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Abstract. Counting the abundance of all the k-mers (substrings of length k) in
sequencing reads is an important step of many bioinformatics applications,
including de novo assembly, error correction and multiple sequence alignment.
However, processing large amount of genomic dataset (TB range) has become a
bottle neck in these bioinformatics pipelines. At present, most of the k-mer
counting tools are based on single node, and cannot handle the data at TB level
efficiently. In this paper, we propose a new distributed method for k-mer
counting with high scalability. We test our k-mer counting tool on Mira
supercomputer at Argonne National Lab, the experimental results show that it
can scale to 8192 cores with an efficiency of 43% when processing 2 TB
simulated genome dataset with 200 billion distinct k-mers (graph size), and only
578 s is used for the whole genome statistical analysis.
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1 Introduction

With the rapid development of Next-Generation Sequencing (NGS) technology, the
growth rate of genomic data is even faster than Moore’s law. Pre-analyzing the
genomic data has become an essential component in many bioinformatics applications
and it poses a great challenge, especially in genome assembly [1, 2]. Most of the
popular parallel genome assemblers are based on de Bruijn Graph strategy, a
throughout overview of the number and the distribution of all distinct k-mers provides
detailed information about the size of de Bruijn graph. For this reason, it becomes
increasingly important to build the histogram of frequency of each distinct k-mer so as
to meet the demand of these critical bioinformatics pipelines, including genome
assembly, error correction [3], multiple sequence alignment [4], metagenomic data
classification and clustering.

State-of-art k-mer counting tools can be classified into two categories: one is based
on hard disk and shared memory environment, the other is based on distributed
memory environment.
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Shared Memory Tools. Tools developed in early days are mainly classified into this
category. These k-mer counting tools rely on different techniques. Firstly, the most
well-known k-mer counting tool is Jellyfish [5], which uses a lock-free hash table and
lock-free queues for communication so that several threads can update the hash table at
the same time. KMC2 [6], MSPKmerCounter [7] and DSK [8] use disk-based parti-
tioning technique to enable a low memory footprint with huge data processing.
Methods such as BFCounter [9], Turtle [10] and KHMer [11] filter low coverage k-
mers with Bloom filter to save memory consumption.

Distributed Memory Tools. As the size of genomic data increases dramatically in
recent years, shared memory tools have failed to handle these data. Using high per-
formance cluster to accelerate this procedure and breaking the limit of memory usage is
a tendency. Representative tools include Kmerind [12] and Bloomfish [13]. Kmerind is
the first k-mer counting and indexing library for distributed memory environment, it is
implemented over MPI and contains many optimizations on efficient SIMD imple-
mentation and data structures. Bloomfish integrated Jellyfish into a MapReduce
framework called Mimir [14], and 24 TB data were processed in 1 h.

In this paper, we propose a distributed k-mer counter with a higher scalability than
distributed counting tools such as Bloomfish and Kmerind. The experimental results on
Mira supercomputer show that, with 8192 cores, it can process 2 TB simulated
genomic data with 200 billion distinct k-mers (graph size) in approximately 578 s.

2 System Design and Implementation

Our proposed k-mer counter contains three components, parallel I/O, k-mer extraction
and distribution, counting. These components are illustrated in Fig. 1 and will be
introduced in the following. For speeding up the pipeline during implementation, these
three phases are further overlapped at a high degree with data streaming technology.

Parallel I/O. Improving the loading speed for TB or even PB level of sequencing data
into memory from hard drive with multiple processes faces great challenges. Many
traditional genome assembler and k-mer counting tools use one thread to load data,
which usually takes several hours as the data size scales to TB level.

In our work, we adopt a similar approach as SWAP2 [15] and HipMer [16], parallel
I/O module is used to speed up the loading process. This module supports both FASTQ
and FASTA format sequence data. Firstly, the data are divided into n virtual fragments,
where n is the number of processes. Since splitting data may break the DNA reads in
the middle, a location function is used to check the beginning and ending point, so that
each process can quickly locate the position information and send it to neighboring
process.

K-mer Extraction and Distribution. After reading the sequences from the data files,
each process will extract k-mers from sequences and then distribute k-mers to their
corresponding processes according to a given hash function. In the extraction phase, a
sliding window of length k will be applied to break short reads to k-mers. In the
distribution phase, the generated k-mers are collected and grouped with a given hash
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function, and then each group of k-mers will be delivered to its corresponding pro-
cesses with all_to_all collective communication protocols.

In this step, two other techniques are applied to further improve the computation
and communication efficiency. The first one is data pre-compression and instruction
level optimization on k-mer extractions. In this method, the bit operation and SSE
instruction is used to further compress the computing time used in this phase. The
second is to overlap the computing time in k-mer extraction phase and the commu-
nication time in k-mer distribution phases. In this method, the non-blocking all_to_all
communication optimization helps to improve the efficiency.

Counting. Two types of results are counted and analyzed. One is the number of
distinct k-mers, the other is frequency of each distinct k-mer. By using these basic
results, almost all the other counting results can be further computed. Since the
direction of DNA sequences is rarely known, genome assemblers, k-mer counting tools
and many other bioinformatics applications usually treat the k-mers and their reverse
complements as equivalent, we also use the same technique for our k-mer counter.

3 Experiment Setup

3.1 Dataset

To analyze the performance of k-mer counting tools, we selected two types of the datasets,
real sequencing data from1000Genomes, and four other simulated datasets (ranging from
250G to 2 TB) generated from human reference (Downloaded from NCBI: GRCh38,

Fig. 1. Pipeline of distributed k-mer counting
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Data size: 3 GB). The test datasets in fasta format have both good coverage and large
genome size. Detailed information for the datasets is shown in Table 1.

The Simulation Method for Generating Simulated Data. We selected human
genome as the initial reference sequences in the experiment. Mutation is randomly
generated in human reference sequences, simulation coverage is 50X, the length of
each sequence read is 100 bp. Moreover, we also introduce 1% sequencing errors in
simulated sequence reads. See Table 1 for the details of the 4 simulated datasets and
human genome dataset.

3.2 Platform

In this section, we examine the performance of k-mer counting tools both on single node
and high performance computing clusters. Single-node tests were conducted on a HPC
server, which has Ivy Bridge-E Intel Xeon E5-2692 processor with 20 M L3 cache,
64 GB of DDR3 RAM. Distributed memory experiments were performed on IBM Blue
Gene Q-Mira supercomputer at Argonne National Laboratory. Mira contains 48 cabi-
nets, 49,152 compute nodes. Each compute node is equipped with 16 IBM PowerPC A2
processors and 16 GB RAM. All the compute nodes are connected by Infiniband, and
the network of Mira follows 5D-torus architecture, the communication bandwidth is
0.9 GB/s per node. In addition, the I/O of Mira uses IBM GPFS system; it supports
parallel I/O and the theoretical peak performance of its bandwidth is 32 GB per node.

4 Performance Evaluation

4.1 Single Node Test

In this section, we conducted a performance evaluation for several tools. We selected
three tools, KMC2, Jellyfish and MSPKmerCounter. Both the real human sequencing
data and simulated datasets are used in the experiments. During the test, we assigned
one thread per core when running Jellyfish, KMC2 and MSPKmerCounter. Experi-
mental results are shown in Tables 2 and 3.

Table 1. Statistics of Experiment Datasets

Human Genome Dataset1 Dataset2 Dataset3 Dataset4

Size (GB) 4.5 250 500 1000 2000
Read Length (bp) 100 100 100 100 100
No. of Reads (Million) 28.8 3066.8 7133.6 14267.2 28534.4
No. of Distinct k-mers (Billion) 0.3 27.69 54.16 105.36 203.49

Table 2. The time usage for human dataset using 24 cpu cores

KMC2 Jellyfish MSKPKmerCounter

Execution time (seconds) 27 37 62

348 J. Ge et al.



As can be seen, KMC2 is the fastest k-mer counter. For GB range genomic data,
MSPKmerCounter is the slowest. Even if the running time of these tools shows slight
difference, all the tools can finish the run in relatively less time (minutes range).

We also tested the tools on four bigger simulated datasets. From Table 3, we can
see that KMC2 is the fastest, but for the 2 TB dataset, it runs out of memory. As the
dataset increased from 250 GB to 1 TB, the time consumption increased by 11.3 times,
and the efficiency is only about 35%. For MSPKmerCounter, it cannot run the simu-
lated dataset larger than 500 GB. Only Jellyfish can handle 2 TB simulated dataset, but
it takes more than one day to count all the k-mers. Our proposed k-mer counter is
designed for distributed environment with more memories, thus it is tested in the
following step with more cores.

4.2 Scaling Test

To evaluate the scalability of the proposed tool, we conducted both the weak scaling
and strong scaling tests. The size of simulated datasets ranges from 250 GB to 2 TB,
and the number of CPU cores increases correspondingly from 1024 to 8192. The k
value is set to 31. Results are shown in Figs. 2 and 3.

Table 3. The time usage for simulated datasets using 24 cpu cores

Dataset1 Dataset2 Dataset3 Dataset4

MSPKmerCounter 130 m >6 h out of memory out of memory
KMC2 23 m 93 m 260 m out of memory
Jellyfish 150 m 354 m 771 m 1495 m

Fig. 2. Execution time and efficiency for
weak scaling

Fig. 3. Execution time and efficiency for
strong scaling
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Weak Scaling Test: For weak scaling test, we performed an experiment with 4
simulated datasets generated in the previous section. The data size increases from 250G
to 2 TB as the number of cores increases from 1024 to 8192. From Fig. 2, we observe
that when the cores and the data size doubled, the execution time shows a slightly
increase. The ideal situation is a straight line. While the real human sequencing dataset
has a fixed distinct k-mer number, and the rising number of distinct k-mers in simulated
datasets accounts for this increase. When the number of cores doubles, the rising
communication complexity will also affect the performance.

Strong Scaling Test: To analyze the strong scaling performance, we conduct a test on
2 TB simulated dataset with a fix problem size and double the number of cores in each
round. Figure 3 shows that the proposed k-mer counter can scale to 8192 cores on
2 TB simulated dataset with more than 200 billion distinct k-mers, the execution time
is 578 s. We note that both Bloomfish and kmerind can scale to 1536 cores on 384 GB
sequence data from 1000 Genome Data on Comet at San Diego Supercomputer Center.
Additionally, Bloomfish can scale to 3072 cores on 24 TB dataset in Tianhe-2A
Supercomputer, while the scalability is still lower than our proposed tool. Besides, the
strong scaling test results of our proposed tool show a linear decrease in execution time.
Similar to the weak scaling test, the communication becomes more complex when the
number of cores doubled, and finally a parallel efficiency of 43% for 8192 cores is
obtained (1024 cores as a baseline).

5 Conclusions

K-mer counting has become an essential component in bioinformatics, which provides
much important information for other bioinformatics pipelines. In this paper, we pre-
sent a new distributed k-mer counter, which can take advantage of high performance
clusters to count k-mers on thousands of cores with limited time. Moreover, it also has
a higher scalability than Bloomfish and Kmerind.
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