
Towards Legally Enforceable Smart Contracts

Dhiren Patel1, Keivan Shah1, Sanket Shanbhag1,
and Vasu Mistry2(&)

1 Veermata Jijabai Technological Institute, Mumbai 400019, India
2 National Institute of Technology, Surat 395007, India

vasu5235@gmail.com

Abstract. A smart contract is a computer program that is stored and executed
on a decentralized system such as a Blockchain. At present, smart contracts have
a unique value proposition but cannot be enforced in some of the existing
judicial frameworks. In this paper, we propose a framework to create and
execute legally binding smart contracts. We experimented with a Distributed
Outsourcing Developer Marketplace aka Freelancer application use case
deployed on Ethereum Blockchain. Our findings are useful in the sense that as
per respective national legal frameworks, smart contracts can be made legally
enforceable by incorporating crypto primitive like digital signature.

Keywords: Blockchain and distributed ledger technology
Distributed software � Smart contract

1 Introduction

Blockchains are distributed digital ledgers of cryptographically signed transactions that
are grouped into blocks. Each block is linked to the previous one after validation and
consensus of all participating nodes. As new blocks are added, older blocks become
more difficult to modify. New blocks are replicated across all copies of the ledger within
the network, and any conflicts are resolved automatically using established rules [1].

A transaction on the blockchain is a digitally signed item broadcast to the P2P
network of a blockchain. A transaction can be signed by one or more entities (multi-
signature). In cryptocurrency, a standard transaction specifies sending tokens from one
account to another. A transaction fee is a nominal amount paid to have a valid
transaction verified and written in a block. A wallet contains every necessary infor-
mation to generate the owner of public key(s), which is sufficient to transfer assets of
the owner of the wallet in a blockchain and display the content of the associated
account [2].

A smart contract is a computer program that is stored and executed on a decen-
tralized system e.g. a blockchain. A smart contract can perform calculations, store
information, and automatically send funds to other accounts. Thus, smart contracts can
be seen as automating the marketplace system and allowing different parties to work
without mutual trust between each other.

© Springer International Publishing AG, part of Springer Nature 2018
S. Chen et al. (Eds.): ICBC 2018, LNCS 10974, pp. 153–165, 2018.
https://doi.org/10.1007/978-3-319-94478-4_11

http://orcid.org/0000-0002-2841-5318
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94478-4_11&domain=pdf

Smart contracts are a new form of pre-emptive self-help that should not be dis-
couraged by the legislatures or courts [3]. A smart contract may give rise to legally
enforceable obligations. These issues are treated differently from country to country.
Meanwhile, at this time, different jurisdictions are grappling with, endorsing, or
revoking different legislative provisions to regulate the use of DLT (Distributed Ledger
Technology) systems in different contexts. For example, smart contracts that underpin
transactions in ICOs (Initial Coin Offerings – e.g. KodakCoin) may be completely
illegal in some jurisdictions, while a smart contract that handles intra-institutional
banking and other financial transactions may be quite legal, in the same jurisdiction or
elsewhere [4].

There are those who promote the “code is contract” approach (that is, that the
entirety of a natural language contract can be encoded). On the other hand, there are
those who see smart contracts as black boxes consisting of digitising performance of
business logic (e.g. payment), which may or may not be associated with a natural
language contract. In between these two extremes, a number of permutations are likely
to emerge including, a “split” smart contract model under which natural language
contract terms are connected to computer code via parameters that feed into computer
systems for execution. Also, legally binding contractual effect depends on a number of
variables. It is tempting to conclude that, just because the moniker “smart contract”
includes the word contract, it is a legally binding contract as a matter of law. This is not
necessarily correct [5].

In this paper, we propose a framework to create and execute legally binding smart-
contracts with a validation use-case of classical Freelancer application.

Rest of the paper is organized as follows: Sect. 2 discusses motivation and back-
ground of Blockchain, Smart Contract and its legal standing and discusses relationship
between programmable contract and legal contract. In Sect. 3, we take use case of
distributed outsourcing developer market place and discuss smart contract implemen-
tation in detail. In Sect. 4, we propose directives for how smart contract can be legally
enforced using the same application using few cryptographic primitives, with con-
clusions and references at the end.

2 Relationship Between Programmable Smart Contracts
and Legal Contracts: Motivation and Background

Blockchains are immutable digital ledger systems implemented in a distributed fashion
(i.e. without a central repository) and usually without a central authority. At their most
basic level, they enable a community of users to record transactions in a ledger that is
public to that community, such that no transaction can be changed once published [1].

A block is an individual unit of a blockchain, composed of a collection of trans-
actions and a block header. A block header keeps a collection of metadata about the
block that contains a hash-value of its parent in the blockchain, and a hash of the
aforementioned metadata and the data of the block itself [2].

The term “Smart Contracts” has existed for more than two decades – A set of
promises, specified in digital form, including protocols within which the parties per-
form on the other promises [6]. However, in 2014, Vitalik Buterin invented a new

154 D. Patel et al.

generation of smart contracts: decentralized and immutable once it exists in DLT
systems [7].

The endeavor of standards in the context of smart contracts, is to consider how
contracts are written, how they are enforced, and how to ensure that the automated
performance of a contract is faithful to the meaning of any relevant legal documen-
tation. A smart contract is an automatable and enforceable agreement. Automatable by
computer, although some parts may require human input and control. Enforceable
either by legal enforcement of rights and obligations or via tamper-proof execution of
computer code [8] (Fig. 1).

Some smart contracts can be very simple, like putting a timestamp on a transaction
while some are more complex and require the formal agreements of parties beforehand.
In this case, they can be, depending on the case, considered as a legal contract. Smart
contracts may also be legal contracts when they are enforceable by traditional legal
methods. Contracts that do not require complex statements of terms and conditions or
adjectives and adverbs to describe what is reasonable are better suited to automation
than contracts that require complex legal terms to explain the nature of the parties’
obligations [8]. As articulated by Farrell et al. – “It follows from this that if smart
contracts are to be used meaningfully in commercial contracts then they will need to be
blends of both coded and natural language terms” [9].

This delineation between types of contractual arrangement that may or may not be
suited to automation in a smart contract will be useful when deciding whether it is
appropriate or necessary to apply standards to DLT systems –based smart contracts,
and if so, what that standards will look like [8].

Fig. 1. Relationship between legal and technical view [4]

Towards Legally Enforceable Smart Contracts 155

3 Use Case: Distributed Outsourcing Developer Marketplace

The Distributed Outsourcing Developer Marketplace is a freelancing system. A client
posts a particular project needed to be made by a developer. The developer who accepts
this project is known as a freelancer. A freelancer or freelance worker is a term
commonly used for a person who is self-employed and may not necessarily committed
to a particular employer long-term. Freelance workers are sometimes represented by a
company or a temporary agency that resells freelance labor to clients; others work
independently or use professional associations or websites to get work [10].

Current freelancing systems are provided by third parties and rely on trust by both
the freelancer and the client on this central third party. Using a Blockchain based
system can completely remove this element of trust on a central entity. This will help in
eliminating hefty commissions and replace it with smart contract deployment and
update costs which are often significantly cheaper. Also, being decentralized, this
system is completely unbiased and no single entity can monopolize the system under
normal circumstances. Using a cryptocurrency such as ether leads to immensely faster
processing times and quick fund transfers.

We have implemented a freelancing system using Solidity Smart Contracts
deployed on Ethereum. The Smart Contract defines the milestones and the payment for
each milestone which would be sent as ether. The contract is deployed with the client,
freelancer and the milestone details. In the present format, this contract cannot be
legally enforced since there is no contract in legal phrasing available.

3.1 Freelancer System

The first version of our project was based on the popular website freelancer.com [12].
Following terms are useful in understanding our proposal:

• Client: The person/entity posting the project to be completed
• Freelancer: The developer who takes a project posted by a client and gets paid to

do it.
• Milestone: Smaller sub-tasks to be completed leading to partial realization of the

amount.
• Smart-contract: The software code deployed on the blockchain which is running the

distributed marketplace.

The workflow was as follows:

– The client posts his project online, with the task he wants to be completed, broken
down into smaller tasks called “Milestones” [13]. The client then defines a stipu-
lated amount of money to be paid to the freelancer on the completion of each
milestone (in ether) along with their deadlines. With this information a smart
contract is deployed on the blockchain by the client, containing information about
the amount of each milestone, the deadlines. The client has to pay the cost of all the
milestones upfront as well as the gas needed to deploy the contract.

156 D. Patel et al.

http://www.freelancer.com

– This contract now acts as an escrow account which holds the funds until completion
of any milestone.

– Once the contract is deployed on the blockchain, this task is then advertised to all
freelancers on the system. The freelancer can choose to accept the task using an API
call to the smart contract.

– Upon completion of a milestone, the freelancer uses an API call to change the state
of the smart contract and upon confirmation by the client, the stipulated amount is
automatically paid to the freelancer by the smart contract.

– Our system also supports features like canceling any milestone and refunding the
amount back to the client on a failed task.

This system is depicted in Fig. 2.

Fig. 2. Use case ‘Freelancer’: implementation workflow on Ethereum blockchain

Towards Legally Enforceable Smart Contracts 157

The Basic structure of the Freelancer Smart Contract is as follows:
Attributes.

1. Client Address: This is the public key (address) of the client on the Ethereum
Blockchain. For all purposes this is the identity of the client that is used by the
blockchain.

2. Freelancer Address: This is the public key (address) of the freelancer on the
Ethereum Blockchain. For all purposes this is the identity of the freelancer that is
used by the blockchain.

3. Task Description: This is the link to the plain text description of the entire task
along with the various milestones and amount as laid out by the Client.

4. Review Time: It is the time that the client is given to review a submission made by
the freelancer after which the freelancer can collect the payment is the client fails to
review.

5. Milestones: This are the various milestones of the outsourced task. Each of the
milestone contains the following details.
a. Amount: The amount in ether that is to be paid out to the freelancer on proper

completion of the current milestone.
b. Deadline: The time by which the freelancer is expected to complete the task.
c. Status: The current status of the milestone. It has various possible states such as

Completed, Canceled.

Functions.

1. Milestone Complete:
The function that the freelancer calls to mark a milestone that he has done as
complete. After this the milestone work is reviewed by the client.

2. Milestone Review:
The function that the client calls to review the Milestone and mark it as complete,
rejected or canceled.

4 Towards Legally Bound Smart Contracts

We demonstrated Freelancer use case implementation on Ethereum Blockchain (as
depicted in Fig. 2) at the “Smart contract with Blockchain and IoT workshop” held at
VJTI Mumbai in Feb 2018. And after feedback discussions and deliberations, we found
that a smart contract cannot be upheld in the court of law as a valid legal document.
This is a major concern as any dispute between the client and the freelancer cannot be
upheld in the court of law. Even though the code on a smart contract is completely
correct and immutable, it still cannot be treated as a legal document. Also, it is difficult
to debate the technical details of a smart contract as lawyers and judges are usually not
familiar with advanced cryptographic algorithms and their correctness.

158 D. Patel et al.

Some important terminology:

• Legal-contract: The legal equivalent of the smart contract. It contains the signato-
ries, the milestone and the payment schedule in judicial parlance.

• Template Legal-contract: This is a pseudo legal contract constructed with blank
fields where changing parameters like client, freelancer details and milestone details
will be filled in automatically.

• IPFS: Interplanetary File System, is a peer-to-peer distributed file system that seeks
to connect all computing devices with the same system of files. In some ways, IPFS
is similar to the World Wide Web, but IPFS could be seen as a single BitTorrent
swarm, exchanging objects within one Git repository. In other words, IPFS provides
a high-throughput, content-addressed block storage model, with content-addressed
hyperlinks [11].

To incorporate a legal framework in our system, we modified our original system as
follows:

Once the client and freelancer are chosen on the website, they are given a form,
where they simply have to fill out their legally binding details. Using these details, a
legally binding contract (written in plain text) is drafted between the client and free-
lancer which contains clauses for each milestone along with their deadlines and
amounts. This is done automatically by dynamically creating clauses which are
appended to a base template contract. For different use-cases, a more advanced tem-
plate engine maybe required. In case of dispute, the wordings of the legal contract shall
be treated as final. Thus, the base template contract needs to be carefully drafted by a
professional to ensure its infallibility.

The legal contract is then stored on a publicly available distributed file-system e.g.
IPFS. We have chosen to utilize IPFS because the design of IPFS ensures immutability
and non-reliance on a central server [11].

The client then deploys the smart contract on Ethereum. He has to pay all the
milestone fees upfront. The hash of the legal contract is included in the constructor
when the smart contract is deployed. This hash field on the smart contract is constant
once set and cannot be changed. This acts as a link between the smart contract and the
legal document.

Now, both parties fetch the document from IPFS and sign it with their digital
certificates and upload this to IPFS. The hash of their signed document is then added to
the smart contract via an API call which can only be invoked by the client and
freelancer. The smart contract then begins execution only after legal document is
signed and uploaded by both the client and the freelancer. This ensures that both parties
have verified and signed a legal contract in addition to accepting the smart contract
code.

This modified implementation (incremental portion of legal binding) is depicted in
Fig. 3.

Towards Legally Enforceable Smart Contracts 159

Fig. 3. Binding legality to smart contract

160 D. Patel et al.

As depicted in Figs. 2 and 3, the Legal Contracts defined are enforceable because
of the usage of digital-signatures which is a cryptographic method used to validate/sign
documents in digital format.

The contract is deployed by the client with the appropriate task and participant
details (Pseudocode for the same is given at the end of the section Figs. 4 and 5). Once
the contract is deployed, the smart contract sets all global variables, but does not begin
execution. Both the client and freelancer hash the legal document using their corre-
sponding digital keys and call the signContract(string signedData) func-
tion with the hash. This function sets the corresponding global variables and marks the
signed status as true. Once both the client and freelancer have signed the contract, it
begins execution.

After completing a single milestone, the freelancer sends the completed work to the
client and then calls the markMilestoneComplete(uint id) with the id of the
milestone he has completed. This function makes appropriate checks on the id, status
and deadline of the milestone and if everything is correct, sets the milestone status to
‘Completed’. This change can be seen by the client on the blockchain without using
any gas. If he finds the work satisfactory, the client calls the reviewMilestone
(id, Review) function which sets the status of the milestone as per the clients
review and sends the payment of the milestone to the freelancer if the client accepts the
milestone.

Depending on the country this system may or may not be legally accepted. Thus we
introduced the term verified signatures to mean signatures verified to that extent such
that it is legally valid. We examined the situation of such digital signatures in India and
how to enforce their legal validity [14].

In relation to a digital signature, electronic record or public key, with its gram-
matical variations and cognate expressions means to determine whether

– The initial electronic record was affixed with the digital signature by the use of
private key corresponding to the public key of the subscriber;

– The initial electronic record is retained intact or has been altered since such elec-
tronic record was so affixed with the digital signature.

From the IT Bill-2000 [14] “Where any law provides that information or any other
matter shall be authenticated by affixing the signature or any document shall be signed
or bear the signature of any Person then, notwithstanding anything contained in such
law, such requirement shall be Deemed to have been satisfied, if such information or
matter is authenticated by means of Digital signature affixed in such manner as may be
prescribed by the Central Government.”

In simpler terms, any digital signature stands to be deemed verified and legally
valid only when a digital certificate is issued by a Certifying Authority. There are
provisions for new parties to apply and be approved as a certificate authority.

To resolve the issues of validity of digital signatures in the Indian context, we
assume that there is a certified company (Certifying Authority) which can issue Digital
Certificates for use on Ethereum network using the same Ethereum wallet
public/private key pair for the Digital Certificate.

Towards Legally Enforceable Smart Contracts 161

Considering above context, we introduce necessary provisions to make smart
contract legally enforceable.

Pseudocode for legally enforceable smart contract.

Fig. 4. Pseudocode part 1

162 D. Patel et al.

Fig. 5. Pseudocode part 2

Towards Legally Enforceable Smart Contracts 163

5 Conclusions

In decentralized market place using Blockchain and Distributed ledger technology,
transaction facilitation and matching are improved substantially due to unmodified
access to information. This has enabled smart-contract based systems allowing trustless
parties to transact directly adhering to the disclosed terms, without manipulation by
intermediary platforms. Smart contracts are becoming integral part of many critical
systems allowing exchange of payments and services with preset rules. In this paper,
we have shown how freelancer application can be deployed in decentralized e-market
place using Ethereum Blockchain and how smart contracts can be made legally
enforceable with the help of digital signature; making them acceptable between
involved parties as well as jurisdiction’s legal framework. Our future work is focused
on extension of this framework for multi-country cross border contracts involving
different legal requirements.

Acknowledgements. For icons.
1. Contract by Dmitry Mirolyubov from the Noun Project
2. Court order by Anbileru Adaleru from the Noun Project
3. Developer by I Putu Kharismayadi from the Noun Project
4. Client by Miguel C Balandrano from the Noun Project
5. Contract signing by Vectors Market from the Noun Project

References

1. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. Draft NISTIR
8202, NIST, U.S. (2018)

2. Wurster, S., et al.: Specification on blockchain technology. ISO/TC 307, Tokyo (2017)
3. Raskin, M.: The law and legality of smart contracts. 1 Georgetown Law Technology Review

304, GeorgeTown (2017)
4. Frank, R.: Smart contracts PreDraft. ISO/TC 307, Tokyo (2017)
5. R3, Norton Rose: Can smart contracts be legally binding contracts? http://www.

nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.
pdf. Accessed 25 Mar 2018

6. Szabo, N.: Smart contracts: building blocks for digital markets. http://www.fon.hum.uva.nl/
rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.
vwh.net/smart_contracts_2.html. Accessed 10 Mar 2018

7. Wood, G.: Ethereum: a secure decentralized generalized transaction ledger. http://gavwood.
com/paper.pdf. Accessed 26 Feb 2018

8. Clack, C., Bakshi, V., Braine, L.: Smart contract templates: foundations, design landscape
and research directions (2016). https://arxiv.org/pdf/1608.00771.pdf. Accessed 15 Mar 2018

9. Farrell, S., Machin, H., Hinchliffe, R.: Lost and found in smart contract translation –

considerations in transitioning to automation in legal architecture. http://www.uncitral.org/
pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHL
IFFE-Smart_Contracts.pdf. Accessed 21 Feb 2018

10. Freelancer definition. https://en.wikipedia.org/wiki/Freelancer. Accessed 15 Mar 2018

164 D. Patel et al.

http://www.nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.pdf
http://www.nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.pdf
http://www.nortonrosefulbright.com/files/r3-and-norton-rose-fulbright-white-paper-full-report-144581.pdf
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://arxiv.org/pdf/1608.00771.pdf
http://www.uncitral.org/pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHLIFFE-Smart_Contracts.pdf
http://www.uncitral.org/pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHLIFFE-Smart_Contracts.pdf
http://www.uncitral.org/pdf/english/congress/Papers_for_Programme/14-FARRELL_and_MACHIN_and_HINCHLIFFE-Smart_Contracts.pdf
https://en.wikipedia.org/wiki/Freelancer

11. Benet, J.: IPFS. https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4
k7zrJa3LX/ipfs.draft3.pdf. Accessed 27 Feb 2018

12. Freelancer website. https://www.freelancer.com. Accessed 12 Jan 2018
13. Thoen, L.: Milestone payments. https://blog.freelancersunion.org/2014/05/15/dont-get-

stiffed-how-ask-milestone-payments. Accessed 7 Mar 2018
14. Information Technology Act, India (2000). http://www.dot.gov.in/sites/default/files/

itbill2000_0.pdf. Accessed 28 Feb 2018

Towards Legally Enforceable Smart Contracts 165

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://www.freelancer.com
https://blog.freelancersunion.org/2014/05/15/dont-get-stiffed-how-ask-milestone-payments
https://blog.freelancersunion.org/2014/05/15/dont-get-stiffed-how-ask-milestone-payments
http://www.dot.gov.in/sites/default/files/itbill2000_0.pdf
http://www.dot.gov.in/sites/default/files/itbill2000_0.pdf

	Towards Legally Enforceable Smart Contracts
	Abstract
	1 Introduction
	2 Relationship Between Programmable Smart Contracts and Legal Contracts: Motivation and Background
	3 Use Case: Distributed Outsourcing Developer Marketplace
	3.1 Freelancer System

	4 Towards Legally Bound Smart Contracts
	5 Conclusions
	Acknowledgements
	References

