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Abstract. As the fundamental technology of Bitcoin, blockchain
enables people to deal with trust problems in network. Ethereum, as a
well-known public blockchain, is favored by large companies and organi-
zations for its excellent account model and Turing-complete smart con-
tracts, and is widely used to develop consortium-blockchain. However,
the performance and storage of executing contract gradually degrade
as the transaction volume increases. Meanwhile, compared with public
blockchains, companies need a more accurate estimation of prospective
performance and storage based on business scale for decisions making
or early warnings. In this paper, a prediction model derived from the
core structure of Ethereum’s “World State” is proposed. The proposed
model predicts the performance and storage of executing contract based
on transaction volume. The comparison between the experimental and
predicted data reveals that this model can perform a relative accurate
prediction of the prospective system’s performance and storage.
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1 Introduction

Ethereum [3], as the successor of Bitcoin [5], establishes a Turing-complete smart
contract on blockchain to realize distributed application DApps [6]. Meanwhile,
the account-based design of Ethereum provides convenience for the docking of
existing business models (compared with UXTO model). Thus many companies
choose Ethereum to build their consortium-blockchain system or develop on
it (for example EEA [1]) based on two points. As a result, Compared with
the public Ethereum blockchain, Ethereum consortium-blockchain mainly uses
the transaction to execute the contract instead of making a transfer of ETH
cryptocurrency. Therefore, this paper focuses on the performance and storage of
executing the Ethereum contract.

However, the test results show that when the transaction volume reaches a
certain scale, the execution performance of Ethereum will significantly reduce
and large storage space will be occupied. (e.g. when the limit of block generation
rate was modified to one block per second, the TPS of a contract, which is
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about 200 at start, would reduce to 100 as the transaction volume reaches one
million). For companies, predicting the prospective performance and storage are
important indicators in making technical decisions, and also allow companies to
prepare for hardware, monitoring and plans in advance. Thus, it is necessary
to predict the prospective performance and storage of the system in Ethereum
consortium-blockchain based on the business scale.

In public Ethereum blockchain, it’s impossible to predict the distribution
and complexity of smart contract since anyone can deploy a contract easily.
As a result, it’s hard to accurately estimate the perspective performance and
storage. Nevertheless, it is possible to predict the performance and storage in
Ethereum consortium-blockchain resulting from that the participants are the
authorized nodes; that the relatively-fixed smart contract with evaluable com-
plexity is determined by business model; and that the transaction volume is
determined by business scale.

The prediction method proposed in this paper speculates the performance
and storage by analyzing the relationship between transaction volume and
“World State” [7]. “World State” is the core part of Ethereum. The account sys-
tem maps the state data as key/value form and stores them in LevelDB through
this special structure [13]. “World State” is implemented using “the modified
Merkle Patricia tree (trie)” [4] (hereinafter referred to as MPT). PATRICIA trie
(Patricia tree) is a space-optimized version of the traditional trie data structure,
in which every node with only one child is merged with its child. This data struc-
ture was firstly proposed by Morrison [16] in 1968, and then well analyzed in
“The art of computer programming” by Knuth [17] in 1973. The “Merkle” part
of the radix trie arises in the fact that a deterministic cryptographic hash of a
node is used as the pointer to the node, leading to the fact that the Ethereum
could trace the history state through root of “World State” in any block header.
The contract in Ethereum is called transaction. Depending on the implemen-
tation of Ethereum [2], the time consumed by a transaction call for contract is
mainly determined by the execution time of Ethereum Virtual Machine (EVM)
[7] and by the modification of the “World State”. Meanwhile, the increment of
data generated by this transaction depends on the transaction scale and the
increment amount of the “World State”. With the transaction volume growing,
the “World State” becomes larger, resulting in the rise of time consumption
and data space. Consequently, the estimation of performance and storage can be
obtained under the premise of figuring out the relationship between transactions
volume and “World State”.

This paper is focused on the relationship between the performance and stor-
age increment of “World State” after the transaction volume reaches a certain
scale, and a prediction formula is proposed for this relationship. Using this for-
mula, companies could predict the prospective time consumption of executing a
transaction and the storage occupancy based on the transaction volume. At the
end of the paper, a suggestion is raised for the design of contract in Ethereum
consortium-blockchain.
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The rest of this paper is organized as follows. Section 2 reviews relatived
development on blockchain. Section 3 gives the key technologies to introduce
how to predict the performance and storage. Section 4 provide the experiments
to prove the predict methods. Section 5 concludes this paper.

2 Relatived Work

Since blockchain is a distributed ledger maintained by all participants, many
researches have been focused on PBFT [11] and other consensus algorithms to
improve the efficiency. In this case, the performance of executing contract would
become the bottleneck restricting the system, but this research area is rarely
explored at present. For the contract of Ethereum, most researches are focused
on the security [9] of smart contract or improving its smartness [10], while the
effect of execution efficiency is scarcely investigated. High-Performance Comput-
ing is discussed for Ethereum Tokens [18], but not the performance bottleneck
of Ethereum itself. The assessment [8] results show that the performance will
decline and delay be high when the transaction volume grows (10,000 transac-
tions), however the test volume in that paper is small and there are few anal-
ysis details. In terms of storage, EtherQL [12] provides highly-efficient query
primitives for analyzing blockchain data, but not for predicting the size of data
space. On the other hand, the properties of PATRICIA trie are very important
due to the highly-correlated relationship between the performance/storage and
“World State”, as well as the close tie of “World State” MPT implementation
with PATRICIA trie. Some existing papers point out that the height of the
PATRICIA trie behaves quite differently across regions: it exhibits an exponen-
tial of a Gaussian distribution, which satisfies log(n) [15]. There is another paper
analyzing the relationship between the average height and random inserting in
PATRICIA trie. To sum up, there is not a single paper concentrating on MPT
and the relationship between performance/storage and MPT.

3 Key Technologies

3.1 Influencing Factors

In Ethereum, the time consumption of executing a transaction could be divided
into two parts: the EVM execution time and the cost of modifying “World State”,
while the storage increment is composed of transaction volume and state data of
changed “World State”. Since the contracts in consortium-blockchain are usually
fixed and predictable, the time consumption of EVM and the transaction volume
tend to be stable. Therefore, the root cause for the change in performance and
storage is the maintenance cost of “World State”.

After every transaction is executed through a smart contract, it eventually
modifies the tree node of “World State”. The state of Ethereum is the result
of mapping 160-bit address and account state in the tree, which is called State
Trie. An account state corresponds to a leaf node while its address is depicted
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as the path from the root to the node. In Ethereum, the smart contract is also
an account. Each contract account has its data storage, called Storage Trie.
Data storage is also implemented using the MPT tree. Hence, the “World State”
tree of Ethereum is actually composed of two parts: an upper account tree and
a lower storage one. There are two ways to create an Ethereum contract: one is
creating from a transaction, the other is from an old contract. The new contract
will be stored in State Trie of “World State” and contract data in Storage Trie
whose root points to the contract. For a specific business logic, depending on
how the contract is implemented, the data entering the “World State” would be
mainly distributed in State Tire (constantly create new contract to store more
data) or Storage Trie (create a single contract to store a large amount of data)
or between (a balanced distribution of State Tire and Storage Trie).

The nodes of an MPT tree are divided into leaf, expansion, and branch
(NULL is not within the scope of our discussion). Leaf nodes and expansion nodes
are similar in size, while branch nodes are much larger. The “World State”
would be modified for multiple times according to the design of contract after
the transaction calls a contract. Due to the features of tracing history, every
modification would generate a new path from the new leaf to the root. In the
implementation of Ethereum, when searching a node in the path or inserting a
new node, the system would execute function sha3() and read/write LevelDB
which brings more time consumption, and the size of new node corresponds to
the data increment in this modification. Therefore, if the height of current new
leaf can be predicted, it is possible to infer the performance and data increment.
The random hash of Ethereum address results in the random modification for
MPT, thus the average height of the leaf nodes would increase as the times of
modification increase. When a state change occurs for MPT, it is possible to
speculate the execution time and storage space increment if the current tree
height of new leaf nodes could be estimated.

As a result, predicting the performance and storage occupancy of a transac-
tion can be achieved by analyzing the times of modification for “World State” or
testing the business contract, and calculating the time consumption and storage
based on the current height of “World State” in MPT.

3.2 Height of MPT

MPT is evolved from PATRICIA trie. In the implementation of MPT, a branch
node could hold 16 branches. When the branches reach a certain scale, most
nodes in MPT would become branch nodes, while the extension nodes are com-
pressed prefix in PATRICIA trie. Therefore, MPT could be seen as a 16-ray
PATRICIA trie.

Considering of the huge space of 160-bit address, the random selection of
address could be approximated as an asymptotic distribution. Besides, the
address would be executed by sha3() to become the key of MPT, so the proba-
bility of choosing which alphabet be inserted into MPT is equal. As the result,
the height of MPT can be regarded as the expected height of a 16-ray Patri-
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cia tree with the universal asymptotic distribution insertion of equal-probability
alphabet.

According to Devroye [14], the expectated height of universal asymptotic
PATRICIA trie is given by

E{Hn} ∼ c log n

where c = 2/log2(1/
∑

j p2j )

and the highest node is expressed by

Hn − log2n√
2log2n

→ 1

Hence, the expectation and the max height of 16-ray MPT (pj = 1/16, 1 � j �
16) can be obtained as:

E{Hn} ∼ log(n)/2

Hn = 2
√
2log2n+log2n

4

3.3 The Prediction of Transaction Performance and Storage

A simple instance of Ethereum contract is used to describe the relationship
between the transaction and performance/storage, as shown in Fig. 1.

pragma solidity 0.4.16;

constract Order {

uint256 private order_no;

func Order(uint256 _no) { _no = order_no; }

func doOrder () { ... }

}

constract Business {

uint256 private version;

func createOrder(uint256 _no) returns(address) {

Order o = new Order(_no);

o.doOrder ();

return o;

}

}

Fig. 1. Simple business model contract in Ethereum consortium-blockchain.

When a transaction calls the function createOrder in contract business, the
Ethereum actually loads the contract business code from State Trie into EVM,
and calls the function createOrder to create a new contract order (account),
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and then the function in new contract will be invoked. At the committing phase
of the entire process, the data in cache would be inserted to “World State” to
form a new world state and generate a series of new nodes. The tree root of the
current world state is written to the new block so that the state can be extracted
from this block. Like block 3 in Fig. 2, the path from the leaf contract “Order”
to the root is the new inserted node in block 3 compared with block 2. These
nodes are the potential influential factors that affect efficiency and storage. The
contract “Order” and “Business” are stored in State Trie, and the attributes
“order no”, and “version” are stored in the instance of contract “Order” and
“Business”. It’s obvious that the State Trie and Storage Trie would insert data
continually as long as the transaction calls function createOrder.

Fig. 2. “World State” in Ethereum.

For a specific business model, the State Trie and Storage Trie would be
assigned different proportions of data depending on the design of contract in the
consortium-blockchain. In general case, three types of models can be designed,
as shown in Fig. 3:

1. The data are distributed on State Trie by the method of creating new con-
tracts from old contract.

2. For the minority contracts with complex storage structure, the data are
mainly stored in the Storage Trie of those contracts.

3. New contracts are created and appropriate contracts data storage is designed,
and the data are allocated to State Trie and Storage Trie as needed.

Thus, after the prediction of the height of MPT, different designs of contracts
would lead to different prediction methods, but the design ideas are the same.
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Fig. 3. Three type of business model.

It is supposed that the contract is designed as the first type, which mainly
distributes the data on the State Trie. Considering a general business scene, a
transaction would deploy a times contract (e.g. the Order contract in Fig. 1)
for a business request, and the time consumption of executing or generating
every node is t (including the calculation of sha3() and database access time).
For the situation depicted above, when the transaction volume reaches n and a
new transaction is executed, the average time consumption of modifying MPT
is given by

Tmpt(n) =
t

2
log(an)

The max time consumption is represented by

Tmpt max(n) =
t

4
(2

√
2log2(an) + log2(an))

Ethereum uses LevelDB as the database to store key/value. The key to accessing
database is irregular on account of the discreteness of hash. The LevelDB has
an excellent performance in reading/writing continuously, while bad for random
key [13]. Therefore, the time t for accessing LevelDB would be longer as the
amount of data storage increases. In fact, the test results show that if n is large
enough, the value of t will increase and the efficiency will degrade largely for
some data which not hit LevelDB cache at times.

Then, the Texec is added to execute the contract in virtual machine. After n
transactions are executed, the average execution time and the maximum time of
a transaction are given by

Tavg(n) = Texec + Tmpt(n)
Tmax(n) = Texec + Tmpt max(n)

Because of the discreteness of hash, the common prefixes between addresses are
hardly identical. So, most nodes of MPT are on the branch. When n is large, it
can be assumed that the branches are fully filled. At the same time, since the
length of address is fixed, only the leaf nodes can store state, rather than the
branch or extension nodes. It is assumed that the filled branch size is sb, the size
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of the leaf node is sl, the storage space occupied by the account state is sa, and
the sum of storage trees for each account is represented by s′. After performing
n transactions, the storage increment resulting from modifying the MPT tree is
calculated by

Smpt(n) = sb

(
log(an)

2
− 1

)

+ sl + sa + s
′

the maximum storage increment is given by

Smax(n) = sb

(
2
√

2log2(an) + log2(an)
4

− 1

)

+ sl + sa + s
′

The size of the transaction itself is St. The total storage and maximum space
occupation after n times of transaction executions are expressed as

Ssum avg(n) = nSt +
∑n

i=0 Smpt(n)
Ssum max(n) = nSt +

∑n
i=0 Smax(n)

The same analysis also applies to designing the contracts of type 2 and 3.

4 Experiment

4.1 Experimental Method

Experiments are conducted based on the formula in Sect. 3.3 to verify the cor-
rectness of the proposed prediction method. The recorded experimental data are
compared with the predicted data. Three dimensions of data are collected in
the experiment, i.e. the tree height of the State Trie in the “World State”, time
consumption of execution, and the storage occupancy after transaction.

The testing conditions of the experiment are as follows: 1. Build a single
Ethereum node, without networking. 2. Modify the logic of generating block so
that one block will only package one transaction (e.g. each transaction would
have one submit, to avoid the impact of the Ethereum cache on the experimental
results). 3. Using the simple contract presented in Fig. 1, only one new Order
account contract will be created each time when the createOrder method is
called in this contract. 4. Execute randomly one million transactions in the
system. We use a single server to establish the test environment which consists
of two Intel Pentium CPU, 8 G RAM and SSD for storage.

The contract design presented in Sect. 3.3 meets the first-type contract model
in Fig. 3, where the data is mainly distributed on State Trie. The design of the
contract indicates that each transaction creates a new contract and only changes
the State Trie once, that is a = 1(do nothing in doOrder()). According to the
implementation of MPT, when the branch is full, its size is sb = 532 + 32 =
564B, the leaf is smaller than sl = 96B, and sa = 70+32 = 102B. The storage s′

is regarded as 0, and the average time consumption of each visit to the database
is t = 0.03 ms (Since the performance of LevelDB random access will decrease
drastically as the amount of data increases, t will continue to increase. For the
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sake of simplicity, the average value in a test is used here). Further, as LevelDB
will compress the stored data, we use the sum of key and value which would be
stored in LevelDB for space occupancy instead of the amount of space in disk.

Taking the above data into the equations in Sect. 3.3, the prediction formula
can be expressed by

Hmax(n) = 2
√

2log2(n)+log2(n)

4

Havg(n) = log(n)
2

Tpredict(n) = 0.06∗log(n)
2

Spredict(n) = 564 ∗
(

log(n)
2 − 1

)
+ 96 + 102

4.2 Experiment Result

The experimental data are collected and analyzed. In the following figures, the
sampling of the experimental data is represented by a red dot, and the blue
curve represents the prediction curve.

Transactions and MPT Height. Figure 4 is the prediction for the height of
Storage Trie. The fitting curve of Hfitting(n) = 0.356594log(n) + 1.767782 is
obtained based on the actual sampling data. This curve shows the change of the
actual tree height, which is represented by the green curve in the figure. The
orange curve is the predicted maximum tree height. It can be found from Fig. 4
that our prediction curve is certainly close to the fitting curve, and the sampling
points are mainly distributed on both sides of the curve. Besides, there are almost
no sample points going over the orange curve, indicating that the prediction
curve can predict the tree height of the State Trie better as the transaction
volume increases. At the same time, the prediction of the maximum tree height
also indicates the change in the upper limit of the tree height.

Fig. 4. Transactions and MPT height. (Color figure online)

Transactions and Time Cost. Figure 5 is the prediction for the number of
transactions and time cost. As t changes in the production environment, and
the change is mainly determined by LevelDB, which is beyond the scope of this
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paper, a fixed value t is adopted as replacement in the prediction curve. It can be
found from Fig. 5 that for the transaction volumes less than 200,000, there are
deviations between the predictive value and actual experimental value. This is
because the actual t is much smaller than the adopted fixed value. As the trans-
action volume increases, the experimental data tends to be evenly distributed on
both sides of the curve. Although a simple method is used here for the predicted
value, the experimental results validate this prediction. An ideal prediction curve
can be obtained if the fixed t is replaced by getting the relationship between the
read time t and data volume of the LevelDB from an actual test or a theoretical
calculation.

Fig. 5. Transactions and time cost.

Transactions and Storage. Figure 6 is the prediction for the number of trans-
actions and storage occupation. On account of the multi-level cache in the imple-
mentation of Ethereum, a scheme of one-transaction-one-block is adopted in
testing. Thus, the testing object here is the change in maximum space occupa-
tion. In production environment, if multiple transactions are packaged in one
block, the data cache will cause the actual stored data to be smaller than the
prediction (it is found in testing that if more than 100 transactions are stored in
a block, the storage occupancy is roughly half of the prediction). Adding Lev-
elDB compression, the space will be smaller. Thus, it can be concluded that the
growth of the storage under the current test conditions is consistent with the
prediction.

Fig. 6. Transactions and storage

From the results of these three experiments, we can see the prediction
method presented in the third chapter is more consistent with the experimental
expectation.
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5 Conclusions

When companies use the Ethereum consortium-blockchain, they need to make
predictions about the prospective performance and storage of the system if the
transaction reaches a certain scale. This paper analyzes the core issues that affect
the performance and storage of Ethereum is the “World State”. According to
the analysis result that “World State” is implemented by MPT, the relation-
ship between MPT performance or storage increment and transaction volume
n is obtained to be log(n). On the other hand, the “World State” is made up
of the upper layer of State Trie and the underlying layer of Storage Trie. The
data distribution would be different based on the organization of contracts. The
formulas are offered for a business model to predict the relationship between
transaction volume and performance/storage based on State Trie. Other busi-
ness models can be derived by the same method. In this way, the companies
can deduce the prospective performance and storage of blockchain according to
their own contracts under the premise that its business scale can be predicted
(transaction volume).

At the same time, when transaction scale could be estimated, we can properly
design the contracts in order to minimize the consumption of performance and
storage, so that the data distribution between the State Trie and Storage Trie
could reach an inflection point, which minimizes the costs of performance and
storage. Therefore, it is suggested that the contract developer can estimate the
future transaction volume in advance and properly allocate the data in the state
tree and storage tree to achieve the optimal efficiency and storage when writing
the contract.
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