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Abstract. RSA is a public key cryptosystem in which encryption and
decryption are modular exponentiation functions. Modular exponentiation is
achieved by repeated modular multiplications. Montgomery modular multipli-
cation is an efficient algorithm, hence is widely used for RSA public key
cryptosystem. Performance of RSA depends on throughput of Montgomery
modular multiplication. This paper presents RSA with Early Word based
Montgomery modular multiplication. Early word based approach is scalable and
Radix 4 Early Word Based Common Multiplicand Montgomery is proposed.
RSA cryptosystem is implemented on virtex 5 FPGAs. The processing elements
in Early Word based Montgomery use target device resources DSP48E for
addition of operands. Two factors: algorithmic approach and use of target device
resources have improved the performance of RSA on FPGAs.
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1 Introduction

RSA, a popular public key cryptosystem [1] provides two major functions: digital
signatures and encryption, required for secure data communication. Digital signatures
and encryption/decryption in RSA are mathematical expressions in terms of modular
exponentiation. Binary, m-ary, addition chain, etc., are exponentiation techniques
discussed by Koc [2]. All these techniques have modular multiplication as basic
function to achieve modular exponentiation. In 1985 Montgomery [3] proposed
Montgomery modular multiplication which is efficient and suitable for hardware and
software implementations. It computes modular multiplication by addition and right
shift rather than division by modulus.

For strengthening the security of cryptosystems, the size of modulus in RSA is
1024 bits or more which results in addition of long operands in modular multiplication.
To avoid long carry propagation during addition, Montgomery modular multiplication
designs are either word based architectures or carry save designs. A scalable word
based Montgomery modular multiplication was proposed by Tenca and Koc [4] in
which the multiplicand, modulus and intermediate results were processed word by
word whereas the multiplier was taken bit by bit. Each iteration for multiplier bit
requires a right shift of intermediate result, therefore in word based architectures a
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complete (j)th word is formed when (j + 1)th word for same iteration is computed. This
dependency results in delay of two clock cycles between successive iterations for
multiplier bits and latency of scalable Montgomery design [4] to 2k (where k is size of
modulus) which is almost double that of carry save designs. Many word based designs
exist in literature to reduce the clock cycle latency to one between successive iterations
of multiplier bits. Harris et al. [5] proposed left shift of the multiplicand and modulus
rather than right shift of intermediate result which reduced the latency to k cycles for k
bit modular multiplication. A low latency scalable architecture was presented by Shieh
and Lin [6] which deferred the accumulation of MSB of each word from (i + 1)th

iteration to (i + 2)th iteration. Lin et al. [7] proposed word based Montgomery with low
memory bandwidth by relaxing the dependency in word based architectures. A pro-
cessing element interleaves operation of jth word from (i + 1)th to (i + w − 2)th itera-
tion where w is word size. Huang et al. [8] proposed word based radix 2 architecture
with the idea of computing partial results for MSB value 0 and 1. Though, the latency
was reduced to k cycles but it doubled the area requirements. Chen et al. [9] incor-
porated prediction policy in Huang’s design [8] to reduce area cost and time latency.
The authors [8, 9] have used carry save adders for word based addition.

McIvor et al. [10] computed RSA modular exponentiation with carry save based
Montgomery modular multiplication. Contrary to word based designs, the carry save
Montgomery [10] takes the multiplicand, modulus and intermediate results in full
precision. It completes k bit modular multiplication in k clock cycles but the area
requirements are large as carry save adders require more resources when implemented
on FPGAs.

This paper is an extension to our previous work [11]. Early word based radix 2
Montgomery modular multiplication (EWBR2MMM) and Early Word based radix 2
Common Multiplicand Montgomery modular multiplication (EWBR2CMMM) were
proposed in our previous work [11]. Their comparative analysis with related work was
also presented. This paper proposes early word based radix 4 Common multiplicand
Montgomery modular multiplication (EWBR4CMMM). RSA serial and parallel
modular exponentiation with EWBR2MMM and Montgomery Powering Ladder with
EWBR2CMMM and EWBR4CMMM are implemented on FPGAs. Target device
resources DSP48E are used for word based addition (word size 48 bits) on Virtex 5
FPGAs.

This paper is organized as follows. Section 2 briefly discuss RSA exponentiation.
Section 3 presents Radix 4 Common Multiplicand Montgomery modular multiplica-
tion. Section 4 presents Early Word based Radix 4 common Multiplicand Montgomery
and its dependency graph. Section 5 presents the implementation results of early word
based Montgomery and RSA exponentiation on FPGAs and their comparison with
related work. Section 6 presents conclusion.

2 RSA Exponentiation

Modular exponentiation is central to digital signatures, encryption and decryption in
RSA public key cryptosystem. Many techniques for modular exponentiation are dis-
cussed in [2]. They differ in the number of modular multiplications to achieve modular
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exponentiation. Comparative analysis of exponentiation techniques [12] show m-ary
and constant length sliding window are suitable for software based solutions whereas
binary MSB (H) and LSB methods (L) are suitable for hardware implementations.

Sequential binary modular exponentiation (SBME) also called H algorithm or
binary MSB [13] process the exponent bits from most significant to least significant.
Parallel Binary Modular Exponentiation (PBME) [10] also called LSB or L method
process exponent bits from least significant to most significant. Each exponentiation
iteration in SBME and PBME require two operations: modular squaring and modular
multiplication (if the exponentiation bit is set). In SBME, modular squaring and
modular multiplication occur serially as data dependency exists between these opera-
tions whereas in PBME modular squaring and modular multiplication are computed in
parallel. Therefore, SBME requires one Montgomery modular multiplication unit while
PBME requires two Montgomery units that work in parallel.

Whether the exponent bit is set or unset, Montgomery Powering Ladder
(MPL) computes both modular squaring and modular multiplication in parallel. This
gives a regular structure and prevents simple fault and power attacks [14]. Also,
Montgomery Powering Ladder gives the advantage of being parallelized and share a
common multiplicand between modular squaring and modular multiplication [14].
Montgomery Powering ladder (MPLCMMM) computes modular exponentiation [15]
with Common Multiplicand Montgomery modular Multiplication (CMMM). Mont-
gomery Powering Ladder with Carry save Common Multiplicand modular multipli-
cation was implemented in [16]. Section 3 presents Early Word based Radix 4
Common Multiplicand Montgomery Modular Multiplication (EWBR4CMMM).

3 Montgomery Modular Multiplication

Montgomery modular multiplication computes modular product S defined by
S = A � B � r�1 mod n (where r ¼ 2k; k is bit length of operands A, B and n). It
replaces the complex operation of trial division by modulus n with simple operations of
addition and right shift within an iterative loop. After k iterations, if the result S� n
then a final subtraction S = S − n is required. But this requires comparison and then
subtraction which is not a suitable operation on hardware. Walter suggested to increase
the bit width of operands and value of r to 2kþ 2 [17] which increased the multiplier
iterations from k to k + 2. As a result the final subtraction by modulus was removed.
Within the iterative loop of Montgomery modular multiplication there are two opera-
tions: quotient computation and addition of operands followed by right shift. The
authors [18] suggested simple quotient computation by making it independent of partial
product. The dependency of quotient on partial product was removed by left shifting
multiplicand and making LSB of multiplicand as zero.
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The addition of operands in Montgomery design can be done either word by word
or taking the complete operand k bits in size and adding using carry save adders. The
word based Montgomery designs pipeline the computations which result in depen-
dency on successor word and two cycle delay [4] between words of successive iteration
as shown in Fig. 1.

RSA modular exponentiation requires modular squaring and modular multiplica-
tion. Common multiplicand Montgomery modular multiplication computes modular
squaring and modular multiplication in parallel. Let P, R and n be k bit operands.
Common multiplicand Montgomery reduces the common multiplicand P and computes
two parallel accumulations [15] as shown in (1), (2) and (3).

T i½ � ¼ P:2�imod n ð1Þ

X ¼
Xk

i¼1
ri:P:2�imod n ð2Þ

Y ¼
Xk

i¼1
pi:P:2�imod n ð3Þ

Radix 2 and Radix 4 Common Multiplicand Montgomery in [15] are based on feed
forward mechanism as shown in Fig. 2. Algorithm R4CMMM is radix 4 word based
common multiplicand Montgomery modular multiplication [15]. The multiplier bits of
P and R are taken two at time. The quotient is computed using Karnaugh map and is
discussed in [15]. The quotient q[i] and variable d i½ �j are both 2 bits. The intermediate

result is calculated taking w − 2 bits of T i� 1½ � j. The design is based on feed forward
mechanism. Hence, two bits are added in next cycle as shown in step 9. The accu-
mulation units compute X and Y word by word in pipeline to reduction.

iteration(i+1)         iteration (i)

two cycle delay

iteration (i+2)

(j+1)th

word (j)th word   

LSB    

MSB                            

(j)th word 

Fig. 1. Two cycle delay

iteration (i+1)                          iteration (i)

one cycle delay

iteration (i+1)

(j+1)th

word
(j)th word 

(j)th word
LSB

Fig. 2. Feed forward mechanism
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Early word based approach for Montgomery modular multiplication is presented in
Sect. 4. Figure 3 presents the early word based approach which removes the depen-
dency on successor word of same iteration (formed in next iteration) and computes the
least significant bit of successor word with simple bit computations. Our previous work
[11] presents early word based radix 2 Montgomery and early word based radix 2
Common Multiplicand Montgomery; and their comparative analysis with related work
in literature. Early word based radix 4 Common Multiplicand Montgomery is proposed
in next section.

4 Early Word Based Montgomery Modular Multiplication

4.1 Early Word Based Approach

Montgomery modular multiplication computes modular product iteratively. Each
iteration requires a right shift. Due to right shift, word based Montgomery architectures
depend on next word for its most significant bit. The compute early word based
approach eliminates this dependency and maintains one cycle delay between same
words for consecutive iterations.

In radix t designs, t bits of multiplier are scanned each time. The operands: mul-
tiplicand, modulus and intermediate result are taken word by word. Each iteration
requires a right shift by t bits. Compute early word based approach computes t bits of
next word (j + 1) which forms the t most significant bits for word (j). The variable
btj t�1...:0ð Þ which is t bits in size denotes t bits to be added to the least significant t bits of
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word (j + 1) of predecessor iteration along with the carry generated by computation of
word j. This requires t bit addition. The value of btj depends on multiplier bits and
quotient bit and it is computed when the partial product for word (j) is decided. Early
word based approach is simple and for radix t architectures it requires only t bit
addition operations to compute the MSB for a word. Table 1 presents the notations
used in Early Word Based Montgomery modular multiplication.

4.2 Proposed Early Word Based Radix 4 Common Multiplicand
Montgomery Modular Multiplication

The proposed early word based radix 4 common multiplicand Montgomery modular
multiplication is presented as algorithm EWBR4CMMM. The inputs P and R are
represented in radix 4 notation. The bits pi and ri take value in set {0, 1, 2, 3}. The
values twn and thn are precomputed so that each reduction iteration requires w bit
addition. The quotient for each iteration is 2 bits in size. The detailed discussion of how
quotient it is computed is given in R4CMMM [15]. For loop of step 3 runs for h + 2t
iterations and reduces T word by word. For loop of step 6 computes intermediate
results word by word. Based on quotient value, PP i½ � j and btj 10ð Þ are decided. Step 16
takes carry as input and computes w bit addition. In radix 4 designs each iteration
requires a right shift by 2 bits. In early word based approach two least significant bits of
(j + 1) word are computed which form the 2 most significant bits of j word. The
variable dj 10ð Þ is 2 bits in size and it requires 2 bits addition with carry input. For loop of
step 24 computes accumulation and is in pipeline to reduction. It runs from (t + 2) to
(h + 2t + 1) iterations whereas the inner for loop run for words. Based on multiplier
bits, the operands X and Y are accumulated with one of the values given below.

(i) 0 and 0 (ii) 0 and T (iii) T and T (iv) T and 2T.

iteration i

iteration(i+1) iteration i

one cycle

iteration(i+1)

(j)th

(j)th word

(j+1)th

(j+1)th

XC
delay

Fig. 3. Early word approach

Table 1. Notations in early word based
Montgomery

Symbol Meaning

Ai ith multiplier bit

Bjþ 1
0

Least significant bit of word (j + 1) of B

BNjþ 1
0

Least significant bit of word (j + 1) of BN (BN
is sum of multiplicand B and modulus n)

BNl lth word of BN

btj Bit to be added to least significant bit of word
(j + 1) of predecessor iteration

cjþ 1 One bit carry for (j + 1) word generated by (j)th

word

dj Computed LSB of word (j + 1)

q[i] Quotient for ith iteration

njþ 1
0

Least significant bit of word (j + 1) of n

PP i½ � j jth word of partial product for ith iteration

S i½ �00 Least significant bit (0) of word 0 of S[i]

SP i½ � j jth word of partial result for iteration i (requires
right shift)
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Steps 26 and 27 perform carry save addition to get (w + 1) bits carry and w bits
sum. The (+1) bit of carry is used as carry input for next word. The carry and sum are
then added to w bit result with a carry output which forms the carry input for successor
word. The idea of carry save addition and then w bit addition and handling two carry
bits is in [15].

Figure 4 shows the first processing element PE0 for common multiplicand reduc-
tion. Unlike other PEs, it has additional task of quotient calculation. In radix 4 designs
quotient is 2 bits. The two 4:1 MUX take 4 different inputs and the quotient bits select
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the values for PP i½ � j and btj 10ð Þ. The values PP i½ � j and T i� 1½ � j are added by w bit

adder. The adder takes carry input cj and gives output S i½ � j and carry bit cjþ 1. The PEs
from PE1 to PE(m-1) receive the quotient bits. These (m-1) PEs have two 4:1 MUX
and w bit adder. Besides reduction PEs there are accumulation processing elements.
Each accumulation processing element has 4:1 MUX, carry save adder and w bit adder.
It receives 2 bits of multiplier which become selection inputs to the multiplexer to
decide for operands to be added to X and Y.

Figure 5 shows the dependency graph of processing elements of EWBR4CMMM.
The design has 3 m PEs: m PEs for modular reduction of T, m PEs for X accumulation
and m PEs are for Y accumulation. The value of m depends on word size chosen and it
gives us the number of words for P and R. The central PEs: PE0, PE1 and PE2 perform
modular reduction of common multiplicand for words j = 0, 1 and 2 respectively. The
inputs to each jth PE is (nj, twnj, thnj) and (njþ 1

10 , twnjþ 1
10 and thnjþ 1

10 ). Each (j + 1)th PE
receives quotient and carry bit from jth PE. Each jth PE is also dependent on (j + 1)th

PE.
The ACj represents the ADD and CONCATENATE unit. The (j + 1) PE gives

S i� 1½ �jþ 1
32 to ACj. These bits are added with btj and carry bit cjþ 1 received from jth PE

to form two least significant bits for (j + 1)th word which finally form the two most

 cj

0 
n)0

(twn)0

(thn)0

q[i]10                     [ 1]
q[i]10

00101 101101

Quotient
Calculation

4:1
M 
U
X

4:
1 

M
UX 

[ ]

(10)

Ad-
der 

[ ]
+1

Fig. 4. PE0, the first processing element
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Fig. 5. Dependency graph of PE
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significant bits for jth word. The XPE and YPE are accumulating PEs. The XPEj and
YPEj are dependent on central PEs for T i½ � j. The XPE (j + 1) and YPE (j + 1) are
dependent on left neighbours XPEj and YPEj respectively for carry bits. Also, XPEj
and YPEj pass the bit T i½ � jw�1 to right neighbour XPE (j + 1) and YPE (j + 1)

respectively. It is concatenated with left shifted T i½ �jþ 1
w�2��0 to form (T i½ �jþ 1

w�2...0 &
T i½ � jw�1). This value is one of the operands for addition when multiplier bits are 11.
Such ideas for bit transfer have been presented in [15].

5 Comparison and Implementation Results

This section compares the early word based designs with related work in literature.
Design efficiency is determined by two factors: time and area. Cycle count and critical
path delay determine the design time. Cycle count is the number of cycles taken to get
the desired output. Critical path delay is the longest path in design which determines
the cycle time for a design. Table 2 gives the cycle count and critical path delay of
Montgomery modular multiplication. Here k refers to bit length of modulus, m for
number of words and g is for common multiplicand designs.

The EWBR4CMMM is radix 4 design where 2 bit quotient is computed as pre-
sented in [15]. To reduce the path delay in proposed design, basic operations like NOT
of n1, T i� 1½ �1 and T i� 1½ �0 are computed in parallel. The radix 4 design [15] takes
input carry bit and add operands of length (w − 2) and w bit which result in w bit
addition due to propagation of ripple carry. If the worst case is taken during addition it
will generate a carry bit which needs to be handled during two bit feed forward addition
in [15]. This overhead will add to complexity in radix 4 design [15].

Table 3 present the results of Montgomery modular multiplication. Early word
based designs: EWBR2MMM, EWBR2CMMM and EWBR4CMMM are coded in
VHDL and synthesized in Xilinx ISE Design Suite 12.4. The word size chosen in early
word based Montgomery designs is 48 bits (w = 48) because target device resources
DSP48E are used for 48 bit addition. It adds two 48 bit operands with input carry and
gives 48 bit sum with output carry. Our previous work [16] used DSP48E for addition
(carry and sum were added to get binary result). The target device for early word based
radix 2 Montgomery modular multiplication (bit size = 1024) is xc5vlx50t package

Table 2. Time complexity of Montgomery modular multiplication

Design Cycle count Critical path delay

[15] Radix 4 k/2 + k/w + g/2 2:1 MUX + (w − 2) bit Full addition + 2 bit full
addition + 4:1 MUX + 2 AND + 3 OR

(Proposed)
EWBR4CMMM
Radix 4

k/2 + g + m + 1 4:1 MUX + w bit addition + 2 bit addition + 2
OR + 1 NOT + 1 AND
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ff665 speed grade −3. The design has 22 PEs: each PE use DSP48E for addition; and
one DSP48E is used for precomputation. The synthesis results of EWBR2MMM for
1024 bits gives area in terms of 6624 slice registers, 5718 LUTs and 23 DSP48Es. The
frequency is 390.83 MHz and it takes 2.68 ls to complete one 1024 bit modular
multiplication.

EWBR2MMM (bit size = 1024) requires almost one-third DSP48E as compared to
radix 32 Montgomery [19] and fully systolic Montgomery modular multiplication

Table 3. Results of Montgomery modular multiplication

Design Bit
size
(bits)

FPGA
tech/others

w PEs Area Freq
(MHz)

Clock
cycles

T
(ls)

[19] (Radix 32) 1024 XC5VLX110T 32 32 4588 Slices/7932 LUTs
63 DSP48E, 3(1024 bit)
BRAM + 8(256 bit)
BRAM

100 201 2.01

2048 XC5VLX110T 32 32 4588 slices/7932 LUTs
63 DSP48E, 3 (2048 bit)
BRAM + 8(512 bit)
BRAM

100 820 8.2

[20] (Fully
Systolic)

1024 Virtex 5 16 – 11652 slices, 67 DSP48Es 140.028 280 1.99

32 – 11346 slices, 138
DSP48Es

92.649 140 1.51

[20]
(Parallelized)

1024 Virtex 5 16 – 2242 Slices 18 DSP48Es 161.614 712 4.4
32 – 3044 Slices 38 DSP48Es 95.913 356 3.71

[21] (Radix 16) 1024 Xilinx V5 – – 14440 LUT 7826 Flip
Flops
66 Multiplier

120 199 1.6

EWBR2MMM 1024 xc5vlx50t 48 22 6624 Slice Regs, 5718
LUTs
23 DSP48Es

390.83 1051 2.68

2048 xc5vlx155t 48 43 12933 Slice Regs, 12500
LUTs,
44 DSP48Es

388.42 2096 5.38

EWBR2CMMM 1024 xc5vlx155t 48 66 12084 Slice Regs, 8644
LUTs
66 DSP48Es

418.04 1071 2.5

2048 xc5vlx330t 48 129 23591 Slice Regs,16901
Slice LUTs
129 DSP48Es

391.09 2118 5.4

EWBR4CMMM 1024 xc5vlx155t 48 66 12134 Slice regs, 13956
LUTs
66 DSP48Es

357.45 547 1.52

2048 xc5vlx330t 48 129 23781 slice registers,
27284 LUTs
129 DSP48Es

306.08 1081 3.52
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design [20] (word size 16 bits). When compared with fully systolic Montgomery [20]
with word size 32 bits, EWBR2MMM has almost one sixth requirement of DSP48E.
Area requirements of EWBR2MMM (1024 bits) are less compared to radix 32
Montgomery [19], fully systolic design [20] and radix 16 Montgomery [21] at the cost
of more time to complete modular multiplication. But when compared to fully paral-
lelized design [20] (word size 16 and 32 bits), EWBR2MMM takes less time with
similar area requirements.

EWBR2MMM (bit size = 2048) is implemented on target device xc5vlx155t
package ff1136 speed −3. RSA exponentiation (PBME) for 2048 bits require 88
DSP48E. Therefore, the component EWBR2MMM (2048 bits) is also implemented on
xc5vlx155t. The device xc5vlx155t has 128 DSP48E whereas there are only 48
DSP48E available on xc5vlx50t. EWBR2MMM (2048 bits) has 43 PEs and requires
almost double area and time as compared to EWBR2MMM (1024 bits). EWBR2MMM
completes 2048 bit modular multiplication in 5.38 µs whereas radix 32 MMM [19]
takes 8.2 µs which is 1.5 times that of former. Early word based radix 2 and radix 4
common multiplicand Montgomery modular multiplication (EWBR2CMMM and
EWBR4CMMM) for 1024 bits is implemented on xc5vlx155t FPGA package ff1136
speed −3. Both the designs EWBR2CMMM and EWBR4CMMM have 66 PEs: 22 PEs
for reduction, 22 PEs for X accumulation and 22 PEs for Y accumulation. The word
size is 48 bits. Therefore each PE requires 48 bit addition. Hence, total number of
DSP48E used are 66. EWBR2CMMM (1024) takes 2.5 µs and EWBR4CMMM
(1024) takes only 1.52 µs to complete modular multiplication. EWBR4CMMM takes
less time as compared to EWBR2CMMM as number of cycles of former are reduced to
half. EWBR4CMMM takes less time to complete modular multiplication compared to
radix 32 Montgomery [19] and radix 16 Montgomery [21]. Radix 16 Montgomery [21]
requires 66 hardcore multipliers, radix 32 Montgomery [19] requires BRAMS and 63
DSP48E whereas EWBR4CMMM (1024 bits) requires 66 DSP48E. All the above
designs also require additional resources mentioned in Table 3. When compared with
fully systolic design [20], EWBR4CMMM has less area requirements at the cost of
0.01 µs more compared to design [20] with word size 32 bits.

EWBR2CMMM and EWBR4CMMM for 2048 bits are implemented on
xc5vlx330t FPGA package ff1738 speed −2 as the designs require 129 DSP48E. The
area requirements for 2048 bits are almost double the area requirements for 1024 bits.
The time for 2048 bits is slightly more than twice the time for 1024 bits. This is
because the chosen target device xc5vlx330t has speed grade −2. EWBR4CMMM for
2048 bits takes less than half the time taken by 2048 bit MMM [19]. When 2048 bits
EWBR2CMMM is compared with MMM [19] the area requirements of former are
more compared to latter but the latter takes almost 1.5 times the time taken by former to
complete modular multiplication.

Table 4 present the results of RSA exponentiation. The value of e is 65537 and its
binary representation has two bits with binary value 1. RSA parallel and serial binary
exponentiation: PBME and SBME with EWBR2MMM for operand size 1024 bits is
implemented on xc5vlx50t. The frequency of both the designs for 1024 bits is
390.83 MHz but the area requirement of PBME is approximately double that of SBME
due to two Montgomery modular multipliers working in parallel: one computing
modular multiplication and other computing modular squaring. RSA modular
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exponentiation: PBME and SBME for 2048 bits is implemented on xc5vlx155t because
PBME requires 88 DSP48E; for comparison purposes SBME is also implemented on
same target device. The frequency and throughput of PBME and SBME for 1024 and
2048 bits is more compared to the attack resistant exponentiation [22] where modular
squaring and modular multiplication are computed in parallel.

Table 5 presents the time complexity of Montgomery Powering ladder designs. The
number of cycles of MPLCMMM with radix 4 common multiplicand Montgomery
[15] are less than of MPLCMMM with EWBR4CMMM respectively due to sharing of
reduction cycles between modular multiplications which can also be extended to
proposed word based design. MPLCMMM with proposed designs: EWBR2CMMM
and EWBR4CMMM has major operation of common multiplicand modular multipli-
cation with additional 2:1 MUX to decide whether P or R will be common multipli-
cand. This delay has been considered and added to critical path for MPLCMMM in our
work.

Table 4. Results of RSA exponentiation (public exponent e = 65537)

Bit
size

FPGA tech Area Freq
(MHz)/clock
period

Clock
cycles

Throughput
(Mbps)

[22] 1024 xc5vlx50t 7158 slices 274 19494 14.5
PBME
(EWBR2MMM)

1024 xc5vlx50t 19430slice
regs,
13166
LUTs
46
DSP48Es

390.83 17867 22.3

2048 xc5vlx155t 38153 slice
regs
25925
LUTs
88
DSP48Es

387.31 35632 22.26

SBME
(EWBR2MMM)

1024 xc5vlx50t 11806
Slice regs
6787 LUTs
23
DSP48Es

390.83 19969 20.04

2048 xc5vlx155t 23218 slice
regs
13516
LUTs
44
DSP48Es

387.31 39824 19.91
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Table 6 presents the results of Montgomery Powering Ladder. MPL is fault and
simple power attack resistant (FA SPA). MPLCMMM with radix 2 and radix 4 designs:
EWBR2CMMMand EWBR4CMMMare coded in VHDL and synthesized inXilinx ISE
12.4 Design suite. The target device for 1024 bits is xc5vlx155t FPGA package ff1136
speed grade −3. MPLCMMM implemented with radix 2 and radix 4 designs has higher
frequency than their counterparts [15]. Time for 1024 bit exponent cycles for 1024 bit
modular exponentiation requires only 2.6 ms for MPL with radix 2 design and 1.58 ms
with radix 4 design. MPL for 2048 bits is implemented on xc5vlx330t package ff1738
speed grade−2 due to requirement of 129DSP48E.When comparedwith radix 32 design
[19], MPLCMMM with EWBR2CMMM takes less time for 2048 bits. Radix 32 design
[19] takes almost 1.5 times the time taken by MPLCMMM with EWBR4CMMM for
1024 bits and twice of MPLCMMM with EWBR4CMMM for 2048 bits.

Table 5. Time complexity of Montgomery Powering Ladder

Critical path delay Clock cycles

[15] Radix 4 Twbit FA + TMUX 2:1+
TMUX 4:1 + 2 TAND + 3 TOR

k
(k/2 + k/w + g/2)

MPLCMMM
(EWBR4CMMM)

2:1 MUX + 4:1 MUX + w bit addition + 2 bit
addition + 2 OR + 1 NOT + 1 AND

(k + 2)
(k/2 + g + m + 1)

Table 6. Results of Montgomery Powering Ladder (MPL)

MPL design Bit
size

FPGA tech Area Freq
(MHz)

Clock
cycles

Time
(ms)

FA SPA
resistance

[15] Radix 2 1024 XC5VLX50T 3218 Slices 345 1097870 3.18 Yes
[15] Radix 4 1024 XC5VLX50T 5225 Slices 290 566431 1.95 Yes
[19] Radix 32 1024 XC5VLX110T – 100 198656 2.5 Yes

2048 XC5VLX110T – 100 1679360 16.793 Yes
MPLCMMM
(EWBR2CMMM)

1024 xc5vlx155t 17245 Slice
Regs
11101 LUTs
66 DSP48Es

405.3 1098846 2.6 Yes

2048 xc5vlx330t 33990 Slice
Regs
21960 slice
LUTs
129
DSP48Es

379.56 4341900 11.439 Yes

MPL CMMM
(EWBR4CMMM)

1024 xc5vlx155t 18283 Slice
Regs
16428 LUTs
66 DSP48Es

354.4 561222 1.58 Yes

2048 xc5vlx330t 35987 slice
regs
32554 slice
LUTs
129
DSP48Es

300.91 2216050 7.36 Yes
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6 Conclusion

This paper presented RSA implementation on FPGAs with early word based radix 2
and radix 4 designs. The early word based approach is simple and requires basic
operations to compute most significant bit in word based architectures. The word size
chosen was 48 bits due to DSP48Es which adds 48 bits and operates at high frequency.
Addition is the critical operation in word based Montgomery designs and it determines
the cycle time of Montgomery design. The use of DSP48Es for addition and early word
based approach for bit determination has improved the performance of word based
Montgomery and RSA on FPGAs.
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