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Abstract. The use of deep learning algorithms, as a core element of
artificial intelligence, has attracted increased attention from industrial
and academic institutes recently. One important use of deep learning is
to predict the next user action inside an intelligent home environment
that is based on Internet of Things (IoT). Recent researcher discusses
the benefit of using deep learning based on different datasets to assist
their result. However, assuring the best performance to satisfy real-time
applications leads us to use a real-world dataset to make sure that the
designed system meets the requirements of real-time applications. This
paper uses the MavPad dataset which was gathered from distributed
sensors and actuators in a real-world environment. The authors use sim-
ulation to investigate the performance of a multilayer neural network
that predicts future human actions. The authors also present a hardware
implementation of the deep learning model on an FPGA. The results
showed that the hardware implementation demonstrated similar accu-
racy with significantly improved performance compared to the software-
based implementation due to the exploitation of parallel computing and
using optimization techniques to map the designed system into the target
device. Additionally, our implementation of FPGA-based neural network
system supports its future utilization for other applications.
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1 Introduction

Recently, design and implementation of a smart home environment as funda-
mental elements of smart cities under the principles of IoT network have been
obtained a lot of attention for both academic circles and industry world. L.C.D.
Silva et al. [3] define smart homes as a “home-like environment that possesses
ambient intelligence and automatic control”. The definition indicates that the
automated design has a complex and intelligent operating system which may use
to do on behalf of its users [4].

In addition to the ability to manage the environment using an intelligent
system approach, such system should accurately predict the needs of the human
occupants, since the people in their nature try to delegate most of their needs to
an automation system. The prediction process produced after in-depth study-
ing of the sequence of interaction events between a user and the surrounded
environment. The data provided from distributed sensors and actuators in the
environment must be collected, filtered, managed to construct the hypotheses
and finally generate the model of prediction. Generating the prediction model
implies the use of an Artificial Intelligence (AI) technique or Machine Learning
Algorithms (MLAs) such as Neural Network, Deep Learning, Support Vector
Machine, etc.

It is important to mention that in such applications, the generated model to
predict the next user action inside a smart home is entirely different from other
models regarding the limited time constraint in a real-time application. In some
applications, a 1 s delay could produce a severe problem [8] or even 500 ms as
a maximum delay [10]. In other words, the prediction system of a smart home
system should be interactive, robust, dynamic, and fast enough to predict the
next user action in real-time domain. Therefore, the authors, as shown in Sect. 4,
discuss the implementation not only by using Matlab simulation software but
also by implementing the experiment on an embedded FPGA hardware kit to
assure that our designed system will operate actively under the constraint of a
real-time response in a real-world environment. The following paragraph presents
different approaches that have been represented by various researchers.

Some of the recent research describes an environment as a smart due to
using a smartphone or some remote controlling and monitoring system as in
[2,9,12,13]. Other researchers try to enhance such a system design through the
use of intelligence exhibited by machine. In other words, they use a more com-
plex architectural model that has a business platform [5]. Other researchers
use a cloud-based architecture design for IoT framework which makes the sys-
tem incapable of remote access, dynamic monitoring, and real-time management
with dynamic response [7,11].

This paper presents a new architecture design for a smart home system
that tries to connect all the nodes (sensors & actuators) inside home environ-
ment through the use of an intelligent agent (IA). The IA locally manage all
the events and status of the entire environment based on real-time application
principles. Besides, the paper presents a performance analysis for the prediction
model via the comparison between Software and Hardware Implementation. The
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comparison is an essential process to assure a real-time response not only in S.W.
implementation experiment but also in a real hardware implementation exper-
iment when the configured system predicts the needs of human occupants in a
real-time basis.

The remainder of this paper is organized as follows. Section 2 lists the pro-
posed architectural design of the smart home environment and explain the pre-
diction process using artificial neural network approach that is used in our
experiments. Section 4 presents our experiments results using the MavPad
dataset. Section 5 discusses the results and highlights the differences due to using
software and hardware implementation approaches. In Sect. 6, we sum up our
conclusions.

2 Our Proposed Design Approach

Our proposed system as shown in Fig. 1, tries to enhance the design of the smart
home domain by introducing a new method which implies the use of a smart
agent for each subsystem. Also, it uses a fog computing agent (Storage Agent)
which synchronized to cloud computing environment. The cloud system adds
some extra services represented by an essential backup database system for the
row of data, information, rules, and hypotheses which generated by the designed
system. Also, the cloud enriches the BUTLER with a variety of advanced busi-
ness analysis and insight services capabilities, ending with the central Intelligent
Agent (IA), which connects all the components in our architectural design in
one unique design approach, that we call the “BUTLER”. The idea behind this
design is to present a synergistic approach of a personal assistant in the home.

2.1 Architecture Design

Beginning from the lower layers in our design, we can find that there are eight
subsystems which interface the same kind of sensors/Actuators (nodes) type.
Each subsystem has been connected the central IA via a dedicated agent. The
agent plays an essential role in communication with subsystem and IA, filtering
of input data and event, and security for communication. The most important
part of the presented design is the local IA which responsible for several things
as follows:

– Stakeholder interface
– Communication with IA/subsystems
– Learning stakeholder’s behavior patterns
– Implementing the predicted actions
– Security and monitoring subsystem
– Storage of data from long-term and short-term activities

In this design, we would like to concentrate on presenting prediction system
that depends on local computations which manipulated by the local IA. The key
point here is to show that, such a system should locally monitored, controlled,
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Fig. 1. The proposed architecture design of smart home system

and managed all nodes inside a home environment to predict the next stakeholder
actions without the need of an external cloud-based computing system. Cloud
system, as presented in recent researches, has many concerns related to its using
in real-time application systems. Besides that, we would like to show where the
middle-ware is located inside the architecture and how the prediction will take
place locally to overcome the mentioned issue as discussed in the next paragraph.

2.2 Prediction Using Automatic Mode of Operation and Machine
Learning Algorithms

Beginning with predefined variables and rules which exist in the first phase of
the automatic mode of operation as shown in Fig. 2, there are learning phase
and action phase. The learning phase starts with collecting the status of the
nodes, analyzing and aggregating the features and contexts to establish accurate
hypotheses. The generated hypotheses are very necessary to deliver the final
decision. The final decision formed in IA using MLAs technique and deep learning
based artificial neural network in our case. In the last phase, The predicted
action should take place on the targeted actuator. Since the human nature has
an inconsistent behavior in a real-life, the BUTLER should be designed to have
the ability to adapt to any sudden changes that a stakeholder made himself
(manual mode) in case of a stakeholder change his mind.
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Fig. 2. The development phases for the automatic mode of operation

It is important to mention that a lot of papers present the process to predict
a next user action using AI algorithms. The accuracy and time consumption of
prediction process is used to choose the best algorithm among MLA techniques.
Most of research papers’ results describe useable systems. However, these results
were collected and aggregated by implementing the MLAs on a software envi-
ronment using a personal computer, server or even supercomputer. Since such a
smart home system is considered to be a real-time operating system, the use of
a hardware-based implementation could potentially produce the same accuracy
with improved execution time. Thus, this paper attempts to verify whether a
hardware implementation will provide the same, or better, results that have been
produced by a software implementation. Furthermore, the authors will attempt
to demonstrate that the hardware implementation will meet the needs of a real-
time applications domain. These experiments use an embedded FPGA hardware
development kit for the hardware implementation experiment and make use of
deep learning based Neural Network (NN) algorithm, as discussed in Sect. 4.

3 Experimental Design

Before presenting our results in Sect. 4, we describe the dataset that used to
implement our experiments. The MavPad dataset contains events that were
collected from a real-world interaction between an individual and the home
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environment in which he resided [14]. The environment consists of several zones
represented by a kitchen, restroom, bedroom, and living room zones. The dataset
has 127 nodes which contain 86 sensors (input predictors) and 41 actuators
(observers) for seven weeks (49 days). Each day has an independent data file.
The data syntax for each file represented by date, time, zone number, state,
level, and source information. We used MATLAB to pre-process the row of data
by extracting the informative details. After filtering the noise, we converted all
49 data files to one matrix file called (OP.mat). The MAT-file has more than
100 K rows or events for the first day alone and more than 4 million rows of
information for a sum of seven weeks. Each raw has a status value for each node
type which represents a predictor value or an attribute at a specific time. After
data conversion process, we applied the machine learning algorithms, listed in
Sect. 4, to predict the next user action in the environment.

We factorize a binary observation vector as Xt = (x1t, x2t, . . ., x86t) for the
sensors. Actuators are represented by the status of each actuator at a certain
time t, so it is denoted with Yt ∈ 1, ., Q for Q possible states. To investigate the
performance of Neural Network algorithm that has been used in our experiments,
we chose to study the behavior of a user in one zone (Restroom Zone) in this
apartment. Table 1 presents the node’s information inside the restroom zone.

Table 1. Sensors and actuators details for restroom zone

No. Node type Node label Node name Status value

1 Sensor V21 Motion sensor on ceiling over toilet 0/1

2 Sensor V22 Motion sensor on ceiling over shower 0/1

3 Sensor V23 Motion sensor on ceiling over
bathroom door

0/1

4 Sensor S137 Light, east wall. Facing into room DDI

5 Sensor S138 Heat, east wall. Facing into room DDI

6 Sensor S139 Humidity, east wall. Facing into room DDI

7 Sensor S140 Reed switch over door 0/1

8 Actuator B5 Light over mirror 0/1

9 Actuator B6 Fan on ceiling 0/1

10 Actuator B7 Shower light over shower 0/1

Two different combinations of sensors were used to predict the next stake-
holder’s action. The first case applies all the seven sensors that existed inside
the restroom as shown in Table 1. The second case uses all the 86 sensors inside
all the zones of the environment. The predicted action represents an actuator
with binary outputs (0/1) inside the restroom labeled in (B5). The actuator B5
is used to turn the light over the mirror ON or shut it OFF.

In our experiment, we decide to take the first four weeks (28 days) for training
dataset and the fifth week as the test dataset.
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4 Experiments Results

4.1 Why We Use a Neural Network (NN)

The Neural Network is a commonly used tool in the machine learning field.
The strength of the neural network comes from the mathematical model
representation. NN is inspired by the biological nervous system of the human
brain. It tries to mimic the way of the human brain processes and learns
patterns. A Neural Network consists of interconnected nodes (neurons) that
process the input data in a certain way to perform a specific task. Theoretically,
the NN can represent many different kinds of complex function. However, a neu-
ral network has two major issues. First, the training time which requires high
resources availability especially when deep learning is adopted in the network (for
more than two hidden layers network). Second, the over-fitting problem due to
lack of data which makes the network less generalized to unexpected patterns.
Recently, data revolution, parallel architectures, and GPU designs have been
developed drastically. Therefore, the neural network has become an efficient tool
in the machine learning discipline. Neural network’s nature offers very beneficial
characteristics such as learning adaptation, self-organization, real-time output,
and implementation ease.

4.2 NN Software Implementation Results

In this section, we describe the software implementation of our network. Network
configuration, such as network depth (i.e., number of layers) and the number of
neurons of each layer, determines computational speed. Although increasing the
depth of NN improves the recognition rate (in case of having enough data),
it consumes more CPU and memory resources. In this work, network depth,
the number of neurons for each layer, and the training window size (i.e., the
number of samples used in the training process of each step to update network’s
parameters) were determined experimentally by maximizing the classification
performance using the available resources.

First, we started our implementation with one hidden layer. Then, we
increased the number of neurons in the hidden layer to find the best repre-
sentation experimentally. After that, we increased the depth of the network by
adding a second layer. By fixing the number of neurons for the first layer, we
increased the number of neurons for the second layer to come up with the best
representation. We repeated this approach for the third layer in our network to
optimize the number of nodes. Additionally, we used drop-out layers to reduce
the effect of the over-fitting problem. We added a drop-out layer between every
tow fully connected layers by a factor of 0.5. Removing some units of a net-
work during training prevented excessive parameter updating. This drop-out
technique may help reduce overfitting effect. We used two types of zones in our
experiments, local zone, and global zone. The local zone uses seven input sensors,
as shown in Table 1, to predict the B5 actuator., while the global zone uses all
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sensors in the environment (86 sensors) to predict the B5 actuator. The results
of these experiments are shown in Tables 2 and 3 concurrently.

A Deep Learning technique was used to facilitate the power of neural network
via the implementation of the multi-layer approach. As shown in Table 2, the
use of the local sensors with only one layer will produce an accuracy of %95.85
with 245 ms needed for the prediction process. Supporting the first layer with
a second one can significantly enhance the accuracy performance to be 99.11%
with an acceptable time of 387 ms in the scope of real-time application. While
adding a third layer to the designed model, doesn’t enhance the accuracy. Also,
the response time of prediction process using three layers is about the double
of what we possess using two layers. The mentioned results using local sensors
proves that adding more layers in deep learning model doesn’t always assure the
best performance: Therefore, layers optimization process needs to be considered
when adding further layers to the system architecture.

Table 2. The accuracy and prediction time results using local zone’s sensors for mul-
tilayer neural network

No. of hidden layers Accuracy T (Sec)

One hidden layer 0.9585 0.245

Two hidden layers 0.9911 0.387

Three hidden layers 0.9917 0.768

Table 3. The accuracy and prediction time results using global zone sensors for mul-
tilayer neural network

No. of hidden layers Accuracy T (Sec)

One hidden layer 0.9017 6.1023

Two hidden layers 0.9536 9.108

Three hidden layers 0.9611 13.706

Similarly, Table 3 discusses the performance of adding a second and a third
layer to the prediction system. Since this experiments use 86 sensors, which
distributed in the entire environment, we can see that the response time is much
higher than what we have in the first experiment that uses only seven sensors.
A significant enhancement in accuracy can be noticed when adding a second
layer to the deep learning model with 9.1 s of prediction time. A similar result of
accuracy values has been seen when adding a third layer. In other words, support
the model with a third layer doesn’t facilitate better performance in the model;
Therefore, the authors decided to consider designing the deep learning model to
have the first two layers only which possess a maximum average accuracy and
minimum average prediction time.
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4.3 NN Hardware Implementation Result Using FPGA

The mathematical operations of neural network models are simple. However,
the massive number of operations needs intensive computing resources. There-
fore, a fast and efficient realization is required to achieve the benefits of neu-
ral models. The FPGA based system allows designers to create digital designs,
test them, make modification very quickly, and reduce development time signifi-
cantly [1]. Also, the Hardware implementation of nonlinear activations, e.g., the
sigmoid function, is one of the challenges due to the complexity of implement-
ing division and exponential regarding time and hardware resources. Therefore,
the approximate-based approach has been presented to realize sigmoid function
efficiently and maintain an acceptable level of accuracy, such as using Lookup
Table LUT [15].

In this paper, we utilize an FPGA platform to realize reconfigurable
hardware-based neural networks for smart home systems. The proposed architec-
ture is shown in Fig. 3, which can be configured based on the number of hidden
layers in a neural network. To achieve high performance, each neuron has one
processing unit to make them work in parallel. The configuration as shown in
Fig. 3 is a realization of three hidden layers neural network by assigning each
set of processing units to a hidden layer. For one hidden layer configuration, all
processing units are directly connected to the input buffers and the output layer.
The reconfigurable switches in the figure are used for reconfiguration purpose by
activating the necessary connections.

Fig. 3. Reconfigurable neural network architecture, where PUs are processing units
and each set of PUs are separated by a reconfigurable switch.

Digital designs are usually modeled using hardware description languages
like Very high speed integrated circuit Hardware Description Language (VHDL)
and verified by simulation. In this paper, instead of using low-level coding,
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such as VHDL, we used a high-level programming language, LabVIEW, to real-
ize the neural network. National Instruments LabVIEW FPGA module uses
LabVIEW embedded technology to extend LabVIEW graphical development to
target FPGAs on NI reconfigurable I/O (RIO) hardware or some Xilinx boards.
This module enables users to create custom hardware without low-level hard-
ware description language coding or board design experience. Moreover, it allows
a user to executes multiple tasks simultaneously and deterministically, and also
expands the functionality of LabVIEW solutions, including unique timing and
triggering routines, ultrahigh-speed control, interfacing to digital protocols, dig-
ital signal processing (DSP) virtual instruments (VIs).

The implementation of the trained weight data, the synaptic coefficients
which are determined off-line in a computing environment, is done using signed
fixed-point representation 16-bit total length. Fixed point arithmetic is used for
NNs realization, which is implemented as one of the available data types in
LabVIEW FPGA module. Therefore, NN coefficients are used in the hardware
design without additional pre-calculation. Also, LabVIEW FPGA module pro-
vides nonlinear functions, which are used to implement the nonlinear activation
functions of each neuron. The other important feature in using LabVIEW soft-
ware is the ability to import weight coefficients of NNs from Matlab to the NN
structure implemented in the FPGA, specifically to the block RAMs that store
these coefficients.

Three optimization techniques are used in this paper to optimize and improve
the performance of the FPGA-based neural network. The first one is loop pipelin-
ing to achieve high throughput by organizing the overlap in the sequence of oper-
ation of neural network systems. Single Cycle Timed Loop (SCTL) was used to
reduce the required hardware resources and improve the execution speed of our
proposed neural network circuit. SCTL is an optimization technique available
in LabVIEW FPGA module to eliminate the unnecessary resources exploited
by the standard while loop function. Due to limited computation resources in
FPGA platforms and the massive computation required in realizing neural net-
work models, loop unrolling has been exploited to efficiently utilize the resources
and avoid complex hardware connections. We used this strategy to unroll the
independent data and avoid complex connection topologies.

5 Discussion

The hardware implementation of the neural network has been done by
LabVIEW FPGA module and downloaded to Xilinx XC3S500E FPGA. The
whole neural network system fits in a low-cost Xilinx Spartan-3E FPGA plat-
form and uses block RAMs as on-chip buffers and a DRAM as external storage.
The Spartan-3E family of field-programmable gate arrays is specifically designed
to meet the needs of high volume, and cost-sensitive consumer hardware digital
systems, where the cost must be lower than the general purpose processors. The
five-member family offers densities ranging from 100,000 to 1.6 million system
gates. The XC3S500E FPGA has 4,656 slices, almost 10,476 logic cells, twenty
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Table 4. FPGA-based neural network resource utilization and a comparison with other
FPGA implementations

Reference Platform Slice Slice DSP48Es/ CPS CPPSL

LUTs registers Multipliers

Gomperts
et al. 2011

XC5VSX50T 8043 2243 70 536 M 9.6 M

Zhai et al.
2013

Virtex-4 LX40 4346 N/A 8 1.2 M 0.07 M

Zhai et al.
2016

XC7Z010T 4032 2863 28 72.3 M 10.3 M

Proposed XC3S500E 3938 2862 20 481.3 M 31.2 M

18× 18 hardware multipliers, as well as twenty 18 Kbits modules of dedicated
dual-port RAM. In this section, we report the performance of our proposed
reconfigurable FPGA-based neural network architecture and compare it with
the software implementation. Then, we provide the hardware efficiency com-
pared with the existing FPGA implementations.

Table 5. The prediction time results using local and global zone’s sensors for hardware-
based multilayer neural network

Zone name No. of hidden layers T (Sec)

Local zone’s sensors One hidden layer 0.091

Two hidden layers 0.199

Three hidden layers 0.485

Global zone’s sensors One hidden layer 0.329

Two hidden layers 0.658

Three hidden layers 1.841

Our proposed FPGA realization of neural network has the same accuracy
results as what we have in Matlab implementation, and the accuracy is not
compromised due to the usage of fixed-point computing units. The characteristic
feature of using hardware platforms is performing the mathematical calculations
of neural networks in parallel. This feature cannot be achieved with the software-
based implementation of neural networks because of the sequential execution of
the code. Table 5 illustrates the prediction time results for local and global zone’s
sensors with different network structures. The results show that the hardware
implementation significantly improves the prediction time on average by factors
of two times and thirteen times compared with simulation results in the local
and global zone respectively. The significant improvement in average prediction
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time commits substantial evidence that our designed autonomous system applies
to be used in such a real-time application paradigm.

The hardware utilization summary is shown in Table 4 and compared with
other FPGA realization approaches [6,15,16]. The proposed architecture con-
sumes 2,828 slices out of the available 4,656 slices, which is about 60% of the
total number of slices. Specifically, the reconfigurable hardware realization uti-
lizes 3,938 slice LUTs or 42% and 2,862 slice registers or 30%. Connections per
second (CPS) metric, the number of operations to be performed in a second, is
used to compare hardware-based neural network architectures due to using differ-
ent FPGA platforms for realization. The second metric is connection primitives
per second per LUT (CPPSL), which takes the hardware resource utilization
into account. CPPS can be calculated by multiplying CPS by the bit width of
inputs and weights. Table 4 shows the performance comparison between our pro-
posed architecture and other implementations using CPS and CPPSL metrics.
Our proposed architecture achieves three times more CPPSL compared to the
best of existing FPGA implementations.

6 Conclusion

This paper presents the design and implementation of a reconfigurable hardware-
based neural network for smart home systems. The proposed architecture out-
performed the performance of software-based implementation regarding speed
due to exploiting parallel computing and some optimization techniques. Lab-
VIEW software enables developers to implement digital systems without the
need for low-level HDL language knowledge and reduces the usage of FPGA
hardware resources. It also eliminates the need for pre-processing the neural
network weights and maps them to FPGA’s storage units. The implementation
of FPGA-based neural network system allows its future utilization for other
applications.
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