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Abstract. We develop a graphical feature-based framework that collects data
from different kinds of sensor networks, represents the sensor network data as a
graph, extracts graphical features from the graph representation, and adds those
features to a set of non-graphical features that are typical for the application. Our
hypothesis is that the addition of a structural representation and transitional
features will improve performance for the corresponding prediction tasks of
different networks. We apply our graphical feature-based approach on smart
phone GPS sensor data to predict activities performed by phone users. We repre‐
sent the location category corresponding to each GPS value as a node and move‐
ment of users from one GPS location to another as an edge in graph. Then we
extract graphical features such as existence of nodes and edges from the graph
representation and add them to basic sensor data features coming from the smart
phone. We find that using this augmented feature set improves activity recognition
accuracy by 7.27% compared to using only basic non-graphical features with
feature set augmented with existence of nodes performing the best.
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1 Introduction

We envision a graphical feature-based framework to represent and analyze smart phone
data. This framework collects data from sensor networks, uses graph structure to repre‐
sent movement-related data, and employs selected graphical features to improve corre‐
sponding prediction tasks of those sensor networks. In our previous work [1], we
designed an algorithm to perform activity recognition from smart home motion sensor
data in which we represented the motion sensor data as a graph, extracted graphical
features from it, and classified activities performed by residents. The approach achieved
significant improvement in classification accuracy compared to the benchmarks in the
area. Next [2], we applied the graphical feature based framework on Nokia Smart Phone
sensor data, represented GPS information as a graph, extracted and selected useful
graphical features, and trained a support vector machine to perform classification for the
target variables of gender, age-group and job type. Our approach outperformed most of
the benchmarks in the field of demographic prediction from sensor data while using only
one type of generic sensor data through leveraging graph structure and movement
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patterns. As part of our goal of evaluating the use of graph representations and graph
mining to improve performance on recognition and prediction tasks for sensor networks,
in this paper we represent smart phone sensor data as a graph to enhance the task of
activity recognition.

Activity recognition from sensor data is an active area of research. Automatically
detecting human activities from a range of sensors can have broad applications such as
remote patient monitoring and medical diagnosis to shorten hospital stay, child and
elderly care, emergency assistance both at home and at assisted living, reminder system
for people with cognitive disorder and chronic conditions, and recognition of sports and
leisure activities in order to increase the lifestyle quality of people. Smart phones are
becoming a ubiquitous part of our daily and social life. Incorporation of diverse and
powerful sensors such as GPS, gyroscope, accelerometer, light sensors, temperature
sensors, and Bluetooth make it a useful tool for activity recognition from smart phone
sensor data. Added benefits include unobtrusiveness, low installation cost, ease of use,
and ability to monitor inside and outside the home [4].

We hypothesize that representing smart phone sensor information as a graph and
adding transitional features to basic non-graphical sensor data features will improve
activity recognition performance. We used the dataset collected through an activity
learning mobile app called Activity Learner (AL) designed by Aminikhanghahi et al. [3]
We chose GPS information to represent as a graph, extract graphical features, and use
these graphical features along with typical features based on non-graphical sensor data
such as accelerometer and gyroscope to predict activities. The experiment shows that
inclusion of graphical features significantly improves performance over typical non-
graphical features with nodes features providing the best results. Analyzing the confu‐
sion matrix shows that the addition of edges may improve the performance for some
activities. Using only selected features has the potential to improve the performance
with the addition of edges.

2 Previous Works

The first and second age of the internet connected people to the internet. The third age
of the internet connects not only people but also things to the internet [13]. According
to CISCO, 50 billion things will be connected to the internet in 2020 [14]. These things
range from very small and static devices (e.g., RFIDs) to large and mobile devices (e.g.,
vehicles). According to Khalil et al. [14], the role of Wireless Sensor Networks (WSN)
in the IoT is that of a virtual skin that connects the things with the network and with
each other, makes them aware of their surroundings, and shares this information with
other things in order to make informed decisions. In [15], Zeng and Min approached
how to build such a complicated system and presented a systematic design framework
for IoT Enabled Systems.

A smartphone is light, inexpensive, user-friendly, multipurpose, and portable device
that can be easily used by people in their daily lives and includes all technologies needed
for IoT [16]. Smartphones are equipped with a range of built-in sensors such as accel‐
erometers, motion sensors, position sensors, environmental sensors, microphone, and
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camera providing images and videos. Special sensors measuring health vital signs, such
as body temperature, ECG value, blood glucose level, stress level, body fat percentage,
heart rate, etc., can be integrated into the smartphone. In [16], Khaddar et al. termed
smart phone as the brain of the IoT world as smart phones come with a variety of
connectivity technologies such as NFC, Bluetooth, Wi-Fi, and cellular allowing it to
connect and interact with other devices and sensors. Next we discuss related works that
used accelerometer, GPS and other sensor information from smart phones for the task
of activity recognition.

Bouchard et al. [5] discussed different types of spatial features such as distance,
position, shape and gesture. Their experiments with a user’s raw latitude and longitude
as features showed improved accuracy for activity recognition. Aminikhanghahi et al.
[3] developed an algorithmic approach called Thyme for adapting prompt timing based
on the context of the user’s activity. In the first phase of Thyme, an Activity Learner
(AL) smart phone app collects smart phone sensor data and learns a mapping from raw
sensor data to activity labels through the use of classification algorithms Linear Support
Vector Classification (SVC), Naïve Bayes (NB), K-Nearest Neighbour (KNN), Decision
Tree (DT) and Random Forest (RF) with Random Forest resulting in the highest 82%
accuracy with leave-one-out validation. This result is for training and testing done for
each user separately; for combined users the average accuracy is 78%. Along with
extracting standard signal processing features from raw sensor data, AL also computes
higher-level information about the five-second data window, including heading change
rate (percentage of points in the sequence that change direction), stop rate (percentage
of points in the sequence that exhibit a significant drop in velocity), overall trajectory
from start to finish of the data sequence, and normalized distance to the user’s mean
location. They also have used a cost-sensitive classifier by adding weight to each data
point during training to help the learning algorithm handle the imbalanced class problem.
Our method shows that use of generic graphical features can improve prediction accu‐
racy without use of well thought-out, application-specific features or adding special
methodologies to handle an imbalanced class distribution.

Liao et al. [8] approached location-based activity recognition from GPS traces. They
train a conditional random field to iteratively re-estimate significant places and activity
labels. Initial activity estimation consists of a sequence of locations and the most likely
activity performed at that location, and these estimates are inferred by applying belief
propagation. A set of significant places are extracted from this activity estimate and then
used to classify individual activities again based on whether they belong to a significant
place. This process is repeated until the activity sequence does not change. Their
proposed method is evaluated on a fairly small dataset for four participants. The data
does contain complete GPS traces for seven days of data per person, but the method is
prediction task dependent. The method provided good results on this particular dataset,
but it still needs to be explored whether this method can be applied in general to different
sensor networks and different prediction tasks.

Chetty et al. [6] and Garcia-Ceja et al. [7] both performed activity recognition from
three-dimensional accelerometer data and showed improved accuracy in predicting
simple [6] and complex activities [7]. We would like to show that using a graph repre‐
sentation of spatial features and extracting transitional features from the representation
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improve the activity recognition accuracy even further over these non-graphical accel‐
erometer-based features.

3 Graphical Feature Based Framework

We collect location-related sensor information, namely latitude and longitude from
smart phone sensor data in order to predict activities performed by smart phone users.
We converted this geolocation information to location categories. We used Open‐
StreetMap (OSM), which is a map of the world built by a community of mappers that
contribute and maintain data about roads, trails, cafes, railway stations and much more.
[11] It is time consuming to access existing world maps that are available only online
to probe about categories of each geo-location. To address this issue, we used a tool
called Nominatim [12] through which we can download OSM data, import to a local
database, and perform reverse geo-coding using another tool, geopy [9] for large
amounts of geo-location data locally in significantly less time.

Whenever any user visits a place, we represent that location category as a node in
the graph. When a user moves from one location to another, we add an undirected edge
between the corresponding two nodes in the graph. From this graph representation, we
extract graphical features that we present in Table 1. In Table 1, we also show some
basic features that we can directly obtain from smart phone sensors as a typical set of
features. We add selected graphical features to this basic feature set and feed this
augmented feature set to a classifier for predicting activities. The workflow for activity
classification from GPS data based on the Graphical Feature Based Framework is shown
in Fig. 1.

Table 1. List of features

Types of features List of features Raw sensor data that are used
Basic features (statistics
applied to raw sensor data)

Max, min, sum, mean, median,
standard deviation, median
absolute deviation, zero
crossings, mean crossings,
interquartile range, coefficient
of variation, skewness,
kurtosis, simple moving
average (SMA), log SMA,
power, autocorrelation

Accelerometer data across x, y,
z-axis, rotation across x, y, z-
axis, yaw, pitch, roll, month,
day of week, hour, minute and
seconds

Graphical features (generated
from graph representations)

Existence of nodes, existence
of edges, and existence of both
nodes and edges

Latitude and longitude
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Fig. 1. Graphical feature-based framework for activity prediction

4 Computational Details and Results

4.1 Dataset

Aminikhanghahi et al. [3] designed a mobile app that collects 5 s of data at intervals
specified by the user on iOS and Android platforms. The app, called Activity Learner
(AL), collects the following 16 types of raw sensor data: accelerometer data across x, y
and z-axis, rotation across x, y and z-axis, yaw, pitch, roll, course, speed, horizontal
accuracy, vertical accuracy, latitude, longitude and altitude along with time and date
information (month, day of week, hour, minute and seconds). The total number of
instances in this dataset is 17933. We convert the GPS sensor data to location category
and represent each location category as a node in the graph representation. Some
example location categories are library, parking, motel, cycle way, hotel, park, super‐
market, place of worship, school, bar, restaurant, bus stop, and road.

We construct one undirected graph for each activity performed by users in this
dataset. The app AL guesses and periodically queries the participant about their current
activity to obtain the labels of these activities. The user can agree to the predicted activity
through the AL interface. Alternatively, they can proactively provide input about the
activity they are currently performing. [3] In the dataset we analyze, there are a total of
214 unique activities performed by 47 participants. In many cases they labeled the same
activities with different names or spellings. We map similar activities with slightly
different names or with different spellings into a general name. For example, mapping
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both ‘Driving’ and ‘Drive’ to one activity ‘Drive’, mapping ‘Errands’, ‘RunErrands’,
‘Store’, ‘Walmart’ to ‘Errands’, etc. Al comes with an option to provide this activity
mapping file. After activity mapping, there are 116 unique activities in the dataset. In
Fig. 2, we show example graph representations for instances of different activities out
of these 116 activities such as ‘Drive’, ‘Socialize’, ‘Cook’, ‘Eat’, ‘Exercise’, ‘Walk’,
‘Run’, ‘ChurchWork’ and ‘HomeWork’. After representing each activity as a graph, the
total number of unique nodes is 42 and the total number of unique edges including self-
loops is 94. We use this set of unique nodes and edges as our graphical feature set and
add it to the basic feature set for each instance. For each activity, we construct a graph

Fig. 2. Graph representations of different activities
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and when a node exists in this user-activity graph, we mark that corresponding feature
as 1, otherwise we mark it as 0. Similarly, for each edge in this user-activity graph, we
mark the corresponding feature in our feature set as 1, otherwise it is marked as 0. In
this way we construct and add the graphical feature set for each instance to the basic
feature set. We tried Decision Tree, Random Forest, Gradient Boost, Extra Tree,
Bagging and Ada Boost for classifying with Basic Features. Extra Tree Classifier
performed the best among these six classifiers. Initially, we select the 100 best features
for inclusion in the model. To classify activities, we apply the ExtraTreeClassifier using
the SelectKBestFeatures feature selection method with Mutual Information as the
scoring function for the features.

4.2 Result

In Table 2, we compare performance of graphical features with basic features for clas‐
sifying activities. As demonstrated in Table 1, basic features include basic statistical
computation (max, min, sum, mean, median, standard deviation, median absolute devi‐
ation, zero crossings, mean crossings, interquartile range, coefficient of variation, skew‐
ness, kurtosis, simple moving average (SMA), log SMA, power, autocorrelation) of
accelerometer data across x, y, z-axis, rotation across x, y, z-axis, yaw, pitch, roll, and
date information (month, day of week, hour, minute and seconds). Graphical Features
include existence of nodes, existence of edges, and existence of both nodes and edges.

Table 2. Accuracy in percentage for basic features vs graphical features for six classifiers

Features Basic Basic + Nodes Basic + Edges Basic + Nodes +
Edges

Decision tree 45.27 46.25 46.64 46.18
Random forest 50.39 50.96 49.56 49.92
Extra tree 51.45 55.19 53.86 53.73
Gradient boost 33.91 37.17 37.05 36.69
Bagging 50.93 51.90 52.19 52.31
Ada boost 16.53 16.53 16.13 16.13

We apply six different classifiers, namely, Decision Tree, Random Forest, Extra
Tree, Gradient Boost, Bagging and Ada Boost with 3-fold cross-validation to classify
116 activities performed by 47 participants. The best performing feature set along a row
(for each classifier) is boldfaced. We observe that adding only nodes or only edges or
both nodes and edges improve the result compared to only basic features except Ada
Boost. Decision Tree provides the best result with combination of basic features
augmented with edges. For Bagging, combination of basic, nodes and edges as feature
sets is the best performer. Random Forest and Extra Tree produce the best result with
basic and nodes feature sets. However, the best result among all classifiers and feature
sets is produced by Extra tree with basic feature set augmented with nodes which is
7.27% improvement over using only basic features.
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To investigate the reason for performance decrease when edges are added to feature
set, we look at the confusion matrix for activities that contain edges. There are 51 activ‐
ities in the dataset where transitions between locations occurred and hence these activ‐
ities contain edges. We remove 12 activities that have only one instance that contain
edges. Figure 3 shows the list of these activities that have at least two instances in the
dataset that contain edges. It also shows the total number of instances for each activity

Fig. 3. Total errors in confusion matrix for activities that contain edges
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and the number of instances where edges occurred. We find false positive, false negative
values for each of these activities from the confusion matrix and compute the total error
(false positive + false negative).

We compute the total error for three cases: nodes added to basic features, edges added
to basic features, nodes and edges added to basic features and present this information
in Fig. 3 in columns ‘Total Error for Nodes’, ‘Total Error for Edges’ and ‘Total Error
for Nodes and Edges’. Among them 20 activities that are colored in red and blue in
Fig. 3 demonstrated reduced error using either edges or both nodes and edges. Blue
colored activities showed reduced error with addition of edges and red colored activities
showed reduced error with use of both nodes and edges. 19 activities that are colored
black in Fig. 3 showed increased error with the use of nodes and edges.

As a next step, we tried some basic feature selection techniques to test whether it
may improve the result. Through feature selection, we may be able to keep and use only
useful features and eliminate features that had a negative effect on accuracy. This may
help with the problem of overfitting as well. We present the result of our initial experi‐
ment of feature selection with Extra Tree classifier in Table 3. We used the k-best
features selector from scikit-learn based on the mutual information criteria to select 100-
best features from the basic feature set, nodes added to the basic feature set, edges added
to the basic feature set and nodes and edges added to the basic feature set. As demon‐
strated in Table 3, better overall accuracy is achieved with the addition of edges only
and both nodes and edges compared to basic features. The basic features with edges
showed the best performance. In future work, we plan to experiment with varying the
value of k and with other feature selection methods to see whether the overall accuracy
can be improved further.

Table 3. Accuracy in percentage for basic features vs graphical features with feature selection

Features Accuracy in percentage
Basic 57.65
Basic + Nodes 57.13
Basic + Edges 57.67
Basic + Nodes + Edges 57.50

5 Discussion

Compared to a non-graphical typical feature set, graphical feature sets provide improve‐
ments over non-graphical features with nodes performing the best among all graphical
feature sets. However, adding edges decreased the performance in some cases.

In the current dataset all sensor events were collected at one second intervals. Both
basic and graphical features of each instance are computed from sensor events collected
in a five second window. Each five second window has an activity label provided by the
user. Most activities continue past one window. We already obtained better performance
for some activities using transitional information available in only a five-second
window. Some activities may benefit from a larger window in order to allow for more
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transitions in the activity graph, but that would require an additional data collection
effort in the future.

Also, there may be noise both in labeling activities and in determining location cate‐
gories. Activity labels are dependent on getting correct information from users about
the activity they are doing. There are many instances of activities in the dataset during
which no geolocation data is collected. While extracting the location category from raw
latitude and longitude values using the Nominatim Database, for some location catego‐
ries “None” is returned, indicating unknown location category. The ability to get more
accurate location category information may improve predictions.

We are predicting classes across behavior of all users in this experiment. User-wise
activity prediction may give better result because movement patterns can vary from user
to user.

6 Conclusion

We present a Graphical Feature based Framework with the goal to improve prediction
tasks for different sensor networks by representing the sensor networks in graph form,
extracting graphical features from these graphs, and adding those features to the typical
set of features for the task, to be fed to classifiers. In this work, we apply this framework
to smart phone sensor data for the task of activity recognition. The results demonstrate
that adding spatial and transitional features improves the activity recognition accuracy
compared to typical non-graphical and non-spatial feature sets. Without feature selec‐
tions, nodes perform the best. However, analyzing the confusion matrix shows that
adding edges can decrease total error in many activities. Initial investigation with feature
selection shows that use of feature selection may help through eliminating extra and
non-helpful edges and also may help with overfitting due to the large number of graphical
features. We plan to try other feature selection methods and find the set of helpful
selected graphical features. In the future, using larger window sizes to help extract more
transitions for ongoing activities can be used to further improve the performance of
adding graphical features. User-wise activity prediction along with graphical features
will reflect an individual’s movement pattern and hence may improve activity prediction.
Along with the use of edges and the combination of nodes and edges, larger sub-graphs
can be considered as part of the graphical features to discriminate among activities.
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