiring of p = 0.3. To
generate the graph, we used the WattsStrogatzGenerator (http://graphstream-
project.org). We decided to have the funding on each channel side randomly
generated with a value f = [1, 100]. We ignored the different currencies, meaning
that the overall maximum a channel can have is MAX(bal(c)) = 200 BTC
(100 BTC on each side of the channel) and the minimum is MIN(bal(c)) = 2
LTC (1 LTC on each side). As exchange rates between BTC:LTC, LTC:ETH
and BTC:ETH we took fix values as monitored from http://coinmarketcap.com
(2017/09/25, 3:25 pm UTC+10): 1 ETH = 0.07508560 BTC, 1 LTC = 0.01262120
BTC and 1 LTC = 0.16506884 ETH. Each Liquidity Provider offers the same
exchange rate; however, each node randomly charges a fee when forwarding
payments (rep.#fee or req.#fee). This fee is randomly generated only once per
node and is between ∗.#fee = [0, 1] ∗ 10−9. The details of generated topologies
can be found in Table 1. Notably, since channels are bidirectional a connection
between two nodes counts as one channel.

Table 1. Evaluation settings

Nodes 500 1000 5000

Channels 1098 2367 10689

BTC ETH LTC BTC ETH LTC BTC ETH LTC

Nodes 149 147 204 285 306 409 1519 1496 1985

Channels 298 294 408 570 612 818 3038 2992 397

BTC-ETH channels 13 257 408

BTC-LTC channels 76 103 193

ETH-LTC channels 9 7 88

Scenario & Evaluation Criteria. In order to verify the quality of our app-
roach we run 1,000 randomly generated transactions on each network topology,
i.e. we randomly select one node which pays another random node. The payment
amount is randomly generated with # = [0, 1] ∗ 10−9. Notable, while in theory

http://graphstream-project.org
http://graphstream-project.org
http://coinmarketcap.com

AODV–Based Routing for Payment Channel Networks 119

it is possible to have even smaller values as payments are not recorded on the
blockchain immediately and hence are not limited to it, this would require a
different setup. This means, if a payment is 1/10 of a satoshi, we would need
10 of these payments in order to have a noticeable change, hence, we ignored
this factor. The limiting factor of the AODV routing protocol is the hop count
(MAX HOPS), i.e. if the REQ has traversed more than MAX HOPS inter-
mediate nodes, the request is dropped. Hence, we run each transaction with
different MAX HOP , i.e. with an MAX HOP = [0, N] where N is the cheap-
est possible path but capped with 10. Differently expressed, if two nodes are
connected directly the hop count is 0 and there is one channel between them.
If there is an additional node in between, the hop count 1 and there are two
channels between them. Hence, we have a maximum of 10 hops or a maximum
of 11 channels. The cheapest possible path was computed manually using the
Floyd-Warshall all pair shortest path algorithm [3, pp. 558–565]. As a single
route request may change the networks topology we reset the nodes and the
channel states before each new request. We compare the found routes with the
optimal path, i.e. the cheapest overall path for each hop count. This means that
a lower hop count could lead to a more expensive route than the optimal. In
addition, we count the overall messages which were send around and measure
the reachability, i.e. how many transactions where successfully depending on the
hop count.

6 Discussion

The results of our evaluation can be found in Fig. 2 (not showing the 1,000 nodes
scenario due to space constraints). As mentioned above in Sect. 5 we have 3 dif-
ferent network topologies with 500, 1,000 and 5,000 nodes. On each topology we
ran 1,000 randomly selected transactions, i.e. the payer and payee were selected
randomly. Each transaction was run 0 to N times where N is capped with 10
or with the shortest optimal route. Hence, the higher the HOPS get, the less
transactions are executed. Two nodes are separated by 1 hop if there is a single
intermediate node in between or by 0 hops if they are connected directly. P is the
arithmetic mean of the performance P . It indicates how much more expensive
the found paths were on average compared to the optimal shortest path (The
optimal shortest path was calculated using Floyd-Warshall algorithm.), e.g. an
P of 1.53 means that on average the found path was 1.53 times more expensive
than the optimal path. In addition, σP states its standard deviation. For sim-
plicity reasons we normalised the number of send REQ and REP messages by
dividing it through the amount of transaction (#TX).

As the figures clearly show, the performance P goes towards 1 slowly the
higher the max allowed of hops get (MAX HOP). The reason why we do not
hit 1 at 10 already is twofold. First, we allowed only a max amount of 10 hops
although there were a few transactions with an optimal route with more than
10 hops, i.e. for 500 nodes 3.9%, for 1,000 nodes 1.6% and for 5,000 nodes 16.3%
needed more than 10 hops to find an optimal solution. Besides, the standard

120 P. Hoenisch and I. Weber

deviation of the P decreases with the number of hops. Hence, we can say that
our routing finds more results closer to the actual optimal route. The chance of
being able to find the optimal route depending on the hops is expressed by % <
Optimal. As it can be seen, the higher the hop count is the higher the chance to
finding the optimal solution the closer we get to it. The second reason why this
number approximates slowly to 1, is that there is a chance that the optimal route
is never found, although the maximum allowed hops would allow for it. This can
be reduced to the fact that we try to keep the amount of unnecessary messages
low. For example, each node handles each REQ and REP only once unless its
information is fresher or better. Figure 1c shows a route request (transaction)
from A to E. In the first phase, A sends a request to B and D (REQ11 and
REQ12). As soon as received, these nodes forward their messages REQ21 and
REQ22 from B to C and D and REQ23 from D to E. As D has received a REQ
for a payment from A to E prior from A, it ignores the message from B. This
could be a limiting factor if the route from A to D via B is cheaper than A to
D. However, we made this decision knowingly in order to reduce the amount
of REQ which are send around, as otherwise the network would get flooded
completely. In addition, in order to have a higher probability of finding a better
route, we allowed for the following. If the REQ from B arrives at D when D
has already found a route to E it returns indeed a REP message. Hence, in this
example, A would receive two REP messages from which it can chose the more
suitable one. This fact explains why our results show a relatively high amount
of REP . The figures show the total amount of REQ and REP messages in
the network normalised by the amount of sent transactions. It is obvious that
the amount increases almost exponential with the amount of allowed hops. The
problem lays in the information each node is acting on, i.e. while nodes to ignore
already handled REQ messages it cannot know whether a node has already
received this message from a different node or not. A simple solution would
be to add information to the REQ/REP message where it has already been.
However, while this would reduce the amount of messages, it would increase
the size of it. Interestingly, while for 500 nodes and 1,000 nodes we were able
to achieve a reachability of over 99% for 5,000 nodes we were able to achieve
a similar number only with 7 hops. This lead to a dramatic increase of REQ
messages which were send around, i.e. while we had a reachability of 80% and
6,405 REQ messages for 6 hops we had a reachability of 98% and 12,097 REQ
messages for 7 hops. Hence, we would recommend to have a dynamic value for
the maximum allowed hops, i.e. if the network grows the maximum hop count
should increase. Notably, the amount of REQ is decreasing over time heavily as
nodes cache route information for some time. In the example in Fig. 1c at least
5 REQ messages are broadcast as A wants to pay E initially. If B wants to pay
E in a later phase as well, it might have the information already available and
does not need to send a REQ message but can execute a payment straight away.

While the numbers show that the adaptation of AODV for payment routing
in off-chain channel networks is quite feasible for networks of nodes up to a few
thousand participants we doubt it is scalable for millions of users or more. As

AODV–Based Routing for Payment Channel Networks 121

Fig. 2. Evaluation results in % (left scale) and number of messages (right scale)

in AODV the message size is comparably small (∼80 bytes) a network should
be able to handle easily several thousand requests simultaneously as this would
end up in only a few megabytes. Although established routes may expire over
time, using a route maintenance message, crucial information can be updated.
For that, the original route request issuer sends out a maintenance message
along the desired route. Each intermediate node updates the information with
its current fees and the distribution of funds in its channels and forwards the
message along the path. Hence, once a route is established between two nodes,
it may be reused infinitely if updated regularly.

Compared to Flare, our AODV-based protocol does not consider security
protection of the message or its content. Hence, the sender and receiver may
be publicly known along the payment route. However, significant attempts have
been done to secure the AODV routing protocol [6]. Different extensions to
AODV to increase the security have been proposed in the past: e.g. SAODV or
ARAN which authenticates non-mutable fields and mutable information (hop
count) of the message, using digital signature and hash chain [25,27,30]. These
extensions can prevent tampering of control messages and data dropping attacks.
We argue that a protection of data tempering in a REP or REQ message is
not necessarily required as a route execution follows the atomic principle, i.e.
either all transaction are successful or all fail. This means, if an intermediate
node lies about the fees it would take (it promises a lower fee but would take a
higher fee by falsifying the REP message), the payment will fail later on as the
sender will only attach enough money so that the desired amount arrives at the
receiver who in turn will reject the payment. Privacy and anonymity has been a
direct focus of Flare which integrates Onion Routing in a way that only the last
node actually knows who has been sending something to whom, all the nodes
in the middle just forward it to the next hop. There is more privacy in such a
system, however it has been shown that in cases where every node broadcasts
the transaction onto the blockchain in similar time frames, clues of the routing
can be deducted by the entire network. Even more, in source routing, edge nodes

122 P. Hoenisch and I. Weber

can misuse this anonymity and attack an intermediate node in a way that it is
unable to forward future payments. To do so, the attacker will need to have
a higher funding (either concentrated on one node or several nodes) than the
victim and it will need to be able to controller the payee. The attacker issues a
payment request via an intermediate node, which will need to lock up funding
for some time. This lock will be released automatically in case the payment was
not successfully. However, in the meantime this node cannot use this funding
for other purposes such as participating in other payment processes and will not
earn money through additional fees. The same attack can be done using AODV.
However, the difference is that in AODV each sender is known to intermediate
nodes while this is not the case if using Onion Routing where the sender (and the
final receiver) remains anonymously. Hence, using AODV each node can protect
itself by either accepting or rejecting route requests by specific nodes.

Last but not least, a general problem of decentralised routing requires each
participating node to be online as offline nodes are not able to forward any
requests. This is why, the LN (or other PCNs) incentives nodes to stay online
as they can earn transaction fees by routing payments through them.

7 Conclusion

In this paper we presented an adaptation of AODV for payment routing in
payment channel networks such as Lightning, Raiden, or COMIT. We enhanced
the messages with information on fees and exchanges rates in order to find a
economical route through the network. AODV is a reactive routing protocol that
only establishes a route when needed, thus avoiding the overhead of superfluous
messages sent in a proactive routing protocol. However, AODV carries the risk
of flooding the network if the maximal amount of hops is not set correctly. Our
experiments reveal that the adapted AODV can easily be used in a network
up to a few thousand nodes. Hence, AODV-based routing can be integrated into
PCN. In future work we will focus on routing protocols that scalable further
and evaluate how fee management of nodes impact the liquidity flow. Among
respective developers, limited liquidity is a well-known problem for off-chain
channel networks which remains to be solved.

References

1. Albrightson, B., Garcia-Luna-Aceves, J., Boyle, J.: EIGRP - a fast routing protocol
based on distance vectors (1998)

2. Chao, L., Aiqun, H.: Reducing the message overhead of AODV by using link avail-
ability prediction. In: Zhang, H., Olariu, S., Cao, J., Johnson, D.B. (eds.) MSN
2007. LNCS, vol. 4864, pp. 113–122. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-77024-4 12

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

https://doi.org/10.1007/978-3-540-77024-4_12
https://doi.org/10.1007/978-3-540-77024-4_12

AODV–Based Routing for Payment Channel Networks 123

4. Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21741-3 1

5. Fonseca, R., Ratnasamy, S., Zhao, J., Ee, C.T., Culler, D., Shenker, S., Stoica,
I.: Beacon vector routing: scalable point-to-point routing in wireless sensornets.
In: Proceedings of Symposium on Networked Systems Design and Implementation
(2005)

6. Gharehkoolchian, M., Hemmatyar, A.M.A., Izadi, M.: Improving security issues
in MANET AODV routing protocol. In: Mitton, N., Kantarci, M.E., Gallais,
A., Papavassiliou, S. (eds.) ADHOCNETS 2015. LNICST, vol. 155, pp. 237–250.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25067-0 19

7. Haas, Z.J., Pearlman, M.R., Samar, P.: The Zone Routing Protocol (ZRP) for Ad
Hoc Networks. IETF Internet Draft (2002)

8. Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT - cryptographically-
secure off-chain multi-asset instant transaction network (2017). http://www.comit.
network/doc/COMIT%20white%20paper%20v1.0.2.pdf

9. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. Springer, Boston (1996).
https://doi.org/10.1007/978-0-585-29603-6 5

10. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless net-
works. In: International Conference on on Mobile Computing and Networking.
ACM (2000)

11. Medhi, D.: Network routing: algorithms, protocols, and architectures (2010)
12. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that

go faster than lightning (2017)
13. Mistry, N., Jinwala, D.C., Zaveri, M., et al.: Improving AODV protocol against

blackhole attacks. In: International Multi Conference of Engineers and Computer
Scientists (2010)

14. Mitton, N., Fleury, E.: Distributed node location in clustered multi-hop wireless
networks. In: Cho, K., Jacquet, P. (eds.) AINTEC 2005. LNCS, vol. 3837, pp.
112–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11599593 9

15. Murthy, S., Garcia-Luna-Aceves, J.J.: An efficient routing protocol for wireless
networks. Mob. Netw. Appl. 1, 183–197 (1996)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 17 Apr 2017

17. Pacia, C.: Lightning network skepticism (2015). https://chrispacia.wordpress.com/
2015/12/23/lightning-network-skepticism/. Accessed 22 Mar 2018

18. Pei, G., Gerla, M., Hong, X.: LANMAR: landmark routing for large scale wireless
ad hoc networks with group mobility. In: ACM International Symposium on Mobile
Ad Hoc Networking and Computing (2000)

19. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Second
IEEE Workshop on Mobile Computing Systems and Applications (1999)

20. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant pay-
ments (2015)

21. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an
approach to routing in lightning network (2016)

22. Raiden: Raiden network (2016). http://raiden.network/. Accessed 07 Aug 2017
23. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion

routing. IEEE J. Sel. Areas Commun. 16, 482–494 (1998)

https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1007/978-3-319-25067-0_19
http://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
http://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf
https://doi.org/10.1007/978-0-585-29603-6_5
https://doi.org/10.1007/11599593_9
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism/
https://chrispacia.wordpress.com/2015/12/23/lightning-network-skepticism/
http://raiden.network/

124 P. Hoenisch and I. Weber

24. Ripple: Ripple paths. https://ripple.com/build/paths. Accessed 12 Sept 2017
25. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A secure

routing protocol for ad hoc networks. In: IEEE International Conference on Net-
work Protocols (2002)

26. Song, R., Korba, L., Yee, G.: AnonDSR: efficient anonymous dynamic source rout-
ing for mobile ad-hoc networks. In: ACM Workshop on Security of Ad Hoc and
Sensor Networks (2005)

27. Wadbude, D., Richariya, V.: An efficient secure AODV routing protocol in
MANET. Int. J. Eng. Innov. Technol. 1, 274–279 (2012)

28. Wang, L., Shu, Y., Dong, M., Zhang, L., Yang, O.W.: Adaptive multipath source
routing in ad hoc networks. In: IEEE International Conference on Communications
(2001)

29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

30. Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: Proceedings of
the 1st ACM workshop on Wireless Security (2002)

https://ripple.com/build/paths

	AODV–Based Routing for Payment Channel Networks
	1 Introduction
	2 Related Work
	3 Requirements and Algorithm Selection
	4 AODV-Based Routing in PCN
	4.1 Route Discovery
	4.2 Route Selection

	5 Evaluation
	6 Discussion
	7 Conclusion
	References

