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Abstract. Advances in cloud computing in the past decade have made
it a feasible option for the high performance computing and mass stor-
age needs of many enterprises due to the low startup and management
costs. Due to this prevalent use, cloud systems have become hot tar-
gets for attackers aiming to disrupt reliable operation of large enterprise
systems. The variety of attacks launched on cloud systems, including
zero-day attacks that these systems are not prepared for, call for a uni-
fied approach for real-time detection and mitigation to provide increased
reliability. In this work, we propose a big data analytical approach to
cloud intrusion detection, which aims to detect deviations from the nor-
mal behavior of cloud systems in near real-time and introduce measures
to ensure reliable operation of the system by learning from the conse-
quences of attack conditions. Initial experiments with recurrent neural
network-based learning on a large network attack dataset demonstrate
that the approach is promising to detect intrusions on cloud systems.
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1 Introduction

Advances in the networking and virtualization technologies in the past decade
have made cloud platforms a popular choice for the data storage and computing
needs of many enterprises. Many companies have moved their infrastructures
to major cloud platforms for improved reliability. As cloud services have gotten
popular and common with decreased costs, they have also become hot targets
for attacks. The rise of the Internet of Things (IoT) paradigm, which is closely
connected to cloud computing, has increased the attack surface for cloud sys-
tems through increased connections and vulnerabilities attackers can exploit.
The vulnerability of cloud platforms to attacks calls for security measures to
prevent those attacks or detect them and take action when an attack happens.
Although some of the existing security methods can be applied to cloud systems,
new methods designed truly for the cloud systems would be more preferable.
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Cloud systems are prone to zero-day attacks that are malicious activities not
observed previously. Even though security mechanisms are updated quickly, even
seconds are important to provide high reliability in such systems. Hence, a real-
time security system which is not signature-based is more suitable for the cloud.
The system should be able to detect both old and new attack methods as fast as
possible. As the system will be under new attacks everyday, it is important that
the system will easily adapt to those attacks. Unsupervised learning methods
will enable the system to handle new attacks and learn from them.

Not unlike cloud computing, big data has become a popular concept with the
technological advances in the past decade. Today, many different frameworks and
tools exist to handle different types of big data [18]. The ability to store and pro-
cess data in large volumes and velocity provides a significant means for analyzing
cloud data in real time to detect anomalies that could signal presence of attacks
on the cloud system. In this work, we propose a big data analytics approach for
intrusion detection in cloud systems, based on recurrent neural networks that are
capable of incorporating the temporal behavior of the system into the anomaly
detection task. Since we want our system to respond in near real-time, we use
streaming data from cloud platforms. An initial prototype of the proposed sys-
tem using Apache Spark and the TensorFlow machine learning framework for
recurrent neural networks has been developed and promising results have been
achieved with experiments on a large network attack dataset.

2 Related Work

Network intrusion detection has been a well studied topic with many different
approaches proposed along the years. While some of these solutions can also be
applied in a cloud environment, because of the different characteristics of the
cloud environments and comparatively larger network traffic volumes, several
new approaches are suggested to solve the problem of intrusion detection in the
cloud. In a cloud environment, intrusion detection monitors can be deployed
at various locations. With the usage of virtualization techniques, the intrusion
detection monitors can be deployed in a guest VM or in virtual machine mon-
itors [12,17]. Beyond host or network device monitoring, distributed collabora-
tive monitoring approaches are also utilized to catch system-wide attacks [4].
In these types of solutions, infrastructure problems need to be solved, since the
system must support massive amounts of data gathered from different monitors
and these data must be processed quickly to detect possible attacks as soon as
possible.

Recent works have proposed using big data processing approaches to solve
the problem of intrusion detection in cloud environments [5]. To detect a possible
attack using intrusion detection systems (IDS), basically two techniques can be
used [13]: In misuse detection, the IDS knows about previous attack patterns and
tries to catch an attack by comparing the collected data with previous patterns.
In anomaly detection, the IDS does not know about any previous attacks and
tries to find anomalies in the network data, which could be possible signs of
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attacks. In recent years, machine learning approaches have been used successfully
for both of these techniques [9,10,16].

Recent years show many promising results of applying deep learning meth-
ods to machine learning problems and intrusion detection is not an exception
for this case. In [8,20], the authors propose applying recurrent neural networks
to intrusion detection systems and got very promising results. These works only
show that RNN could be used while detecting anomalies in related data and they
do not propose a complete end-to-end intrusion detection system. Our approach
differs from these previous approaches in that it attempts to build a self-healing
cloud system through deep learning with recurrent neural networks, which inte-
grates time dependencies between observations (data points) in the system into
the learning process to provide a more accurate representation of the attack
progression and normal system processes.

3 Proposed Approach

In this work, we propose a cloud intrusion detection system that works with
real-time cloud data analytics to detect possible attacks and develop a resilience
mechanism through deep learning with recurrent neural networks.

The solution involves the collection of system metrics from cloud platforms
and near real-time processing of those metrics using big data analytics to dis-
cover anomalies. Metric collection is done by metric collection agents deployed
in related parties like guest VMs. These data include network packets and other
related metrics like VM usage metrics, HTTP server performance etc. After col-
lection, these metrics are sent to a stream to be processed by a stream processing
engine. The stream processing engine gathers the metrics inside the stream, con-
sidering their timestamps and processes these data by feeding them to a recurrent
neural network trained previously. If the network finds an anomaly in the data, it
labels it and triggers an alarm to inform the system administrators. The details
of these steps are listed below.

3.1 Metric Collection

Popular cloud system providers such as AWS1 share the statistics and state
of their cloud systems through an API. These statistics contain utilization of
CPU, RAM, disks, number of packets/bytes received/transmitted, and many
other details about the current state of the system. In this work, we utilize guest
VM agents for metric collection, since this approach does not depend on the
cloud infrastructure and is more flexible than virtual machine monitor solutions.
At the metric collection phase, the agents collect the required metrics from the
guest VM like network flow, basic system usage metrics such as CPU utilization,
disk read/write metrics etc. and usage metrics of applications that can affect
the system performance. The metric collection agent has two components, the

1 https://aws.amazon.com/.

https://aws.amazon.com/
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producer and the consumer. The producer component gathers the system and
application metrics from the VM using different interfaces. To achieve this, the
producer must have a pluggable architecture that written plug-ins can gather the
metrics from, knowing how to get them. The responsibility of the consumer side
is to gather metric records from the producer and pass them onto the processing
phase.

3.2 Metric Processing

Due to the large volume and velocity of the data collected from cloud systems,
big data processing frameworks are needed to analyze the data. Big data can be
processed as batches or as streams. Deciding which type of processing is needed
is up to the task. If we handle the data as batches, we need to wait for some
amount of time to create batches from the given data. After the data become
batch, the processing starts. This contradicts with our purpose of near real-time
detection in this work, as we need to act in real time in order to prevent or stop
attacks before they can harm the cloud system. Stream processing on the other
hand involves handling the data in memory as they arrive.

In this work, we utilize Apache Spark [2] to process the stream data col-
lected from cloud systems. Spark has advantages like fault-tolerance, in-memory
computation, being faster than similar frameworks, having a wider community,
multiple language support etc. The data that streams from our cloud systems
are handled by Spark and served to our algorithm in order to detect possible
attacks. Multiple networks can be watched by using this framework.

To support stream processing, many tools are available to specifically han-
dle the requirements of this process. Tools like Apache Kafka [1] and Amazon
Kinesis [3] streams provide great support for handling stream data in a scalable
way. In this solution, we use Apache Kafka to collect the metrics from the guest
VM agents and pipe them to the stream processing engine.

3.3 RNN-Based Learning for Anomaly Detection

Signature-based intrusion detection systems rely on detailed information about
previously observed attacks. These approaches fail in the case of cloud systems,
which are open to attacks that might be novel. On the other hand, unsupervised
learning methods enable us to prevent or at least detect changes in the system
parameters, i.e. the normal behavior of the system. By this way, the system
will be able to detect anomalies and will try to prevent if there is an attack
going on. In the mean time, alarms will be created in the system so that if the
security system cannot stop the attack, it will warn the user/owner of the cloud
system. This is actually the main difference from a signature-based intrusion
detection system. If this type of system does not have any information about an
attack, it will most likely be missed. On the other hand, for a system with an
unsupervised learning algorithm, even a minor anomaly might cause the system
to detect if something is wrong. When run on isolated data points/cloud activity
logs, unsupervised algorithms may not achieve very high accuracy due to noise
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in the data. For instance, observation of a sudden spike in CPU utilization might
signal a possible attack even if it was caused by a legitimate process and does
not persist for a long period, not causing any degradation in the performance of
the system. Precisely for this reason, we need to be able to model the time-based
behavior of the system by considering the data points collectively as a time series
rather than isolated incidents.

Recent advances in deep neural networks have made it an effective tool for
many supervised and unsupervised learning tasks, achieving higher accuracy
than competing approaches. Recurrent neural networks (RNN) are machine
learning models consisting of nodes that are connected to each other. These
nodes can memorize and pass information in a sequence, though they process
the data one by one. Therefore they can handle inputs and outputs that are
dependent on each other. RNNs have been successful in various tasks such as
image captioning, speech synthesis, time series prediction, video analysis, con-
trolling a robot, translating natural language and music generation [11].

Normally, there is only one single network layer in a node of a classic RNN.
In conventional neural networks, it is not defined how the network will remember
events of the past to use the information about them in the future. Recurrent
neural networks aim to solve this issue by using the architecture depicted in
Fig. 1:

Fig. 1. An RNN loop

As shown in the diagram, the network gets an input x, processes it, and
outputs an output h. The outcome of the process is used in the next step. To
make it clear, the loop is demonstrated in an open form in Fig. 2.

The equation below shows the network mathematically:

ht = θ(Wxt + Uht−1)
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Fig. 2. An unrolled RNN loop

Here W stands for the weight matrix, which is multiplied by the input of the
current time. The result is added to the multiplication of the output (hidden
state) of the previous time step and its own hidden state and the hidden state
matrix (transition matrix) U. These weight matrices are used to define how much
of the information both from the current input and past output will be used to
determine the current output. If they generate an error, it will be used to update
the weights to minimize error. The resulting sum is condensed by the hyperbolic
tangent function θ [6].

Some example uses of this standard RNN architecture include predicting the
next character in a series of letters, picking the next note after a sequence of
notes of a song, deciding where to go when controlling the motion of a robot etc.
In our case, we use RNN in order to predict an intrusion, but we use LSTM-RNN
because of the reasons explained below.

LSTM stands for Long Short Term Memory. Without it, gradients that are
computed in training might get closer to zero (in case of multiplying values
between zero and one) or overflow (in case of multiplying large values). In other
words, as the time sequences grow, RNN might not connect older inputs to the
outputs. LSTM adds additional gates to the architecture to control the cell state.
By this modification, training over long sequences is not a problem anymore.

In an LSTM-RNN there are four layers, which interact with each other. First
of all, the input is received and copies itself into four. The first one goes into
a sigmoid layer. This layer decides whether the output of the previous layer is
needed and should be used or it should be thrown away. Then another sigmoid
layer decides which values are going to be updated. A tanh layer generates possi-
ble values, which might be included in the state. These two layers get combined
to update the state. Finally another sigmoid layer picks what we are going to
output from our cell state (Fig. 3).
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Fig. 3. Disconnected dependencies

In the proposed model, we utilize the LSTM recurrent neural networks
(RNN) [7] algorithm to detect deviations from the normal behavior of the cloud
system under monitoring. Note that because of the nature of the algorithm, it
first needs to learn the normal state of the system. By processing the normal
state, the system will detect anomalies when metric values that deviate signif-
icantly from the normal behavior of the system are observed. In RNNs, inputs
are not independent, every time sequence uses information from the previous
ones. This feature perfectly suits our task, as we cannot directly specify if there
is an anomaly without analyzing the system’s state for the time being (Fig. 4).

The algorithm receives parameters of the system from Spark and uses those
parameters as a time series input. The parameters indicate the state of the sys-
tem’s properties for that time series. The algorithm then serves these parameters
to its prediction function. The prediction function tries to find out if there is an
anomaly in the system. For example, if there is an unrealistic peak in the CPU
utilization and number of disk operations and incoming network packets, this
might indicate that the system is under a denial of service attack. From this
point, the system can create an alarm to warn system administrators or initiate
a security action (Fig. 5).

We have used LSTM-RNN in Tensorflow. LSTM is actually handled by Ten-
sorflow itself, but we needed to convert some of the fields in the data as we could
not pass them directly to the algorithm. For example, fields like ip addresses,
protocol types, service types etc. were converted to data types that LSTM-RNN
accepts, as strings are not accepted. There was only one output for our exper-
iment, which is the actual result: whether there was an attack (1) or not (0).
How LSTM-RNN works in general is described below step by step [15]:
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Fig. 4. Single layered structure of standard RNN

1. The first layer gets the current input and output of the past time series, then
decides if the previous information is needed now. Actually this layer can be
called the forget layer. h stands for the output of the past, x stands for the
current input, W is the weight of this layer, and b is the bias.

ft = σ(Wf .[ht−1, xt] + bf )

2. Then we move onto the input layer. This layer is another sigmoid layer, which
decides the values that are going to be updated.

it = σ(Wi.[ht−1, xt] + bi)

3. A hyperbolic tangent layer creates candidate values, which might be included
in the cell state. Cell state is a straight line in our network that flows for
entire network. LSTM changes information on this state across the road with
the help of the gates.

cdtt = tanh(Wcdt.[ht−1, xt] + bcdt)

4. Results of all previous steps are combined in order to create an update to the
cell state.

ct = ft ∗ ct−1 + it ∗ cdtt

5. Finally, the output is decided. Naturally, the cell state is used in deciding.
Another sigmoid layer takes part, and its output is multiplied the by cell state
(state will go into tanh first).

ht = σ(Wo.[ht−1, xt] + bo) ∗ tanh(ct)
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Fig. 5. Four layered structure of LSTM-RNN

4 Evaluation

We have developed an initial prototype of the proposed cloud IDS using Apache
Spark collecting data from machine instances on AWS. Figure 6 demonstrates
the high-level operation of the developed prototype.

To evaluate the accuracy of the RNN component in the proposed cloud
intrusion detection system, we have used the “UNSW-NB15” dataset of UNSW
ADFA [14] for experiments. In this dataset, there are attack and non-attack
records of network traffic. The total number of records in the dataset is approx-
imately two and a half millions, making it quite comprehensive. The test and
training sets as partitions of the original dataset are also provided. The records
have 49 fields in total, a subset of which is listed in Table 1 below, including
information like source IP address, source port, protocol, number of packets on
requests and responses, bytes of those packets, number of losses, attack type if
there is one etc.

Fig. 6. Big data processing system operation
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We have simulated the data so that the system behaves like the data are
streaming. At first, a training set is provided for LSTM-RNN, which runs on
TensorFlow [19], which is an open-source machine learning framework. With the
help of the model that is created on the framework, the system decides whether
a record seems like an attack or not. We ran the model using 50000 records for
training, and 650000 records for testing. The error rate was below 7%, which is
a promising accuracy for intrusion detection.

Table 1. UNSW-NB15 parameters

No. Name Type Description

1 srcip Nominal Source IP address

2 sport Integer Source port number

3 dstip Nominal Destination IP address

4 dsport Integer Destination port number

5 proto Nominal Transaction protocol

6 state Nominal Indicates to the state and its dependent protocol, e.g. ACC,
CLO, CON, ECO, ECR, FIN, INT, MAS, PAR, REQ, RST,
TST, TXD, URH, URN, and (-) (if not used state)

7 dur Float Record total duration

8 sbytes Integer Source to destination transaction bytes

9 dbytes Integer Destination to source transaction bytes

10 sttl Integer Source to destination time to live value

11 dttl Integer Destination to source time to live value

12 sloss Integer Source packets retransmitted or dropped

13 dloss Integer Destination packets retransmitted or dropped

14 service Nominal http, ftp, smtp, ssh, dns, ftp-data, irc and (-) if not much used
service

15 Sload Float Source bits per second

16 Dload Float Destination bits per second

17 Spkts Integer Source to destination packet count

18 Dpkts Integer Destination to source packet count

19 swin Integer Source TCP window advertisement value

20 dwin Integer Destination TCP window advertisement value

21 stcpb Integer Source TCP base sequence number

22 dtcpb Integer Destination TCP base sequence number

. . . . . . . . . . . .

48 attack cat Nominal The name of each attack category. In this data set, nine
categories e.g. Fuzzers, Analysis, Backdoors, DoS Exploits,
Generic, Reconnaissance, Shellcode and Worms

49 Label Binary 0 for normal and 1 for attack records
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5 Conclusion

In this work, we proposed an intrusion detection system for cloud computing
that leverages big data analytics with recurrent neural networks. We have imple-
mented an initial prototype of the proposed architecture with Apache Spark and
evaluated the performance of recurrent neural networks on a network attack
dataset, which provided promising attack detection accuracy results. We have
used LSTM-RNN algorithm in Tensorflow to detect attacks in the network.
LSTM-RNN has been picked as we were interested with using time series data.
Results of this work looked promising about integrating big data analytics to
intrusion detection in cloud. Our future work will focus on the integration of
a deep reinforcement learning based model, which will provide automated self-
healing of cloud systems by learning from the consequences of attacks on the
system, thereby avoiding states that are vulnerable to attacks. We will also
experiment with real data streams gathered using cloud APIs and quantify the
delays of big data processing as well as the mean time to detect attacks and
recover in major cloud platforms. Extensive experimentation with various attack
types on cloud systems will be conducted to evaluate and optimize the big data
analytics-based intrusion detection framework.
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