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Abstract. Service composition is a convincing approach for rapidly
constructing large-scale distributed applications in public clouds. With
the rapid increase of the composite service requests from many concur-
rent clients in public clouds, it is critical to perform quality of service
(QoS) aware cloud computing service composition (CCSC) efficiently.
To address this issue, many approaches have been proposed. However, it
remains a key challenge to improve the throughput and the solution qual-
ity of a CCSC solver. In this paper, we propose a novel algorithm, namely
evolutionary multitasking algorithm for CCSC problem (EMA-CCSC),
based on the evolutionary multitasking algorithm. Unlike existing CCSC
solvers which have to pool the composite service requests in the waiting
queue first and then solve them once a time, the proposed EMA-CCSC
is able to optimize two CCSC tasks concurrently. As a result, it can
deal with more requests at a fixed period of time. Based on the QWS
data set including 2507 real Web services, experiments have been con-
ducted by solving a sequence of 1188 randomly generated CCSC tasks
with different sizes and structures. The results indicate that EMA-CCSC
outperforms 7 out of 9 compared algorithms with different characteris-
tics, even though it spends only half of their computing costs. We can
draw the conclusion from the extensive experiments that the EMA-CCSC
approach is competitive in both solution quality and time efficiency.
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1 Introduction

Service composition has been adopted as a standard computing paradigm for
rapidly constructing large-scale distributed applications within and across orga-
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nizational boundaries. Many modern enterprises have chosen to construct flexi-
ble applications by dynamically composing atomic services of wide variety and
different quality of service (QoS) attributes.

Recently, with the bloom of cloud computing, the importance of affordable
access to reliable high-performance hardware and software resources and avoid-
ing maintenance costs has encouraged many decision makers to migrate enter-
prise applications partially or entirely from traditional distributed computing
platforms (e.g., grid) to clouds.

Fast development in the utilization of cloud computing leads to publishing
more cloud services on the worldwide service pool. Because of the prevalent
presence of complex and diverse applications, it is essential to have a group of
simple services that work with each other to meet the practical requirements for
real-world cases. Therefore, there is a strong need to deploy a service composition
system in cloud computing [14].

Figure 1 gives a system architecture for modeling and executing composite
service in a public cloud. At design phase the provider of the composite service
defines the set of required atomic services and their relations using a workflow-
like language such as WS-BPEL1 or YAWL2 to fulfill the business goal. After
that, service discovery is performed by exploiting the existing computing infras-
tructure (e.g. UDDI) to locate available atomic services for each task in the
workflow. As a result, a collection of functionally equivalent atomic services
(referred to as candidate services) is obtained for each task.
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Fig. 1. Architecture of a cloud computing service composition system

At runtime phase, QoS-aware service selection is performed upon service
request in order to select a set of appropriate atomic services from collections of
candidate services such that the aggregated QoS values satisfy the client’s QoS
requirements.

As shown in Fig. 1, there are lots of similar services that are located in differ-
ent places, implemented by different service providers, and have distinct values
in terms of the QoS parameters. Therefore, the cloud computing service composi-
tion (CCSC) problem [14], i.e. selecting appropriate and optimal atomic services
1 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
2 http://www.yawlfoundation.org/.
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to be combined together to provide composite services such that the obtained
complex composite service satisfies both the functional and QoS requirements
based on the end-user requirements, is one of the most important problems in
providing cloud services. A substantial effort has been made to solve this prob-
lem, with a lot of research works produced.

More importantly, the open and shared natures of cloud computing bring a
brand new challenge to the service composition system: it must has the ability to
handle a lot of diverse requests from many concurrent clients. More concretely,
users will look up and invoke their desired composite services independently,
these requests are then received, queued, and processed by the service composi-
tion system. Since the response time is one of the most important QoS indicators
for invoking composite services from the clients’ perspective, an efficient selec-
tion algorithm with high-throughput, i.e. the algorithm that can handle with
more requests within a fixed period of time, is critical for a service composition
system to fulfill the performance requirements.

To deal with numbers of requests, administrators of service composition
systems typically apply some simple and ad hoc dispatching algorithms, such
as packing, striping, load-balance etc., to distribute these requests to different
solvers. These solvers select appropriate atomic services for their own dispatched
composite services from the global service pool independently. Although this
approach has some advantages in terms of simplicity and scalability, it suffers
from the bad performance and totally overlooks the possible similarities and con-
nections among a bunch of requests, which have been proven to be very useful
to improve the performance of algorithms and the quality of solutions according
to our experiments. Such observation motivates us to solve multiple CCSC tasks
simultaneously by using a unique optimizer in a single run.

Multifactorial optimization (MFO) is a newly developed algorithmic
paradigm in the field of optimization and evolutionary computation. Instead
of solving a pool of similar optimization problems singly, it handles multiple
optimization problems at the same time by using a shared evolving population
[13]. Due to the perfect match between the MFO paradigm and the CCSC prob-
lem, we propose an evolutionary multitasking algorithm (EMA) in this paper to
solve CCSC problem, in which we aim to test the feasibility of the simultaneous
optimizations of multiple CCSC tasks. The main contributions of this paper thus
can be summarized as follows:

1. We propose a novel CCSC solver named CCSC-EMA based on the evolu-
tionary multitasking algorithm, and explain its detailed process including the
representation of solutions, quality assignment, reproducing and selection of
new solutions.

2. We design new experimental and analytical methodologies to make compar-
isons between evolutionary multitasking algorithm and conventional single
objective CCSC solvers.
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2 Related Work

2.1 Evolutionary Multitasking Algorithm and Its Application

Evolutionary multitasking algorithm (EMA) is a new optimization paradigm
proposed recently by Ong [19]. In contrast to traditional evolutionary opti-
mization approaches, which focus on solving only a single optimization prob-
lem at a time, EMA was proposed to solve multiple optimization problems
simultaneously. Ong and Gupta [20] presented a simple evolutionary method-
ology capable of cross-domain multitask optimization in a unified genotype
space, and show that there exist many potential benefits of its application
in practical domains. Zhou et al. [38] proposed a permutation-based EMA to
improve the multi-tasking performance in the context of vehicle routing problem.
Gupta et al. [13] developed a cross-domain optimization platform that allows one
to solve diverse problems concurrently. Gupta et al. [12] showed that the practi-
cality of population-based bi-level optimization can be considerably enhanced
by simply incorporating the novel concept of evolutionary multitasking into
the search process. Yuan et al. [33] focused on the evolutionary multitasking
of PCOPs. Four kinds of well-known PCOPs, i.e., TSP, QAP, LOP and JSP are
considered. Da et al. [7] suggested to solve a target single-objective optimization
(SOO) task in conjunction with a closely related (but artificially generated) mul-
tiobjective optimization (MOO) task in the form of evolutionary multitasking.
Sagarna and Ong [22] focused on branch testing and explore the capability of
EMA to guide the search by exploiting inter-branch information.

2.2 Algorithms for CCSC Problem

Service composition techniques were first applied in cloud computing systems by
Kofler et al. [17] and Zeng et al. [34] in 2009 [14]. The CCSC problem is often
defined as an instance of the classic multiple-choice multidimensional knapsack
problem (MMKP) [32] which searches for the composition that has the best
composite QoS values when satisfying QoS constraints of atomic services. Such
problem is NP-hard [16] and usually includes numerous constraints, on which
the exact approaches can not perform well when large amounts of services are
involved. Zeng et al. [34] presented a matching algorithm that considers the
semantic similarity of multiple input and output parameters based on Word-
Net in the process of service matching. Cui et al. [6] proposed a service graph
constructing algorithm to transform the CCSC problem into the optimal path
finding problem in graph. Torkashvan and Haghighi [28] proposed a greedy app-
roach to solve the CCSC problem by mapping workflows to composed services
considering all flow structures. Zhang et al. [37] proposed a cluster-based DSP
scheduling problem algorithm for service composition in multi-domain environ-
ment with time constraint. Wang et al. [29] presented a graph model that takes
both QoS of Web services and QoS of network into consideration. Ba [3] pro-
posed the automation of service composition that takes the abstract specifica-
tion of a composition and the definition of concrete services. Syu et al. [26]
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proposed an automatic composition approach through genetic algorithm (GA)
to satisfy user’s functional requirements, QoS criteria and transactional require-
ments automatically. Guidara et al. [11] presented a heuristic based time-aware
service selection approach to select a close-to-optimal combination of services.
Deng et al. [9] utilizes a constraints based service filtering process to reduce the
searching space and adopts a differential evolutionary based algorithm to form
a service combination. Rodriguez-Mier et al. [21] presented an A* algorithm
which solves the problem of semantic input-output message structure match-
ing for service composition. Mabrouk et al. [18] presented QASSA, a service
selection algorithm that provides the appropriate ground for QoS-aware service
composition in ubiquitous environments.

According to our previous investigation, one of the most important issues
in CCSC problem is how to improve the throughput of the optimizers, because
there are often a large number of independent composite service requests in
public clouds. This observation motivates us to explore the possibilities and
solutions of optimizing multiple CCSC tasks concurrently.

3 Problem Definition

3.1 Quality Criteria of an Atomic Service

There are lots of services available in public clouds, some have distinct func-
tions while others have similar functions. Services having similar capabilities are
distinguishable via their QoS values. QoS defines the overall performance of a
service, the QoS values of a service indicate whether it is reliable, available, or
efficient.

Services are usually advertised with multiple QoS values, each value repre-
sents a quality aspect of the service called a QoS criterion. QoS criteria are gener-
ally the most commonly used characteristics in measuring the quality of services,
this is because they indicate whether a service is capable of measuring up to
user’s expectations [24]. Based on Web service benchmark [1,2] and previous
studies [23,24], we identify six generic quality criteria [4], namely price(qp(s)),
duration(qd(s)), availability(qa(s)), throughput(qt(s)), successful rate(qs(s)), and
reliability(qr(s)), for an atomic service s in this paper.

3.2 Structures of a Composite Service

A composite service cs can be modeled as a directed acyclic graph (DAG) cs =
(S,E), where vertices S = {s1, s2, ..., sn} represent a set of atomic services and
s1, sn represent the starting and ending services respectively. The dependency
between a pair of adjacent services si, sj is denoted by a directed edge eij ∈ E
between them.

To construct a composite service, atomic services need to be connected by dif-
ferent structures. In this paper, we consider four service composition structures:
Sequence, Concurrency, Condition and Loop. For more details, see [4].
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3.3 Service Selection

Given a composite service cs containing n atomic services S = {s1, s2, · · · , sn},
we must select a candidate for each si ∈ S from a candidate service set to
implement si. A candidate service set is the collection of atomic services having
the same functionality but different QoS properties. The typical process of service
selection for a composite service having three atomic services can be illustrated
by Fig. 2. Note that we may choose candidates from the same candidate service
set for different atomic services if they have the same function.
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Fig. 2. Service selection for a composite service

Generally, let a composite service cs = (S,E) has m candidate service sets
C = {C1, C2, · · · , Cm}, and for any Cj ∈ C, it contains a set of k candidate
services Cj = {cj1, c

j
2, · · · cjk}. We first define a function M(si) : S → C to map

each atomic service si ∈ S to its corresponding candidate service set Cj ∈ C, i.e.
M(si) = Cj . Note that because the mapping between an atomic service to its
corresponding candidate service set is often determined manually by the designer
of a composite service, we assume M(·) is given in this paper. Last, we define
a matrix x = [xi,j ]|S|× n

max
k=1

(|M(sk)|) to represent the service selection scheme for

each atomic service in S, where x has |S| rows and
|S|

max
k=1

(|M(sk)|) columns, and

the max function is applied to make the alignment on the columns of x. For
example, suppose we choose the candidate service cjk ∈ Cj to implement an
atomic service si ∈ S, then xi,k = 1.

3.4 Execution of a Composite Service

As shown in Fig. 2, once we finish selecting the candidate for each atomic service
in a composite service cs, we can generate an execution plan for cs. Given the
execution plan, cs becomes executable and its QoS properties can be calculated
by aggregating QoS properties of its component candidates. The detailed aggre-
gation rules for four structures and six different QoS properties adopted in this
work have been discussed in [4].
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To represent the preference for QoS properties of different users, we define
a utility function F(cs,x) for a composite service cs by a weighted sum of six
quality criteria:

F(cs,x) = α1 · −Qp(cs,x) + α2 · −Qd(cs,x)
+α3 · Qa(cs,x) + α4 · Qt(cs,x)
+α5 · Qs(cs,x) + α6 · Qr(cs,x)

where αi (0 < αi < 1) is the weight for each QoS property and
∑6

i=1 αi = 1, x
denotes the service selection scheme for cs, and we have:

Q∗(cs,x) = aggr
si∈S∧xi,j=1

q∗(cij),

the function Q∗(·) calculates the six QoS values of cs by aggregating correspond-
ing QoS values of all candidates selected for its atomic services [4].

3.5 Problem Formulation

Given a set of composite service CS = {cs1, cs2, · · · , csn}, the cloud computing
service composition (CCSC) problem is to select service candidates from a group
of candidate service sets to construct the execution plan for each csi = (Si, Ei) ∈
CS, so that it can maximize the total QoS gain of CS.

Mathematically, the CCSC problem can be formulated as follows:

Maximize
∑

csi∈CS

F(csi,x(i)) (1)

Subject to

x(i) = [x(i)
j,k]|Si|×

|Si|
max
l=1

(|M(sl)|)
(2)

|Si|
max
l=1

(|M(sl)|)
∑

k=1

x
(i)
j,k = 1,

j = 1, 2, ..., |Si|, x
(i)
j,k ∈ {0, 1} (3)

where Eq. (1) states that the goal of the CCSC problem is to maximize the sum
of utility function F for each composite service csi ∈ CS. Equation (2) defines
the service selection scheme, i.e. x(i), for csi, which has been explained before.
Equation (3) ensures that there is one and only one candidate can be selected
for each atomic service in the csi.

According the definition, the CCSC problem aims to maximize the total QoS
values of a set of composite services instead of a single composite service. The
latter one is usually known as the classic QoS-aware service composition (QoS-
SC) problem and has been well studied in previous work. Because [27] has proven
that the QoS-SC is a NP-hard problem, our CCSC problem, consisting of a set
of QoS-SC problems, is also considered to be NP-hard.
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4 Evolutionary Multitasking Algorithm for CCSC
Problem

Given an instance of CCSC problem consisting of n composite services, a con-
ventional service composition system considers it as n independent optimization
tasks (i.e. CCSC tasks), and focuses on solving only a single task at a time
using a optimizer. In this paper, we propose a novel method, namely evolution-
ary multitasking algorithm for CCSC (EMA-CCSC), that considers two CCSC
tasks at the same as suggested in [13]. The key motivation is to use evolutionary
multitasking algorithm (EMA) for implicit knowledge transfer of useful traits
across two optimization tasks, thereby enhancing the evolutionary search for
problem-solving [38]. We first introduce some related terms, and then discuss
the EMA-CCSC in detail.

Factorial Cost: For a given CCSC task Tj(j = 1, 2) and a solution xi in the
evolving population of EMA, the factorial cost of xi, denoted by Ψ i

j , is defined
as the QoS value of xi with respect to Tj .

Factorial Rank: The factorial rank of xi on task Tj , denoted by rij , refers to
the index of xi in the list of populations sorted in ascending order with respect
to Ψ i

j .
Scalar Fitness: Given the list of factorial ranks {ri1, r

i
2} of the solution xi,

its scalar fitness ϕi can be defined as ϕi = 1/min{ri1, r
i
2}.

Skill Factor: The skill factor τi of the solution xi is one of the two CCSC
tasks on which xi achieves the best QoS value.

With these definitions above, the proposed EMA-CCSC shown in Algorithm
1 chooses two of the remainder CCSC tasks (randomly or with a certain pattern)
at each run and works as follows.

Algorithm 1. The proposed EMA-CCSC
1: {x1, · · · ,xN} ← InitPopulation(N);
2: {ϕi

i, τi} ← Evaluation(xi);
3: while the stopping criteria is not satisfied do
4: {y1, · · · ,yN} ← Reproduction({x1, · · · ,xN});
5: {ϕi

i, τi} ← SelectiveEvaluation(yi)
6: P ← {x1, · · · ,xN} ∪ {y1, · · · ,yN};
7: {x1, · · · ,xN} ← Selection(P );
8: end while
9: Output {x1, · · · ,xN}.

In the above pseudo-code of the EMA-CCSC algorithm, line 1 initializes a
population of N individuals at random. Suppose that the two composite services
cs1 and cs2 contain n1 and n2 atomic services respectively, then every single indi-
vidual xi = {xi

1, ..., x
i
n} in the initial population is a n-dimensional real vector,

where n = max{n1, n2}. Each dimension of xi, denoted by xi
j(j = 1, 2, ..., n), is

a real value between 0 and 1. If the j-th atomic service sj can be selected from
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a candidate collection M(si) = {c1, c2...ck} with k available services, then the
r-th candidate service will be chosen to execute, where r can be determined by
�k × xi

j�.
Line 2 of Algorithm 1 evaluates the individuals in the initial population

by calculating their factorial costs, determining their factorial ranks, assigning
their scalar finesses ϕi

i and skill factor τi in sequence. Figure 3 illustrates this
evaluation process with two tasks T1 and T2 and four individuals p1–p4. The
algorithm calculates the factorial rank and skill factors for these individuals first,
and then sets the value of factorial cost as “infinity” to the task that doesn’t
have skill factor for each individual.
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Fig. 3. Evaluate individuals by calculating their factorial costs

The reproduction step in line 4 of Algorithm 1 generates a offspring pop-
ulation of {y1, · · · ,yN} according to the assortative mating rules provided in
Algorithm 2. In which, rand is a random number between 0 and 1, rmp is a pre-
scribed random mating probability. Here we employ the single-point crossover
in line 4 and the random mutation with mutation rate of 1/n in lines 6 and 7 in
Algorithm 2.

Algorithm 2. Assortative mating
1: Consider two parent candidates pa and pb randomly selected from {x1, · · · ,xN}.
2: rand ← Rand(0, 1);
3: if τa == τb or rand < rmp then
4: {ca, cb} ← Crossover(pa, pb);
5: else
6: ca ← Mutation(pa);
7: cb ← Mutation(pb);
8: end if

In the selective evaluation step in line 5 of Algorithm 1, the offspring individu-
als are evaluated for only one selected task on which it is most likely to perform
well. The selective evaluation step works as Algorithm 3. Figure 4 shows the
reproduction and selective evaluation steps of T1 and T2 and their four individ-
uals p1–p4, in which the algorithm performs random mutation on p1 and p4 and
generates c1 and c4 respectively, and applies crossover operation on p2 and p3
and produces c2 and c3 separately.
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Algorithm 3. Selective evaluation
1: For each offspring c ∈ {y1, · · · ,yN}, it will either have two parents (pa and pb) or

a single parent (pa or pb) - see Algorithm 2.
2: if c has two parents then
3: rand ← Rand(0, 1);
4: if rand < 0.5 then
5: c is evaluated only for task τa (c imitates pa);
6: else
7: c is evaluated only for task τb (c imitates pb);
8: end if
9: else

10: c is evaluated only for that task which is its parent’s skill factor (c imitates its
single parent);

11: end if
12: Factorial costs of c with respect to all unevaluated tasks are artificially set to a

very large number.

The selection step in line 7 of Algorithm 1 selects N individuals from the
union set of the parent population of {x1, · · · ,xN} and the offspring population
of {y1, · · · ,yN}, giving rise to a new evolving population for the next generation.
The selection step in Algorithm 1 follows an elitist strategy which ensures that
the best individuals survive through the generations. Figure 5 illustrates the
selection process with p1–p4 and their four offsprings c1–c4.
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5 Experiments

5.1 Experiment Setup

All experiments are conducted on a Lenovo ThinkServer RD530 server equipped
with 2 Xeon E5-2609 CPUs, 1 TB disk and 6 * 16 G RAMs, running on Windows
Server 2008.

A sequence of 1188 CCSC tasks with various atomic service numbers from 10
to 100 are investigated [4]. These CCSC tasks are generated by using a synthetic
workflow generator developed in [15]. The collection of candidate services are
provided by an updated QWS data set [1,2] in which 2507 Web services with
233 categories are available.

5.2 Compared Algorithms and Control Parameters

Nine traditional CCSC solvers with different types are employed as the baseline
algorithms. They are the genetic algorithms (GAs) including TGA [30], GAHS
[31] and GASA [31], the particle swarm optimization (PSO) algorithms including
ConstrictionPSO [5], FrankensteingPSO [10] and OLPSO [35], and the differen-
tial evolution (DE) algorithms including DE [25], DEGL [8] and JADE [36].

The parameter setting of the proposed EMA-CCSC algorithm are as follows.
The population size is set to 30, which is the same in all the compared algorithms.
The crossover probability and mutation probability are set to 0.3 and 1/n (n
is the number of atomic services in the target CCSC) respectively. Except for
the population size, all the other parameter settings are exactly the same as
suggested by their authors. All the runs of the compared algorithms stop after
1000 iterations. When applying the EMA-CCSC algorithm, two CCSC tasks
with the same number of atomic services are selected from the waiting queue,
and submitted to the EMA-CCSC algorithm for scheduling.

5.3 Results and Comparison

Figures 6, 7 and 8 compared the performance of the baseline algorithms of GAs,
PSOs and DEs respectively. In these figures, the symbol “++” indicates that
EMA-CCSC improves the QoS values of both the two target CCSC tasks by opti-
mizing them simultaneously, comparing with the performances of the compared
algorithms which optimize them successively. In the pie charts, The symbol “+=”
means one is improved while the other is unchanged. “==” means both the two
instances are unchanged. “+−” is for one improved one degenerated. “−=” is for
one degenerated one unchanged. “−−” means both the two are degenerated. The
bar charts in these figures illustrate the average rate of improvement achieved
by the proposed EMA-CCSC algorithm versus the compared algorithms on all
the investigated CCSC tasks. All the experimental results in these figures are
statistic values of five independent runs of the compared algorithms.

As shown in Fig. 6, when comparing with GAHS, GASA and TGA, EMA-
CCSC achieves “++” on 89.90%, 80.14% and 32.83% of the investigated CCSC
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tasks. On the other hand, EMA-CCSC achieves “−−” and thus degenerates the
performances on both the two target CCSC tasks only on 0.17%, 0.84% and
14.65% of the investigated CCSC tasks. When looking at the bar charts, EMA-
CCSC improves the QoS values of CCSC tasks on 1127, 1065 and 660 out of 1188
tasks respectively. As a result, EMA-CCSC achieves average rate of improvement
of 36.6675%, 18.4813% and −1.7650% respectively versus GAHS, GASA and
TGA. Based on the total improvement rate, we can come to the conclusion that
EMA-CCSC achieves better performances than GAHS and GASA with only half
of their computing costs.
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Fig. 6. Comparisons between EMA-CCSC and GAs

Similar conclusions can be drawn from Figs. 7 and 8 on the PSOs and DEs
baseline algorithms. It can be seen that EMA-CCSC significantly outperforms
the PSOs and achieves “++” on up to 92.76%, 90.74% and 88.55% of the inves-
tigated CCSC tasks. When comparing with the DEs baseline algorithms, EMA-
CCSC outperforms two out of the three compared DEs algorithms in term of
the total improvement rate.

 
  

Fig. 7. Comparisons between EMA-CCSC and PSOs
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Fig. 8. Comparisons between EMA-CCSC and DEs

To conclude, our EMA-CCSC outperforms 7 out of 9 compared algorithms
in term of the total improvement rate. It appears to be competitive against the
baseline algorithms, even though it spends only half of their computing costs.

6 Conclusion

In this paper, we present an evolutionary multitasking algorithm based approach
to efficiently solve CCSC problem. Unlike existing solvers, our EMA-CCSC algo-
rithm can optimize two or more CCSC tasks concurrently. As a result, it has
a greater throughput and is able to deal with more composite service requests
given a fixed period of time, which is critical to improve the experiences of the
cloud computing services. Our extensive experiments indicate that the proposed
EMA-CCSC is competitive in both solution quality and time efficiency.
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12. Gupta, A., Mańdziuk, J., Ong, Y.S.: Evolutionary multitasking in bi-level opti-
mization. Complex Intell. Syst. 1(1–4), 83–95 (2015)

13. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary mul-
titasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

14. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a
systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2014)

15. Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Char-
acterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3),
682–692 (2013)

16. Kellerer, H., Pferschy, U., Pisinger, D.: Introduction to NP-completeness of knap-
sack problems. In: Knapsack Problems, pp. 483–493. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24777-7 16

17. Kofler, K., ul Haq, I., Schikuta, E.: A parallel branch and bound algorithm for
workflow QoS optimization. In: 2009 International Conference on Parallel Process-
ing, pp. 478–485. IEEE (2009)

18. Mabrouk, N.B., Georgantas, N., Issarny, V.: Set-based bi-level optimisation for
QoS-aware service composition in ubiquitous environments. In: 2015 IEEE Inter-
national Conference on Web Services (ICWS), pp. 25–32. IEEE (2015)

19. Ong, Y.S.: Towards evolutionary multitasking: a new paradigm. In: Proceedings
of the Sixth International Symposium on Information and Communication Tech-
nology, p. 2. ACM (2015)

20. Ong, Y.S., Gupta, A.: Evolutionary multitasking: a computer science view of cog-
nitive multitasking. Cogn. Comput. 8(2), 125–142 (2016)

21. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Automatic web service composition
with a heuristic-based search algorithm. In: 2011 IEEE International Conference
on Web Services (ICWS), pp. 81–88. IEEE (2011)

22. Sagarna, R., Ong, Y.S.: Concurrently searching branches in software tests genera-
tion through multitask evolution. In: 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 1–8. IEEE (2016)

23. Shehu, U., Epiphaniou, G., Safdar, G.A.: A survey of QoS-aware web service com-
position techniques. Int. J. Comput. Appl. 89(12), 10–17 (2014)

24. Shi, Y., Chen, X.: A survey on QoS-aware web service composition. In: Third Inter-
national Conference on Multimedia Information Networking and Security, Shang-
hai, China, 4–6 November 2011, pp. 283–287. IEEE Computer Society, Washington,
DC (2011)

https://doi.org/10.1007/978-3-540-24777-7_16


144 L. Bao et al.

25. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

26. Syu, Y., FanJiang, Y.Y., Kuo, J.Y., Ma, S.P.: Towards a genetic algorithm app-
roach to automating workflow composition for web services with transactional and
QoS-awareness. In: 2011 IEEE World Congress on Services, pp. 295–302. IEEE
(2011)

27. Tao, F., Zhao, D., Hu, Y., Zhou, Z.: Resource service composition and its optimal-
selection based on particle swarm optimization in manufacturing grid system. IEEE
Trans. Industr. Inf. 4(4), 315–327 (2008)

28. Torkashvan, M., Haghighi, H.: A greedy approach for service composition. In: 2012
Sixth International Symposium on Telecommunications (IST), pp. 929–935. IEEE
(2012)

29. Wang, D., Yang, Y., Mi, Z.: Qos-based and network-aware web service composition
across cloud datacenters. TIIS 9(3), 971–989 (2015)

30. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
31. Yilmaz, A.E., Karagoz, P.: Improved genetic algorithm based approach for QoS

aware web service composition. In: IEEE International Conference on Web Ser-
vices, Alaska, USA, 6–7 November 2014, pp. 463–470. IEEE Computer Society,
Washington, DC (2014)

32. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Trans. Web (TWEB) 1(1), 6 (2007)

33. Yuan, Y., Ong, Y.S., Gupta, A., Tan, P.S., Xu, H.: Evolutionary multitasking
in permutation-based combinatorial optimization problems: realization with TSP,
QAP, LOP, and JSP. In: 2016 IEEE Region 10 Conference (TENCON), pp. 3157–
3164. IEEE (2016)

34. Zeng, C., Guo, X., Ou, W., Han, D.: Cloud computing service composition and
search based on semantic. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom
2009. LNCS, vol. 5931, pp. 290–300. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10665-1 26

35. Zhan, Z.H., Zhang, J., Li, Y., Shi, Y.H.: Orthogonal learning particle swarm opti-
mization. IEEE Trans. Evol. Comput. 15(6), 832–847 (2011)

36. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional
external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

37. Zhang, T., Ma, J., Sun, C., Li, Q., Xi, N.: Service composition in multi-domain
environment under time constraint. In: 2013 IEEE 20th International Conference
on Web Services (ICWS), pp. 227–234. IEEE (2013)

38. Zhou, L., Feng, L., Zhong, J., Ong, Y.S., Zhu, Z., Sha, E.: Evolutionary multi-
tasking in combinatorial search spaces: a case study in capacitated vehicle routing
problem. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 1–8. IEEE (2016)

https://doi.org/10.1007/978-3-642-10665-1_26
https://doi.org/10.1007/978-3-642-10665-1_26

	An Evolutionary Multitasking Algorithm for Cloud Computing Service Composition
	1 Introduction
	2 Related Work
	2.1 Evolutionary Multitasking Algorithm and Its Application
	2.2 Algorithms for CCSC Problem

	3 Problem Definition
	3.1 Quality Criteria of an Atomic Service
	3.2 Structures of a Composite Service
	3.3 Service Selection
	3.4 Execution of a Composite Service
	3.5 Problem Formulation

	4 Evolutionary Multitasking Algorithm for CCSC Problem
	5 Experiments
	5.1 Experiment Setup
	5.2 Compared Algorithms and Control Parameters
	5.3 Results and Comparison

	6 Conclusion
	References




