
Teleporting Failed Writes with Cache
Augmented Data Stores

Shahram Ghandeharizadeh(B), Haoyu Huang, and Hieu Nguyen

USC Database Laboratory, Los Angeles, USA
{shahram,haoyuhua,hieun}@usc.edu

Abstract. Cache Augmented Data Stores enhance the performance of
workloads that exhibit a high read to write ratio by extending a persistent
data store (PStore) with a cache. When the PStore is unavailable, today’s
systems result in failed writes. With the cache available, we propose
TARDIS, a family of techniques that teleport failed writes by buffering
them in the cache and persisting them once the PStore becomes available.
TARDIS preserves consistency of the application reads and writes by
processing them in the context of buffered writes. TARDIS family of
techniques is differentiated in how they apply buffered writes to PStore
once it recovers. Each technique requires a different amount of mapping
information for the writes performed while PStore was unavailable. The
primary contribution of this study is an overview of TARDIS and its
family of techniques.

1 Introduction

Person-to-person cloud service providers such as Facebook challenge today’s soft-
ware and hardware infrastructure [9,24]. Traditional web architectures struggle
to process their large volume of requests issued by hundreds of millions of users.
In addition to facilitating a near real-time communication, a social network
infrastructure must provide an always-on experience in the presence of differ-
ent forms of failure [9]. These requirements have motivated an architecture that
augments a data store with a distributed in-memory cache manager such as
memcached and Redis. We term this class of systems Cache Augmented Data
Stores, CADSs.

Figure 1 shows a CADS consisting of Application Node (AppNode) servers
that store and retrieve data from a persistent store (PStore) and use a cache for
temporary staging of data [18,24,25]. The cache expedites processing of requests
by either using faster storage medium, bringing data closer to the AppNode, or a
combination of the two. An example PStore is a document store [10] that is either
a solution such as MongoDB or a service such as Amazon DynamoDB [5,11] or
MongoDB’s Atlas [22]. An example cache is an in-memory key-value store such
as memcached or Redis with Amazon ElastiCache [6] as an example service.
Both the caching layer and PStore may employ data redundancy techniques to
tolerate node failures.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Luo and L.-J. Zhang (Eds.): CLOUD 2018, LNCS 10967, pp. 55–68, 2018.
https://doi.org/10.1007/978-3-319-94295-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94295-7_4&domain=pdf


56 S. Ghandeharizadeh et al.

Fig. 1. CADS architecture.

The CADS architecture assumes a software developer provides application
specific logic to identify cached keys and how their value is computed using
PStore. Read actions look up key-value pairs. In case of a miss, they query
PStore, compute the missing key-value pair, and insert it in the cache for future
look up. Write actions maintain the key-value pairs consistent with data changes
in PStore.

A read or a write request to PStore fails when it is not processed in a timely
manner. This may result in denial of service for the end user. All requests issued
to PStore fail when it is unavailable due to either hardware or software failures,
natural disasters, power outages, human errors, and others. It is possible for a
subset of PStore requests to fail when the PStore is either sharded or offered
as a service. With a sharded PStore, the failed requests may reference shards
that are either unavailable or slow due to load imbalance and background tasks
such as backup. With PStore as a service, requests fail when the application
exhausts its pre-allocated capacity. For example, with the Amazon DynamoDB
and Google Cloud Datastore, the application must specify its read and write
request rate (i.e., capacity) in advance with writes costing more [5,15]. If the
application exhausts its pre-specified write capacity then its writes fail while its
reads succeed.

An application may process its failed writes in a variety of ways. Simplest is
to report the failures to the end users and system administrators. The obvious
drawback of this approach is that the write fails and the end user is made aware
of this to try again (or for the system administrator to perform some corrective
action). Another variant is for the application to ignore the failed write. To
illustrate, consider a failed write pertaining to Member A accepting Member
B’s friend invitation. The system may simply ignore this write operation and
continue to show B’s invitation to A to be accepted again. Assuming the failure
of the PStore is short-lived then the user’s re-try may succeed. This alternative
loses those writes that are not recoverable. For example, when Member C invites
Member B to be friends, dropping this write silently may not be displayed in
an intuitive way for the end user to try again. A more complex approach is



Teleporting Failed Writes with Cache Augmented Data Stores 57

for the application to buffer the failed writes. A system administrator would
subsequently process and recover these writes.

This paper describes an automated solution that replaces the administrator
with a smart algorithm that buffers failed writes and applies them to PStore at a
later time once it is available. This approach constitutes the focus of TARDIS1,
a family of techniques for processing failed writes that are transparent to the
user issuing actions.

Table 1. Number of failed writes with different BG workloads and PStore failure
durations.

Failure duration Read to write ratio

100:1 1000:1

1 min 5,957 561

5 min 34,019 3,070

10 min 71,359 6,383

TARDIS teleports failed writes by buffering them in the cache and performing
them once the PStore is available. Buffered writes stored as key-value pairs in
the cache are pinned to prevent the cache from evicting them. To tolerate cache
server failures, TARDIS replicates buffered writes across multiple cache servers.

Table 1 shows the number of failed writes with different failure durations
using a benchmark for interactive social networking actions named BG [8]. We
consider two workloads with different read to write ratios. TARDIS teleports all
failed writes and persists them once PStore becomes available.

TARDIS addresses the following challenges:

1. How to process PStore reads with pending buffered writes in the cache?
2. How to apply buffered writes to PStore while servicing end user requests in

a timely manner?
3. How to process non-idempotent buffered writes with repeated failures during

recovery phase?
4. What techniques to employ to enable TARDIS to scale? TARDIS must dis-

tribute load of failed writes evenly across the cache instances. Moreover, its
imposed overhead must be minimal and independent of the number of cache
servers.

TARDIS preserves consistency guarantees of its target application while tele-
porting failed writes. This is a significant improvement when compared with
today’s state of the art that loses failed writes always.

Advantages of TARDIS are two folds. First, it buffers failed writes in the
cache when PStore is unavailable and applies them to PStore once it becomes
1 Time and Relative Dimension in Space, TARDIS, is a fictional time machine and

spacecraft that appears in the British science fiction television show Doctor Who.



58 S. Ghandeharizadeh et al.

available. Second, it enhances productivity of application developers and system
administrators by providing a universal framework to process failed writes. This
saves both time and money by minimizing complexity of the application software.

Assumptions of TARDIS include:

– AppNodes and the cache servers are in the same data center, communicating
using a low latency network. This is a reasonable assumption because caches
are deployed to enhance AppNode performance.

– The cache is available to an AppNode when PStore writes fail.
– A developer authors software to reconstruct a PStore document using one or

more cached key-value pairs. This is the recovery software shown in Fig. 1
used by both the application software and Active Recovery (AR) workers.

– The PStore write operations are at the granularity of a single document and
transition its state from one consistent state to another. In essence, the cor-
rectness of PStore writes are the responsibility of the application developer.

– There is no dependence between two or more buffered writes applied to differ-
ent2 documents. This is consistent with the design of a document store such
as MongoDB to scale horizontally. Extensions to a relational data model that
considers foreign key constraints is a future research direction.

Fig. 2. AppNode state transition diagram.

The rest of this paper is organized as follows. Section 2 presents the design of
TARDIS. Section 3 describes how undesirable race conditions may happen and
our solution using contextual leases. We survey related work in Sect. 4. Brief
future research directions are presented in Sect. 5.

2 TARDIS preserves the order of two or more writes for the same document.



Teleporting Failed Writes with Cache Augmented Data Stores 59

2 Overview

Each AppNode in TARDIS operates in 3 distinct modes: normal, failed, and
recovery. Figure 2 shows the state transition diagram for these three modes.
TARDIS operates in normal mode as long as PStore processes writes in a timely
manner. A failed PStore write transitions AppNode to failed mode. In this mode,
AppNode threads buffer their PStore writes in the cache. They maintain cached
key-value pair impacted by the write as in normal mode of operation. Moreover,
the AppNode starts one or more Active Recovery (AR) workers to detect when
the PStore is available to process writes again. Once PStore processes a write
by an AR worker, the AR worker transitions AppNode state to recovery mode.

In recovery mode, TARDIS applies buffered writes to PStore. TARDIS family
of techniques is differentiated in how they perform this task. In its simplest form,
termed TAR, only AR workers apply buffered writes. The next variant, termed
DIS, extends TAR by requiring the write actions of the application to identify
pending writes in the cache and apply them to PStore prior to performing their
write. With DIS, a write action may merge the pending writes with its own into
one PStore operation. With TARD, the developer provides a mapping between
the read and buffered writes produced by write actions. This mapping enables
the application to process reads that observe a cache miss by first applying the
pending buffered writes to the PStore. Finally, TARDIS is a hybrid that includes
features of both TARD and DIS.

The trade-off with the alternative techniques is as follows. With TAR, the
application continues to produce buffered writes even though PStore is available.
With both TAR and DIS, a cache miss continues to report a failure (even though
PStore is available) until all pending writes are applied to PStore. DIS is differ-
ent because it stops the application from producing buffered writes, enabling the
recovery mode to end sooner. With TARD, a cache miss applies buffered writes
to PStore while writes continue to be buffered. TARDIS is most efficient in pro-
cessing application requests, ending the recovery process fastest. Due to novelty
of TARDIS, applicability of TAR, TARD, DIS, and TARDIS in the context of
different applications is a future research direction. It may be the case that DIS
is applicable to most if not all applications.

When either AppNode or an AR worker incurs a failed write, it switches
AppNode mode from recovery to failed. A PStore that processes writes inter-
mittently may cause AppNode to toggle between failed and recovery modes
repeatedly, see Fig. 2.

2.1 Failed Mode

In failed mode, a write for Di generates a change δi for this PStore document and
appends δi to the buffered write Δi of the document in the cache. In addition,
this write appends Pi to the value of a key named Teleported Writes, TeleW.
This key-value pair is also stored in the cache. It is used by AR workers to
discover documents with pending buffered writes (Table 2).



60 S. Ghandeharizadeh et al.

Table 2. List of terms and their definition.

Term Definition

PStore A sharded data store that provides persistence

AR Active Recovery worker migrates buffered writes to PStore eagerly

Di A PStore document identified by a primary key Pi

Pi Primary key of document Di. Also referred to as document id

{Kj} A set of key-value pairs associated with a document Di

Δi A key whose value is a set of changes to document Di

TeleW A key whose value contains Pi of documents with teleported writes

ω Number of TeleW keys

Δi may be redundant if the application is able to construct document Di

using its representation as a collection of cached key-value pairs. The value of
keys {Ki} in the cache may be sufficient for the AppNode to reconstruct the
document Di in recovery mode. However, generating a list of changes Δi for the
document may expedite recovery time if it is faster to read and process than
reading the cached value of {Ki} to update PStore. An example is a member
Pi with 1000 friends. If in failed mode, Pi makes an additional friend Pk, it
makes sense for AppNode to both update the cached value and generate the
change δi = push(Pk,Friends). At recovery time, instead of reading an array of
1001 profile ids to apply the write to PStore document Di, the system reads the
change and applies it. Since the change is smaller and its read time is faster, this
expedites recovery time.

In failed mode, AR workers try to apply buffered writes to PStore. An AR
worker identifies these documents using the value of TeleW key. Each time AR’s
write to PStore fails, the AR may exponentially back-off before retrying the
write with a different document. Once a fixed number of AR writes succeeds, an
AR worker transitions the state of AppNode to recovery.

TARDIS prevents contention for TeleW by maintaining ω TeleW key-value
pairs. It hash partitions documents across these using their primary key Pi.
Moreover, it generates the key of each ω TeleW with the objective to distribute
these keys across all cache servers. In failed mode, when the AppNode generates
buffered writes for a document Dj , it appends the document to the value of the
TeleW key computed using its Pj , see Fig. 3.

Algorithm 1 shows the pseudo-code for the AppNode in failed mode. This
pseudo-code is invoked after AppNode executes application specific code to
update the cache and generate changes δi (if any) for the target document Di.
It requires the AppNode to obtain a lease on its target document Di. Next, it
attempts to mark the document as having buffered writes by generating a key
Pi+dirty with value dirty3. The memcached Add command inserts this key if

3 Choice of Pi+dirty is arbitrary. The requirement is for the key to be unique. Pi+dirty
is a marker and its value may be one byte.



Teleporting Failed Writes with Cache Augmented Data Stores 61

Fig. 3. Documents are partitioned across ω TeleW keys. TeleW keys are sharded across
q memcached servers.

it does not exist. Otherwise, it returns NOT STORED. Hence, the first time
a document is inserted, it is appended to one of the ω TeleW keys. Repeated
writes of Di in failed mode do not insert a document Di in TeleW again.

Algorithm 1. AppNode in Failed Mode (Pi)
1. acquire lease Pi

2. InsertAttempt = Add(Pi+dirty)
3. release lease Pi

4. if InsertAttempt is successful {
TeleWi = hash(Pi, ω)
acquire lease TeleWi

append(Pi, TeleWi)
release lease TeleWi

}

2.2 Recovery Mode

To perform an action that references a document Di, AppNode checks to see if
this document has buffered writes. It does so by obtaining a lease on Pi. Once
the lease is granted, it looks up Δi. If it does not exist then it means an AR
worker (or another AppNode thread) competed with it and propagated Di’s
changes to PStore. In this case, it releases its lease and proceeds to service user’s
action. Otherwise, it applies the buffered writes to update Di in PStore. If this is
successful, AppNode deletes Δi to prevent an AR worker from applying buffered
writes to Di a second time.

TARDIS employs AR workers to eagerly apply buffered writes to PStore doc-
uments identified by TeleW. We minimize the recovery duration by maximizing



62 S. Ghandeharizadeh et al.

the probability of each AR worker to work on a disjoint set of documents. To
achieve this, each AR worker randomly pick TeleW key as the starting point
and visit other TeleW keys in a round-robin fashion. Also, it only recover α ran-
domly selected documents in a TeleW. With AppNode, each time a user action
references a document Di with buffered writes, the AppNode applies its writes
to the PStore prior to servicing the user action. In essence, during recovery,
the AppNode stops producing buffered writes and propagates buffered writes to
PStore.

Challenges of implementing TARDIS’s recovery mode is two folds: (a) cor-
rectness: TARDIS must propagate buffered writes to PStore documents in a
consistent manner, and (b) performance: TARDIS must process user’s actions
as fast as normal mode while completing recovery quickly.

We categorize buffered writes into idempotent and non-idempotent. Idempo-
tent writes can be repeated multiple times and produce the same value. Non-
idempotent writes lack this behavior. During recovery, multiple AR workers may
perform idempotent writes multiple times without compromising correctness.
However, this redundant work slows down the PStore for processing regular
requests and makes the duration of recovery longer than necessary. Our imple-
mentation of recovery uses leases to apply buffered writes of a document to
PStore exactly once even in the presence of AR worker or AppNode failures.
The details are provided in the full technical report [26].

Algorithm 2 shows each iteration of AR worker in recovery mode. An AR
worker picks a TeleW key randomly and looks up its value. This value is a list of
documents written in failed mode. From this list, it selects α random documents
{D}. For each document Di, it looks up Pi+dirty to determine if its buffered
writes still exist in the cache. If this key exists then it acquires a lease on Di,
and looks up Pi+dirty a second time. If this key still exists then it proceeds to
apply the buffered writes to Di in PStore. Should this PStore write succeed, the
AR worker deletes Pi+dirty and buffered writes from the cache.

The AR worker maintains the primary key of those documents it successfully
writes to PStore in the set R. It is possible for the AR worker’s PStore write to
Di to fail. In this case, the document is not added R, leaving its changes in the
cache to be applied once PStore is able to do so.

An iteration of the AR worker ends by removing the documents in R (if any)
from its target TeleW key, Step 6 of Algorithm 2. Duplicate Pis may exist in
TeleWT . A race condition involving AppNode and AR worker generates these
duplicates: A buffered write is generated between Steps 5 and 6 of Algorithm2.
Step 6 does a multi-get for TeleWT and the processed Pi+dirty values. For those
Pis with a buffered write, it does not remove them from TeleWT value because
they were inserted due to the race condition.

2.3 Cache Server Failures

A cache server failure makes buffered writes unavailable, potentially losing con-
tent of volatile memory all together. To maintain availability of buffered writes,



Teleporting Failed Writes with Cache Augmented Data Stores 63

Algorithm 2. Each Iteration of AR Worker in Recovery Mode
1. Initialize R = {}
2. T = A random value between 0 and ω
3. V = get(TeleWT )
4. {D} = Select α random documents from V

5. for each Di in {D} do {
V = get(Pi+dirty)
if V exists {

acquire lease Pi

V = get(Pi+dirty)
if V exists {

success = Update Pi in PStore with buffered writes
if success {

Delete(Pi+dirty)
Delete Δi (if any)
R = R ∪ Pi

}
} else R = R ∪ Pi

release lease Pi

} else R = R ∪ Pi

}

6. if R is not empty {
acquire lease TeleWT

Do a multiget on TeleWT and all Pi+dirty in R

V = value fetched for TeleWT

For those Pi+dirty with a value, remove them from R

Remove documents in R from V
put(TeleWT ,V)
release lease TeleWT

}

TARDIS replicates buffered writes across two or more cache servers. Both
Redis [1] and memcached [2] support this feature.

A cache server such as Redis may also persist buffered writes to its local
storage, disk or flash [1]. This enables buffered writes to survive failures that
destroy content of volatile memory. However, if a cache server fails when PStore
recovers, its contained buffered writes become unavailable and TARDIS must
suspend all reads and writes to preserve consistency. Thus, replication is still
required to process reads and writes of an AppNode in recovery mode.

3 TARDIS Consistency

TARDIS consists of a large number of AppNodes. Each AppNode may operate
in different modes as described in Sect. 2. While AppNode 1 operates in failed



64 S. Ghandeharizadeh et al.

or recovery mode, AppNode 2 may operate in normal mode. This may happen
if AppNode 2 processes reads with 100% cache hit while AppNode 1 observes a
failed write. This results in a variety of undesirable read-write and write-write
race conditions when user requests for a document are directed to AppNode 1
and AppNode 2.

An example of a write-write race condition is that a user Bob who creates
an Album and adds a photo to the Album. Assume Bob’s “create Album” is
directed to AppNode 1. If AppNode 1 is operating in failed mode then it buffers
Bob’s Album creation in the cache. Once PStore recovers and prior to propa-
gating Bob’s album creation to PStore, Bob’s request to add a photo is issued
to AppNode 2. If AppNode 2 is in normal mode then it issues this write to an
album that does not exist in PStore.

An example of a read-write race condition is that Bob changes the permission
on his profile page so that his manager Alice cannot see his status. Subsequently,
he updates his profile to show he is looking for a job. Assume Bob’s first action
is processed by AppNode 1 in failed mode and Bob’s profile is missing from the
cache. This buffers the write as a change (Δ) in the cache. His second action,
update to his profile, is directed to AppNode 2 (in normal mode) and is applied
to PStore because it just recovered and became available. Now, before AppNode
1 propagates Bob’s permission change to PStore, there is a window of time for
Alice to see Bob’s updated profile.

We present a solution, contextual leases, that employs stateful leases with-
out requiring consensus among AppNodes. It implements the concept of ses-
sions that supports atomicity across multiple keys along with commit and roll-
backs. TARDIS with contextual leases maintains the three mode of operation
described in Sect. 2. It incorporates Inhibit (I) and Quarantine (Q) leases of [13]
and extends them with a marker.

Table 3. IQ lease compatibility.

Granted

I lease Q lease

Requesting I lease Back-off and retry Back-off and retry

Q lease Grant Q and void I lease Reject and abort requester

The framework of [13] requires: (1) a cache miss to obtain an I lease on its
referenced key prior to querying the PStore to populate the cache, and (2) a
cache update to obtain a Q lease on its referenced key prior to performing a
Read-Modify-Write (R-M-W) or an incremental update such as append. Leases
are released once a session either commits or aborts. TARDIS uses the write-
through policy of IQ-framework. I leases and Q leases are incompatible with each
other, see Table 3. A request for an I lease must back-off and retry if the key is
already associated with another I or Q lease. A request for a Q lease may void
an existing I lease or is rejected and aborted if the key is already associated with



Teleporting Failed Writes with Cache Augmented Data Stores 65

another Q lease. IQ avoids thundering herds by requiring only one out of many
requests that observes a cache miss to query PStore and populate the cache. It
also eliminates all read-write and write-write race conditions.

In failed mode, a write action continues to obtain a Q lease on a key prior
to performing its write. However, at commit time, a Q lease is converted to a P
marker on the key. This marker identifies the key-value pair as having buffered
writes. The P marker serves as the context for the I and Q leases granted on a
key. It has no impact on their compatibility matrix. When the AppNode requests
either an I or a Q lease on a key, if there is a P marker then the AppNode is
informed of this marker should the lease be granted. In this case, the AppNode
must recover the PStore document prior to processing the action.

In our example undesirable write-write race condition, Bob’s Album creation
using AppNode 1 generates a P marker for Bob’s Album. Bob’s addition of a
photo to the album (using AppNode 2) must obtain a Q lease on the album
that detects the marker and requires the application of buffered writes prior to
processing this action. Similarly, with the undesirable read-write race condition,
Bob’s read (performed by AppNode 2) is a cache miss that must acquire an I
lease. This lease request detects the P marker that causes the action to process
the buffered writes. In both scenarios, when the write is applied to PStore and
once the action commits, the P marker is removed as a part of releasing the Q
leases.

4 Related Work

The CAP theorem states that a system designer must choose between strong
consistency and availability in the presence of network partitions [21]. TARDIS
improves availability while preserving consistency.

A weak form of data consistency known as eventual has multiple meanings
in distributed systems [28]. In the context of a system with multiple replicas of
a data item, this form of consistency implies writes to one replica will eventually
apply to other replicas, and if all replicas receive the same set of writes, they
will have the same values for all data. Historically, it renders data available for
reads and writes in the presence of network partitions that separate different
copies of a data item from one another and cause them to diverge [11]. TARDIS
teleports failed writes due to either network partitions, PStore failures, or both
while preserving consistency.

A write-back policy buffers writes in the cache and applies them to PStore
asynchronously. It may not be possible to implement a write-back policy for all
write actions of an application. This is because a write-back policy requires a
mapping between reads and writes to be able to process a cache miss by applying
the corresponding buffered writes to the PStore prior to querying PStore for the
missing cache entry. In these scenarios, with TARDIS, one may use DIS (without
TARD) that continues to report a failure for cache misses during recovery mode
while applying buffered writes to PStore. A write-back policy does not provide



66 S. Ghandeharizadeh et al.

such flexibility. It also does not consider PStore availability. It improves perfor-
mance of write-heavy workloads. TARDIS objective is to improve the availability
of writes during PStore failure.

Everest [23] is a system designed to improve the performance of overloaded
volumes during peak load. Each Everest client has a base volume and a store set.
When the base volume is overloaded, the client off-loads writes to its idle stores.
When the base volume load is below a threshold, the client uses background
threads to reclaim writes. Everest clients do not share store set. With TARDIS,
AppNodes share the cache and may have different view of PStore, requiring con-
textual leases. Moreover, its AppNode may fail during PSTore recovery, requiring
conversion of non-idempotent writes into idempotent ones.

The race conditions encountered (see Sect. 3) are similar to those in geo-
replicated data distributed across multiple data centers. Techniques such as
causal consistency [20] and lazy replication [19] mark writes with their causal
dependencies. They wait for those dependencies to be satisfied prior to applying
them at a replica, preserving order across two causal writes. TARDIS is differ-
ent because it uses Δi to maintain the order of writes for a document Di that
observes a cache miss and is referenced by one or more failed writes. With cache
hits, the latest value of the keys reflects the order in which writes were performed.
In recovery mode, TARDIS requires the AppNode to perform a read or a write
action by either using the latest value of keys (cache hit) or Δi (cache miss)
to restore the document in PStore prior to processing the action. Moreover, it
employs AR workers to propagate writes to persistent store during recovery. It
uses leases to coordinate AppNode and AR workers because its assumed data
center setting provides a low latency network.

Numerous studies perform writes with a mobile device that caches data from
a database (file) server. (See [27] as two examples.) Similar to TARDIS, these
studies enable a write while the mobile device is disconnected from its shared
persistent store. However, their architecture is different, making their design
decisions inappropriate for our use and vice versa. These assume a mobile device
implements an application with a local cache, i.e., AppNode and the cache are
in one mobile device. In our environment, the cache is shared among multiple
AppNodes and a write performed by one AppNode is visible to a different AppN-
ode - this is not true with multiple mobile devices. Hence, we must use leases
to detect and prevent undesirable race conditions between multiple AppNode
threads issuing read and write actions to the cache, providing correctness.

Host-side Caches [4,16,17] (HsC) such as Flashcache [3] are application trans-
parent caches that stage the frequently referenced disk pages onto NAND flash.
These caches may be configured with either write-around, write-through, or
write-back policy. They are an intermediary between a data store issuing read
and write of blocks to devices managed by the operating system (OS). Applica-
tion caches such as memcached are different than HsC because they require appli-
cation specific software to maintain cached key-value pairs. TARDIS is somewhat
similar to the write-back policy of HsC because it buffers writes in cache and
propagates them to the PStore (HsC’s disk) in the background. TARDIS is



Teleporting Failed Writes with Cache Augmented Data Stores 67

different because it applies when PStore writes fail. Elements of TARDIS can
be used to implement write-back policy with caches such as memcached, Redis,
Google Guava [14], Apache Ignite [7], KOSAR [12], and others.

5 Conclusions and Future Research

TARDIS is a family of techniques designed for applications that must provide an
always-on experience with low latency, e.g., social networking. In the presence
of short-lived persistent store (PStore) failures, TARDIS teleports failed writes
by buffering them in the cache and applying them once PStore is available.

An immediate research direction is to conduct a comprehensive evaluation of
TARDIS and its variants (TAR, DIS, TARD) to quantify their tradeoff. This
includes an evaluation of replication techniques that enhance availability of
buffered writes per discussion of Sect. 2.3.

More longer term, we intend to investigate extensions of TARDIS to those
logical data models that result in dependence between buffered writes. To elabo-
rate, rows of tables of a relational data model have dependencies such as foreign
key dependency. With these SQL systems, TARDIS must manage the depen-
dence between the buffered writes to ensure they are teleported in the right
order.

References

1. Redis. https://redis.io/
2. repcached: Data Replication with Memcached. http://repcached.lab.klab.org/
3. McDipper (2013). https://www.facebook.com/10151347090423920
4. Alabdulkarim, Y., Almaymoni, M., Cao, Z., Ghandeharizadeh, S., Nguyen, H.,

Song, L.: A comparison of flashcache with IQ-Twemcached. In: ICDE Workshops
(2016)

5. Amazon DynamoDB (2016). https://aws.amazon.com/dynamodb/pricing/
6. Amazon ElastiCache (2016). https://aws.amazon.com/elasticache/
7. Apache: Ignite - In-Memory Data Fabric (2016). https://ignite.apache.org/
8. Barahmand, S., Ghandeharizadeh, S.: BG: a benchmark to evaluate interactive

social networking actions. In: CIDR, January 2013
9. Bronson, N., Lento, T., Wiener, J.L.: Open data challenges at Facebook. In: ICDE

(2015)
10. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39, 12–27 (2011)
11. Decandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,

A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: SOSP (2007)

12. Ghandeharizadeh, S., et al.: A Demonstration of KOSAR: an elastic, scalable,
highly available SQL middleware. In: ACM Middleware (2014)

13. Ghandeharizadeh, S., Yap, J., Nguyen, H.: Strong consistency in cache augmented
SQL systems. In: Middleware, December 2014

14. Google: Guava: Core Libraries for Java (2015). https://github.com/google/guava
15. Google App Engine (2016). https://cloud.google.com/appengine/quotas/

https://redis.io/
http://repcached.lab.klab.org/
https://www.facebook.com/10151347090423920
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/elasticache/
https://ignite.apache.org/
https://github.com/google/guava
https://cloud.google.com/appengine/quotas/


68 S. Ghandeharizadeh et al.

16. Graefe, G.: The five-minute rule twenty years later, and how flash memory changes
the rules. In: DaMoN, p. 6 (2007)

17. Holland, D.A., Angelino, E., Wald, G., Seltzer, M.I.: Flash caching on the storage
client. In: USENIXATC (2013)

18. Hu, X., Wang, X., Li, Y., Zhou, L., Luo, Y., Ding, C., Jiang, S., Wang, Z.: LAMA:
optimized locality-aware memory allocation for key-value cache. In: 2015 USENIX
Annual Technical Conference (USENIX ATC 15), July 2015

19. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Trans. Comput. Syst. 10(4), 360–391 (1992)

20. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: SOSP (2011)

21. Lynch, N., Gilbert, S.: Brewer’s conjecture and the feasibility of consistent, avail-
able partition-tolerant web services. ACM SIGACT News 33, 51–59 (2002)

22. MongoDB Atlas (2016). https://www.mongodb.com/cloud
23. Narayanan, D., Donnelly, A., Thereska, E., Elnikety, S., Rowstron, A.: Everest:

scaling down peak loads through I/O Off-loading. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, Berkeley, CA, USA, pp. 15–28. USENIX Association (2008)

24. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.:
Scaling memcache at Facebook. In: NSDI, Berkeley, CA, pp. 385–398. USENIX
(2013)

25. Ports, D.R.K., Clements, A.T., Zhang, I., Madden, S., Liskov, B.: Transactional
consistency and automatic management in an application data cache. In: OSDI.
USENIX, October 2010

26. Shahram Ghandeharizadeh, H.H., Nguyen, H.: TARDIS: teleporting failed writes
with cache augmented datastores. Technical report 2017–01, USC Database Lab-
oratory (2017). http://dblab.usc.edu/Users/papers/TARDIS.pdf

27. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: SOSP (1995)

28. Viotti, P., Vukolić, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Comput. Surv. 49(1) (2016)

https://www.mongodb.com/cloud
http://dblab.usc.edu/Users/papers/TARDIS.pdf

	Teleporting Failed Writes with Cache Augmented Data Stores
	1 Introduction
	2 Overview
	2.1 Failed Mode
	2.2 Recovery Mode
	2.3 Cache Server Failures

	3 TARDIS Consistency
	4 Related Work
	5 Conclusions and Future Research
	References




