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Abstract. By exploiting the portability of application containers,
platform- and software-as-a-service providers receive the flexibility to
deploy and move their cloud services across infrastructure services deliv-
ered by different providers. The aim of this research is to apply the con-
cepts of cloud service brokerage to container-based cloud services and
to define a method for service arbitrage in an environment with multi-
ple infrastructure-as-a-service (IaaS) providers. A new placement method
based on constraint programming is introduced for the optimised deploy-
ment of containers across multiple IaaS providers. The benefits and lim-
itations of the proposed method are discussed and the efficiency of the
method is evaluated based on multiple deployment scenarios.

1 Introduction

Container-based applications are on the rise. Docker [1] as an open platform for
application containers has become very popular since its first release in June
2014 and a complete ecosystem of supporting tools has grown up. With Docker,
developers receive the option to package applications and their dependencies into
self-contained images that can run as containers on any server. Multiple large
Cloud Service Providers (CSP) have embraced Docker as container technology
and announced alliances with the Docker company. Container-based applications
are highly portable and independent of the hosting provider and hardware.

Cloud services such as Platform-as-a-services (PaaS) and Software-as-a-
services (SaaS) have usually a topology that aligns with the components of a
multi-tier architecture, including tiers for presentation, business logic and data
access. The topology of the cloud service describes the structure of the IT ser-
vice delivered by the CSP, the components of the service and the relationships
between them. Cloud services designed for the use in enterprises have multiple
Quality of Service (QoS) requirements such as High Availability (HA) and Disas-
ter Recovery (DR) targets, performance and scalability requirements, and require
compliance to security standards and data location regulations. The require-
ments for HA, DR and horizontal scaling are the drivers to design and deploy
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the cloud services in multi-node topologies which may span multiple availability
zones and geographical sites.

PaaS and SaaS providers in public or private cloud environments receive with
Docker the option to deliver their cloud services using container-based applica-
tions or micro-services. The portability of the application containers enables
them to easily move cloud services between IaaS providers and to locations
where, for instance, the customer’s data resides, the best SLA is achieved or
where the hosting is most cost-effective. PaaS and SaaS providers will benefit
from employing brokerage services that allow them to choose from a variety
of IaaS providers and to optimise the deployment of their cloud services with
respect to the QoS requirements, distribution and cost. By using a Cloud Ser-
vice Broker (CSB), PaaS and SaaS providers will be enabled to structure their
offering portfolio with additional flexibility and to quickly respond to new or
changing customer requirements. New options arise from the easy deployment
of the containers across the multiple IaaS providers. A PaaS or SaaS provider
may deploy a container to a new geographic location by selecting a different IaaS
provider when the primary one is not available there. A globally delivered cloud
service may be provided by using resources from multiple IaaS providers. DR
use cases may be realized by selecting a different provider for the backup site.
Load-balancing and scalability built into the cloud service will allow to gradu-
ally migrating the service from one provider to another one with no downtime
by simply moving the containers to the new provider.

Cloud service brokerage for application containers requires to define a new
method for the optimised placement of the containers on IaaS resources of mul-
tiple providers. The method has to take the attributes of the containers and
the IaaS resources into account, and honour the QoS requirements of enterprise-
ready cloud services. The initial placement of the containers has to follow the
specification of the topology of the cloud service. Aside of the attributes used for
rating IaaS providers, the CSB has to consider container related attributes such
as the built-in container support of the IaaS providers, the packaging of con-
tainers in virtual machines and the clustering of containers. The optimisation
of the infrastructure resources of the container-based cloud services has to be
without impact and visibility to the cloud service consumers. Access to user data
and network connectivity to the cloud services have to be handled and delivered
uninterrupted, and without the need to reconfigure clients.

A CSB for application containers may use a constraint programming-based
engine to make the placement decision about the optimal IaaS provider. The
engine will use as input the requirements of the container and information about
each of the available IaaS providers. The objective of this research is to define
a method for service arbitrage that allows for the optimised placement of con-
tainers in a cloud environment with multiple IaaS providers and to demonstrate
the feasibility of the proposed method.
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2 Background Research

2.1 Cloud Service Broker

The definition of a cloud broker as introduced by NIST is widely referenced by
other authors, e.g., in [2–5]. In the NIST CCRA [6], a cloud broker is described
as an “entity that manages the use, performance and delivery of cloud services
and negotiates relationships between cloud providers and cloud consumers.” The
cloud broker is an organisation that serves as a third-party entity as a centralised
coordinator of cloud services for other organisations and enables users to inter-
act through a single interface with multiple service providers [2,7]. Gartner [8]
describes cloud service brokerage as “an IT role and business model in which
a company or other entity adds value to one or more (public or private) cloud
services on behalf of one or more consumers of that service via three primary
roles including aggregation, integration and customisation brokerage.”

NIST [6] and Gartner [9] define three categories of services that can be pro-
vided by a CSB. Service intermediation enables a CSB to enhance a service by
improving some specific capability and providing value-added services to cloud
consumers. Service intermediation is responsible for service access and iden-
tity management, performance reporting, enhanced security, service pricing and
billing. A CSB uses service aggregation to combine and integrate multiple ser-
vices into one or more new services while ensuring interoperability. The CSB is
responsible for the integration and consolidation of data across multiple service
providers, and ensures the secure movement of the data between the cloud con-
sumer and the cloud providers. The key aspect of the service aggregation is to
ease service selection and present services from separate providers as a unique
set of services to the cloud service consumer. Service arbitrage is the process of
determining the best CSP. The CSB has the flexibility to choose a service from
multiple providers and can, for example, use a credit-scoring service to measure
and select a provider with the best score. Service arbitrage adds flexibility and
choice to service aggregation as the aggregated services are not fixed.

Six key attributes of CSB are derived in [7] mainly based on the categories
defined by NIST [6] and Gartner [8,9], and used for evaluation of existing CSBs:
intermediation, aggregation, arbitrage, customisation, integration and standard-
isation. According to [10], integration is focused on creating an unified, com-
mon system of services by integrating private and public clouds or bridging
between CSPs. Customisation refers to the aggregation and integration with
other value-added services, including the creation of new original services [10].
Both integration and customisation are closely interlinked with service aggrega-
tion and intermediation, and in-fact it is difficult to find distinct definitions of
these attributes in the literature. Standardisation among the CSB mechanisms
and across the cloud services of different providers enables interoperability, and
supports the process of service selection by a CSB.

A comprehensive model of a CSB architecture is described in [2]. The CSB
environment is built of the same components as the management platform for
a single cloud but additional complexity is introduced into the system by the
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requirement to support multiple CSPs. Bond [2] distinguishes between the func-
tions of the Cloud Broker Portal, the Cloud Broker Operations and Management
and the multiple CSPs, and aligns them in a layered model of a vendor-agnostic
CSB architecture. Governance is introduced in addition as a set of functions
which are orthogonal to the layers of the model and have to be realised for all
functional components of the architecture.

A taxonomy of brokering mechanisms is given in [12]. Externally managed
brokers are provided off-premise by a centralized entity, for instance, by a third-
party cloud provider or SaaS offering. Externally managed brokers are transpar-
ent for applications using the services provided by the broker. Directly managed
brokers are incorporated into an application, have to keep track of the appli-
cation’s performance and be built to meet the availability and dependability
requirements of the applications. Externally managed brokers can be classified
into SLA-based and trigger-action brokers. In case of SLA-based broker, a cloud
user specifies the brokering requirements of a SLA in form of constraints and
objectives, and the CSB finds the most suitable cloud service by taking into
account the user requirements specified by the SLA. For trigger-action broker,
a cloud user specifies a set of triggers and associates actions with them. A trig-
ger becomes active when a predefined condition is meet, e.g., the threshold of a
specific metric is exceeded, and the associated action is executed. Actions can
be, for instance, scale-out and provisioning activities, and may include bursting
into a public cloud when there is a spike in the demand for computing capacity.

In the context of the interoperability of clouds, the following challenges are
described in [13] and applied here to CSBs. In an environment with multiple
cloud service providers, each provider is expected to have its own SLA man-
agement mechanism. A CSB has to establish federation of the SLAs from each
CSP in order to set up and enforce a global SLA. Methods and protocols for
the negotiation of dynamic and flexible SLAs between the CSB and the multiple
CSPs are required. Another important issue is the enforcement of the SLAs in
environments with conflicting policies and goals, e.g., a CSB may offer a ser-
vice with a SLA for HA, while none of the providers are willing to offer such
a service. In addition to the SLA, there can be a Federation-Level Agreement
that defines rules and conditions between the CSB and the CSPs, e.g., about
pools of resources and the QoS such as the minimum expected availability. The
CSB has to establish functions for matching the guaranteed QoS of cloud ser-
vices offered by the CSPs with the QoS requirements of the end-user, and for
monitoring that the promised QoS and SLA is provided to the cloud service
consumer. The dependencies of a CSP to other providers have to be considered
by the CSB as well. The QoS of a higher-layered service can be affected in cases
when the CSP of the service itself uses external services. If one of the providers
of the lower-layered services is not functioning properly, the performance of the
higher-layered service may be affected and impact finally the SLA agreed by the
CSB. The CSB has to guarantee the security, confidentiality and privacy of the
data processed by the services provided. Within the country where the services
are delivered, the CSB must comply with the legislation and laws concerning



Cloud Service Brokerage and Service Arbitrage 101

the privacy and security of the data. Therefore, the CSB has to implement geo-
location and legislation awareness policies and enforce compliance with those
policies. As part of the SLA management, services of specific providers can be
avoided or agreement can be made that placing data outside of a given country
is prohibited.

The results of a survey of CSB projects are described in [14]. The authors
consider four categories of CSB technologies: CSBs for performance to address
issues of cloud performance comparison and prediction, CSBs for application
migration which provide decision support when moving applications to the cloud,
theoretical models for CSBs which describe purely theoretical and mathematical
techniques and data for CSBs that summarises providers of data and metrics
available for use by CSBs. A comprehensive list of commercial CSB projects
is given in [10]. Recent research about CSBs has a significant focus on service
arbitration across numerous CSPs, in particular on optimising the allocation of
resources from different IaaS providers. The use of arbitration engines enables
CSBs to automatically determine the best CSP and service for any given cus-
tomer order. The attributes considered in the optimisation process vary depend-
ing on the proposed method. Typically attributes for rating IaaS providers are:
the supported operating systems and configurations, geographical location, costs
and rates, bandwidth and performance, SLA terms, legalisation and security,
compliance and audit [15,16].

The placement of VMs in cloud and virtual environments is a critical opera-
tion as it has an direct impact on the performance, resource utilisation, power-
consumption and cost. The subject of VM placement is widely discussed in the
research literature. Detailed reviews of the current VM placement algorithms can
be found in [17,18]. According to [18], the mono-objective, multi-objective solved
as mono-objective and pure multi-objective approaches can be distinguished with
respective optimisation objectives. Mono-objective methods are designed for the
optimisation of a single objective or the individual optimisation of more objec-
tive functions, but one at a time. For multi-objective solved as mono-objective
approaches, multiple objective functions are combined into a single objective
function. The weighted sum method is used most often by this approach. This
method defines one objective function as the linear combination of multiple
objectives. A disadvantage of this approach is that it requires knowledge about
the correct combination of the objective functions – which is not always avail-
able. Pure multi-objective approaches have a vector of multiple objective func-
tions that are optimised. Only a small number of methods are described in the
literature which use a pure multi-objective approach for VM placement.

A broad range of different VM placement schemes (18 different in total)
are analysed in [17]. Constraint programming based VM placement is described
as one of the considered placement schemes. The following classification of the
placement schemes is proposed: Resource-aware VM placement schemes con-
sider the infrastructure resource requirements of the VMs are considered in the
placement decisions by these schemes. Efficient resource-aware placement tries
to optimally place VMs on the hosts, so that the overall resource utilisation
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is maximised. Most of the schemes consider CPU and memory resources, some
network resources, and a minor number includes the device or disk I/O, or try to
minimise the number of active hosts. Designed for the use by the CSPs, power-
aware VM placement schemes try to make cloud data centres more efficient and
to reduce the power consumption in order to enable green cloud computing. The
objective of these schemes is to reduce the number of active host, networking
and other data center components. The methods include VM consolidation and
packaging of VMs on the same host or in the same rack, and powering off not
needed VMs, hosts and network components. The attributes considered by the
power-aware schemes include the CPU utilisation (e.g., based on the states: idle,
average, active and over utilised), the server power usage and the host status
(running, ready, sleep, off), costs for network routing and data center power
usage, and the distance between VMs. Network-aware VM placement schemes
try to reduce the network traffic or try to distribute network traffic evenly in
order avoid congestion. The placement schemes allocate the VMs with more
or extensive communication on the same host, to the same switch and rack, or
within the same data center in order to reduce the network traffic within the data
center and across data centres. Most common is the consideration of the traffic
between VMs by the network-aware VM placement schemes, some evaluate the
traffic between the hosts and selected schemes try to minimise the transfer time
between the VMs and data, and the distance between the VMs. Cost-aware VM
placement schemes try to reduce the costs for the CSPs while considering the
QoS of the cloud services and honouring the SLAs. The schemes use different
types of costs as attributes, such as the VM, physical machine, cooling and data
center costs, and the distance between the VMs and the clients.

Conceptually a similar approach is taken in [18] with the classification of
the objective functions. Based on the study of 56 different objective functions,
the classification into five groups of objective functions is described: Energy
Consumption Minimisation, Network Traffic Minimisation, Economical Costs
Optimisation, Performance Maximisation and Resource Utilisation Maximisa-
tion. Most of the publications are focused on single-cloud environments, i.e. for
use by CSPs. Seven of the methods are suitable for multi-cloud environments,
i.e. use multiple cloud computing data centres from one or more CSP. Only two
articles take a broker-oriented approach.

Different methods are employed by CSBs for rating IaaS providers, e.g.,
genetics algorithms [19,20] and rough sets [16,21]. Multiple projects propose
CSBs which take advantage of the different price options such as for on-
demand, reservation and spot instances [22], examples can be found in [23–26].
There are a couple of academic and open-source implementations of CSBs, e.g.,
STRATOS [27], QBROKAGE [19] and CompatibleOne [28].

2.2 Constraint Programming

Constraint programming is a form of declarative programming which uses vari-
ables and their domains, constraints and objective functions in order to solve
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a given problem. The purpose of constraint programming is to solve constraint
satisfaction problems as defined in [30,31]:

Definition 1 (Constraint Satisfaction Problem). A Constraint Satisfac-
tion Problem P is a triple P = (X,D,C) where X is an n-tuple of variables X =
(x1, x2, . . . , xn), D is a corresponding n-tuple of domains D = (D1,D2, . . . , Dn)
such that xi ∈ Di, C is a t-tuple of constraints C = (C1, C2, . . . , Ct).

The domain Di of a variable xi is a finite set of numbers, and can be continuous
or of a discrete set of values. In order to describe a constraint satisfaction problem
P, a finite sequence of variables with their respective domains is used together
with a finite set of constraints. A constraint over a sequence of variables is a
subset of the Cartesian product of the variables’ domains in the scope of the
constraint.

Definition 2 (Constraints). C = (C1, C2, . . . , Ct) is the set of constraints.
A constraint Cj is a pair

(
RSj

, Sj

)
where RSj

is a relation on the variables
in Sj = scope(Cj), i.e. the relation RSj

is a subset of the Cartesian product
D1 × . . . × Dm of the domains D1,D2, . . . , Dm for the variables in Sj.

A solution of the Constraint Satisfaction Problem P is defined as follows:

Definition 3 (Solution of P). A solution to the Constraint Satisfaction Prob-
lem P is a n-tuple A = (a1, a2, . . . , an) where ai ∈ Di and each Cj is satisfied
in that RSj

holds the projection of A onto the scope of Sj.

The definition of multiple global constraints such as the alldifferent constraint
is described in the literature. The constraint alldifferent requires that the
variables x1,2 , . . . , xn take all different values. An overview of the most popular
global constraints is given in [32].

Several publications focus on the use of CP-based cloud selection and VM
placement methods. A method for cloud service match making based on QoS
demand is introduced in [33]. CP is a convenient method for optimising the
placement of VMs, as placement constraints can be directly expressed by vari-
ables representing the assignment of the VMs to the hosts and the allocation
of resources for the VMs placed on each host. Resource-aware VM placement
schemes are presented in [34–36]. A combined CP and heuristic algorithm is
utilised in [35]. Special focus is put on fault tolerance and HA in [36]. In [37],
the CP-based, open source VM scheduler BtrPlace [38] is used to exhibit SLA
violations for discrete placement constraints, as these do not consider interims
states of a reconfiguration process. As consequence, BtrPlace is extended with a
preliminary version of continuous constraints and it is proved that these remove
the temporary violation and improve the reliability. Power-aware methods are
discussed in [39,40].

3 Method for Service Arbitrage

Aims of this research is to define a method for optimising the deployment of
container-based applications across different CSPs. The objective is to find for
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a given Docker container c the optimal host h. A host h is a virtual or physical
machine that meets the requirements of the container c and is delivered by
an IaaS provider. The optimisation problem to be solved can be described as
transformation of a container domain C into a host domain H:

f : C → H, c �→ h, where c ∈ C and h ∈ H. (1)

The requirements of a container c are expressed as vector rc = (rc,1, rc,i . . . , rc,n).
Each attribute rc,i is an element or subset of a domain Ri with a finite number
of elements. Likewise, the attributes of a host h are described by the a vector
ah = (ah,1, ah,j , . . . , ah,m) for which each attribute ah,j belongs to a domain
Aj and A = (A1, Aj , . . . , Am). In order to solve the optimisation problem, the
requirements rc,i of the containers and the attributes ah,j of the hosts have to
be considered. As method for finding the optimal host h for a given container
c, a CP model is used. As per Definition 1, a constraint satisfaction problem
P is defined as the triple P = (X,D,C). The objective of the CP model is to
provide solutions for the container placement problem Pplacement. The variables
X and the corresponding domains D of the problem Pplacement are defined by
the attribute domains A of the hosts H, i.e. D = A and X = (a1, aj , . . . , am)
where aj ∈ Aj . Provided that the function index returns the index set I of any
given set S, so that

index : S → I, si �→ i = index(s), (2)

then can be defined for the variables and domains of the host attributes the
following:

provider : a1 ∈ A1 and A1 = index(P) where (3)
P = {AWS,DigitalOcean,Azure,SoftLayer,Packet}

host type : a2 ∈ A2 and A2 = index(T) where (4)
T = {physical, virtual}

region : a3 ∈ A3 and A3 = index(R) where (5)
R = {Australia,Brazil,Canada,France,Germany}
R = R ∪ {Great Britain,Hongkong, India, Ireland}
R = R ∪ {Italy, Japan,Mexico,Netherlands, }
R = R ∪ {Singapore,California, Iowa,New Jersey}
R = R ∪ {New York,Oregon,Texas,Washington}
R = R ∪ {Virginia} (6)
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data centres : a4 ∈ A4 and A4 = {1, .., 52} (7)
availability zone : a5 ∈ A5 and A5 = {0, .., 5} (8)

cpu : a6 ∈ A6 and A6 = {1, .., 40} (9)
memory (GB) : a7 ∈ A7 and A7 = {1, .., 488} (10)
disk size (GB) : a8 ∈ A8 and A8 = {1, .., 48000} (11)

disk type : a9 ∈ A9 and A9 = index(D) where (12)
D = {HDD,SSD}

private : a10 ∈ A10 and A10 = {0, 1} (13)
optimised : a11 ∈ A11 and A11 = index(O) where (14)

O = {compute,memory, gpu, storage}
O = O ∪ {network,none}

cost : a12 ∈ A12 and A12 = {1, .., 99999} (15)

In order to describe the constraints C, the requirements rc = (rc,1, rc,i . . . , rc,n)
of a container c have to be detailed first. The properties ha scale and dr scale
are introduced to address the requirements for HA and DR. The requirement
ha scale describes how many containers have to be deployed across the data
centres or available zones within one region and dr scale is the number of con-
tainers that have to be deployed across multiple regions of the same or multiple
providers in order to achieve protection against a disaster. The op factor rc,9
allows to request a larger host which can run rc,9 instances of the container c.
The price limit ($ 0.0001 per hour) specifies the maximum cost of host per
hour which must not be exceeded. The attribute private rc,11 allows to request
to place the container c on a dedicated host.

host type : rc,1 ∈ R1 and R1 = A2 (16)
region : rc,2 ∈ R2 and R2 = A3 (17)

cpu : rc,3 ∈ R3 and R3 = A6 (18)
memory (GB) : rc,4 ∈ R4 and R4 = A7 (19)
disk size (GB) : rc,5 ∈ R5 and R5 = A8 (20)

disk type : rc,6 ∈ R6 and R6 = A9 (21)
ha scale : rc,7 ∈ R7 and R7 = {1, .., 5} (22)
dr scale : rc,8 ∈ R8 and R8 = {1, .., 5} (23)

op factor : rc,9 ∈ R9 and R9 = {1, .., 10} (24)
price limit : rc,10 ∈ R10 and R10 = A12 (25)

private : rc,11 ∈ R11 and R11 = A10 (26)
optimized : rc,12 ∈ R12 and R12 = A11 (27)

image : rc,13 ∈ R13 and R13 = I where (28)
I is the set of Docker images
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In order to allow the placement of a container c either on an existing host or
a new host, the domain H to be searched is defined as the union of the host
templates T , i.e. the set of hosts which can be provisioned, and the already
provisioned hosts H:

H = T ∪ H (29)

wherein T is the superset of the templates tp from all providers P:

T =
⋃

p∈P

T p and tp ∈ T p (30)

The template tp is described by the attribute vector apt and domains Ap:

apt = (apt,1, a
p
t,j , . . . , a

p
t,m) and apt,j ∈ Ap

j (31)
Ap = Ap

1, A
p
j , . . . , A

p
m and p ∈ P (32)

The set of already provisioned hosts H is the union of the deployed hosts hp at
all providers P:

H =
⋃

p∈P

Hp and hp ∈ Hp (33)

Provided that the host hp is provisioned using the template hp and that Ch

denotes the set of containers deployed on the host h, the available resources on
the host hp can the be determined as follows:

cpu : ah,6 = apt,6 −
∑

c∈Ch

rc,3 (34)

memory(GB) : ah,7 = apt,7 −
∑

c∈Ch

rc,4 (35)

disksize(GB) : ah,8 = apt,8 −
∑

c∈Ch

rc,5 (36)

cost : ah,12 =
apt,12
|Ch| (37)

The variables X represent the attributes of a single host. In order to respond
to the requirements for HA and DR, multiple containers have to be placed on k
anti-collocated hosts. Xe,f denotes the variables and ae,fj the attributes required
to describe the k hosts he,f :

k =dr scale · ha scale (38)

Xe,f =(ae,f1 , ae,fj , . . . , ae,fm ) where ae,fj ∈ Aj (39)

1 ≤ e ≤ dr scale (40)
1 ≤ f ≤ ha scale (41)
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The constraints C can then be defined as follows:

hosts : C1 : ∨
(

∧ (
ae,fj = ah,j

))
, ∀h ∈ H and 1 ≤ j ≤ 12 (42)

host type : C2 :

{
ae,f2 = rc,1, if rc,1 ≥ 0
true, otherwise

(43)

region : C3 :

{
ae,f3 = rc,2, if rc,2 ≥ 0
true, otherwise

(44)

cpu : C4 : ae,f6 ≥ (
rc,3 · rc,9

)
(45)

memory : C5 : ae,f7 ≥ (
rc,4 · rc,9

)
(46)

disk size : C6 : ae,f8 ≥ (
rc,5 · rc,9

)
(47)

disk type : C7 :

{
ae,f9 = rc,6, if rc,6 ≥ 0
true, otherwise

(48)

price limit : C8 :

{
ae,f12 ≤ rc,10, if rc,10 ≥ 0
true, otherwise

(49)

private : C9 :

{
ae,f10 = rc,11, if rc,11 ≥ 0
true, otherwise

(50)

optimised : C10 :

{
ae,f11 = rc,12, if rc,12 ≥ 0
true, otherwise

(51)

HA : C11 :
((

ae,f5 �= ae,g5

) ∧ (
ae,f4 = ae,g4

) ∧ (
azenabled = 1

))∨ (52)
((

ae,f4 �= ae,g4

) ∧ (
ae,f3 = ae,g3

))

where 1 ≤ g ≤ ha scale and f �= g

DR : C12 :
(
ad,f3 �= ae,g3

)
(53)

where 1 ≤ d ≤ dr scale and d �= e

The property azenabled indicates that the used technology generally supports
the deployment of hosts into availability zones. The objective function fcost for
minimising the cost across the k hosts is defined as follows:

fcost =minimise
∑

ad,f12 . (54)

4 Results

In order to verify the effectiveness of the proposed method for service arbitrage, a
series of deployment scenarios was executed with the objective to verify that the
most cost-effective host for a given configuration is chosen for deployment. The
verification was performed in an environment with five different IaaS providers.
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In total, 3587 host templates with different server configurations in 22 regions
and 52 data centres were given to the CP model as input. Actual prices from the
CSPs were used for each of the configurations. The CP model was implemented
using NumberJack [41] and the CP solver “Mistral” [42]. The execution of the
test scenarios showed that the used CP solver is able to find optimal solutions
for the CP model. The CP solver returns solutions in a reasonable time when
only a single container has to be placed. The runtime of the CP solver increases
significantly when multiple containers have to placed across different locations
for HA and DR. In this case, the number of variables and constraints supplied
to the CP model increase and the objective function becomes more complex. In
order to validate if better performance results can be achieved with another CP
solver supported by NumberJack, the “MiniSat” solver [43] was used. The test
execution with “MiniSat” showed an increased CPU utilization on the hosting
server and significant longer runtime. All further tests were executed using the
“Mistral” solver afterwards. By applying a lower price limit to a deployment
scenario with multiple containers, it was possible to obtain an optimal solution
quicker. With the price limit applied, the initial number of host templates can
be already reduced before the actual constraints are added to the CP model.
The deployment scenarios with multiple containers shows as well that regions
on different continents may be selected by the CP solver as optimal solution, e.g.
Europe and North America. This solution may not be suitable for business use
in all cases, e.g., when legal restrictions apply. Additional locality constraints or
an objective function for minimising the distance between regions may be added
to the CP model in future.

5 Summary and Conclusions

An important aspects of the proposed CP model is that the emphasis is not on
rating the CSPs but the particular hosts for their capability to run a specific
container, so that the CSP becomes only an attribute of the host. The proposed
CP model was validated based on test data with host templates from five IaaS
providers, 22 regions and 52 data centres. In this experimental research it is
shown that the proposed CP model is capable to find the optimal placement
for containers also in complex environments, and that HA and DR topologies
of applications can be realised. It is further shown that the CP solver “Mistral”
[42] used by NumberJack runs stable for large CP models. The duration of the
process for finding the optimal solution increases significantly when multiple
containers have to placed across different locations for HA and DR. Hence, the
practical use of the proposed CP model in a production environment is not
possible. Further research is required to reduce the complexity inherited from
the input attributes before the actual CP model is constructed. Other CP solvers
may be evaluated and the integration of rule-based algorithms such as Rete [44]
into the CSB framework can be investigated. The objective of the integration
with a rule-based approach will be to limit the number of CP variables and
constraints to only the ones which are valid for a given request, so that the CP
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solver can find a solution to the objective function within a few seconds. The
advantage of the combination of the two approaches will be that the rule-based
algorithm can provide a reduction of the solution space, while the CP solver is
still used to find the best solution for the given objective function.

Aside of the runtime aspect, the CP model can be extended in future in
various ways. The CP model uses a mono-objective function to minimise the
cost. A multi-objective approach may take additional performance attributes
into consideration and allow to maximise the service performance while provid-
ing the most cost-effective price. Such performance attributes could be gath-
ered from monitoring data of the containers during runtime or be collected from
IaaS benchmarking services like CloudHarmony [29]. The data model related the
CP model is centred around host templates which represent virtual or physical
servers. CSPs offer compute, storage and network resources today as indepen-
dent services with various, flexible options for selection. The CP model may be
extended to allow for better consumption and distinction of those services in
the placement decisions. In addition, the CP model may be further extended to
honour region specific prices, and optionally to take price differences for reser-
vation, on-demand and spot instances into account. Further extension of the CP
model can be done to support node clusters with multiple nodes and services
with multiple containers.

With the proposed CP model, a first brokerage solution using service arbi-
trage for containers is provided. The underlying concepts were successful verified
and allow for future research and development in this area.
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