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Abstract. In this paper, we propose a novel anomaly detection algo-
rithm, named T-Forest, which is implemented by multiple trident trees
(T-trees). Each T-tree is constructed recursively by isolating the data
outside of 3 sigma into the left and right subtree and isolating the oth-
ers into the middle subtree, and each node in a T-tree records the size
of datasets that falls on this node, so that each T-tree can be used as
a local density estimator for data points. The density value for each
instance is the average of all trees evaluation instance densities, and it
can be used as the anomaly score of the instance. Since each T-tree is
constructed according to 3 sigma principle, each tree in TB-Forest can
obtain good anomaly detection results without a large tree height. Com-
pared with some state-of-the-art methods, our algorithm performs well
in AUC value, and needs linear time complexity and space complexity.
The experimental results show that our approach can not only effec-
tively detect anomaly points, but also tend to converge within a certain
parameters range.

Keywords: Anomaly detection - Isolation - Forest - 3 sigma
Gaussian

1 Introduction

Anomaly points are the data points that deviate from most data and do not
obey the distribution of most data points [1-3]. Anomaly detection has been a
widely researched problem in several application domains such as system health
management, intrusion detection, healthy-care, bio-informatics, fraud detection,
and mechanical fault detection. For these applications, anomaly detection as
an unsupervised learning task is very important. The significance of anomaly
detection is due to the fact that anomaly data can be translated into important
operational information in various application domains. For example, with the
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development of cloud computing [4-7], it is very important to detect abnormal
traffic in the cloud in a timely manner. And with the development of the cloud
storage [8,9], timely detection of abnormal disk reads and writes in cloud storage
can greatly reduce the potential risk of cloud storage.

Many unsupervised anomaly detection approaches, including classification-
based [10,11], clustering-based [12,13], density-based [14-17], and angle-baed
[18], calculate the distance between data points to determine their similarity,
and then determine whether the data points are abnormal. There are many
ways to calculate the distance, such as Euclidean distance, DTW, and so on. By
analyzing the characteristics of these distance calculation formulas, we can get
that the result can be easily affected by the data values and the number of data
attributes. And many of the above algorithms are constrained to low dimensional
data and small data size due to the high computational complexity of its original
algorithm. In order to solving the above problems, Liu et.al proposed a different
approach that detects anomalies by isolating instances, without relying on any
distance or density measure [19,20]. In this approach, since the attribute and
the split value of each node in the isolation tree are randomly selected, the built
isolation tree can also be called a completely random tree. Consequently, there
is often a certain degree of randomness in the anomaly detection results by using
such a model.

In response to these challenges, we propose a novel anomaly detection algo-
rithm on the basis of isolation-forest [19]. The key insight of our proposed algo-
rithm is a fast and accurate local density estimator implemented by multiple tri-
dent trees(T-trees), called T-Forest. The proposed approach can isolate anomaly
data faster and more accurately. To achieve this, we extend the binary tree struc-
ture of the original isolation tree to the structure of the trident tree. And instead
of selecting the split value randomly, we take advantage of sigma principle to
select two split values at a time to split the inconsistent attribute data as soon
as possible. In this paper, we will show that trident trees can effectively isolate
anomaly points.

The main contributions of this paper are summarized as follows:

— We propose a novel anomaly detection algorithm, called TB-Forest. Data
points which have short average path on the T-tree, may be seen as anomaly
points.

— We propose a local density assessment method, which is used to estimate the
anomaly degree of data points. We perform many experiments on benchmark
dataSets. The experiment results show that our proposed approaches outper-
forms the competing methods on most of the benchmark dataSets in AUC
score.

The remainder of this paper is organized as follows. In Sect. 1, we review the
related work. In Sect. 2, we present the proposed anomaly detection algorithm. In
Sect. 3, we perform some empirical experiments to demonstrate the effectiveness
of our algorithm. Lastly, the conclusion will be shown in Sect. 4.
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2 Anomaly Detection by Our Method

In this section, we will show the detailed steps of our proposed detection algo-
rithm. We first show some definitions used in this paper. Then we present the
implementation details. Table 1 summarizes the symbols used in this paper.

2.1 Definitions

In this section, we will present the definition of T-tree and introduce the
attributes of each node in a T-tree. And we definite the formula for calculating
the anomaly score.

Table 1. Symbols and descriptions

Symbols | Description

N Number of instances in a dataset

x An instance

X A dataset of N instances

Q A set of attributes

q An attribute

Ug The mean of the attribute ¢

oq The standard deviation of the attribute ¢

T A tree

T, A right tree of a node 7

T A left tree of a node 7

Tm A middle tree of a node T

I The split value between left tree and middle tree, uq — 304
Dr The split value between middle tree and left tree, uq + 304
t Number of trees

P Sample ratio

den(z) | The number of contained instances of the external node that x belongs to
hlim Height limit

slim Size limit in training a tree

Definition 1. T-tree: Let T denote a T-tree and T be a node in this T-tree.
It is either an external-node with no child, or an internal-node with a set and
exactly three child trees(T), Ty, Ty ). Each node in a T-tree contains the following
elements: (1) variables p; and p,., which are used to divide data points into T}, Ty,
and T, subtree; (2) variable size, which is used to record the instances number
located in this node; (8) three node pointers, which are used to the left subtree,
the right subtree, and the middle subtree.

Given a sample of data X={x1,2za,...,2,} of n instances, in which each z;
has d attributes, to build a trident tree(T-tree). Figure 1 is used as an example
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to illustrate the structure of a T-tree. We recursively divide X by randomly
selecting an attribute g and calculating the left split value p; and the right split
value p,, until either: (1) the tree height reaches limit, hlim, (2) the number
of instances at a node 7 is less than the size limit, slim or (3) all points of the
selected attribute have the same value in X. An T-tree has the property as BST,
that is, the value of an attribute in left child tree is less than the middle side and
the middle size is less than the right side. Assuming all instances are distinct,
the number of instances in left child tree is equal to the number in the right side.
Since each leaf node in the MB-Tree contains no fewer than one instance and
each internal node contains exactly three children, the total number of nodes in
a T-tree is less than % — 1. Hence, an MB-Tree is only linear storage overhead.

X<uy3-3g X>1y3-30
X<y, 30 X1y 30 X<ty 3G XUy 30

Fig. 1. This figure is used as an example to illustrate the structure of a T-tree and
show the process of the division. Round nodes represent internal nodes, and square
nodes represent external nodes.

In this paper, calculating a score for each data point that reflects the anomaly
degree of each data point. Since all instances in the dataSets fall on different
external nodes after being divided several times according to different attribute
values, each node in a T-tree forms a local subspace and instances located on
each node have similar data characteristics. Instances on each node become K-
nearest-neighbors to each other. Hence, we calculate the local density of the
instance by counting the number of instances in each node where the instance
falls, to determine the anomaly degree of the instance.

Anomaly Score: The anomaly score of each point x is measured by the average
local density, den(x). den(z) denotes the number of instances contained in the
terminational node of x. Since we have adopted the idea of ensemble learning
and the number of instances used to train each T-tree may be different, we need
to normalise the value den(z) in order to calculate the final anomaly score by
using all results in the TB-Forest. Therefore, the anomaly score of an instance
can be defined as follows:
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where den;(z) is the local density in a T-tree and N; is the instances number
in T-tree;. Because of the characteristics “less and different” of anomaly points,
the value of score(x) will be less than the normal points. Therefore, the smaller
the value of score(x), the more abnormal it is. In other words, the closer of
the value of score(x) is to 0, the more likely the corresponding instance is an
anomaly point.

2.2 Training for T-Forest

In this section, we will introduce the concrete steps of building a T-Forest, which
is composed of many T-trees. Each T-tree is built on the dataset sampled by
using the variable bagging technique.

Building a T-tree: A T-tree can be constructed by recursively dividing the
training datasets until the tree reaches height limit or the instances number is
less than the size limit. During the construction of each node of a T-tree, an
attribute will be randomly selected from the attributes of the datasets as the
splitting attribute. And these two splitting values, p; and p,, will be obtained
by calculating the mean value and the standard derivation of this attribute, and
then are used to divide the training datasets. The concrete steps to build a T-
tree are described in Algorithm 1. The time complexity of this algorithm is only
O(logs(N)), and the space complexity is liner O(N).

Building a T-Forest: There are three parameters that need to be set manually
to the TB-Forest. They are the height limit of a T-tree hlim, the size limit of
each node slim, and the tree number . There is also a variable, sample ratio v,
which is generated uniformly from the range between 0.2 and 0.8. This parameter
may be different in each T-tree, so it can increase the diversity of samples in
each T-tree. The changes of these parameters will affect the evaluation effect.
For example, many trees or a high T-tree can increase the accuracy of the result.
However, after increasing to a certain value, the result will tend to converge. If
these two parameters are set too large, it not only did not improve the detection
performance, but increase the model’s runtime and memory consumption. The
size limit is always set to 15, because if the number of samples is less than 15, the
criteria 3 sigma will no longer apply. The concrete steps of TB-Forest algorithm
are described as Algorithm 2. The time complexity of building a TB-Forest is
O(t+ 1 xlogz(N)). The space complexity of building a TB-Forest O(t x ¢ x N).

2.3 Evaluation Stage

In this evaluation stage, an anomaly score of instance x can be estimated by
the average local density E(den(x)). den(x) can be calculated by Algorithm 3.
After getting all den(z) of instance x by TB-Forest, we can use the formula
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Algorithm 1: Building a T-tree(Data, cur, hlim, slim)

Input: A dataSet Data, a current height cur, a height limit hlim, a size limit
slim.
Output: A T-tree

if |Data| < slim and cur > hlim then

return node(size=|Datal,exteral=TRUE);
end
Randomly select an attribute ¢ € Q.
Calculate the mean value, ugq, of the attribute q.
Calculate the standard derivation, o, of the attribute gq.
left-split «— uq — 30
right-split < uq + 30
Data; — data-filter(Data, z < left-split)
Data,, < data-filter(Data, x >left-split and = <right-split)
Data, — data-filter(Data, x > right-split)
Left-Tree «— Building-Tree(Data;,cur + 1, hlim, slim)
Middle-Tree <« Building-Tree(Datam, ,cur + 1, hlim, slim)
Right-Tree <« Building-Tree(Data,,cur + 1, hlim, slim)
return node(Left-Tree,Middle-Tree,Right-Tree,size=|Data|,p; =left-
split,p, =right-split,exteral=FALSE);

© 00N o A W N
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1 to calculate the average local density E(den(x)). The closer of the value of
E(den(z)) is to 0, the more likely the instance z is an anomaly point. For the
test dataSet, we can sort the anomaly scores of these instances to get the top
K anomaly points. The time complexity of getting the average local density
E(den(x)) of this test dataSet is O(M xtxlogs(N *¢)), where N is the instances
number of training dataSets, and M is the instances number of this test dataSet.

3 Experimental Evaluation

In this section, we will present the performance of our proposed algorithm from
many experiments using the public dataset from UCI. For comparability, we
implemented all experiments on our workstation with 2.5 GHz, 6 bits operation
system, 4 cores CPU and 16 GB RAM, and the algorithms codes are built in
Python 2.7.

3.1 Experimental Metrics and Experimental Setup

Metrics: In our experiment, we use Area Under Curve(AUC) as the evalua-
tion metric with other classic anomaly detection algorithms. AUC denotes the
area under of Receiver Operating Characteristic(ROC) curve and illustrates the
diagnostic ability of a binary classifier system. AUC is created by plotting the
true positive rate against the false positive rate at various threshold settings'.

! https://en.wikipedia.org/wiki/Receiver_operating_characteristic.
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Algorithm 2: Building a TB-Forest

Input: A dataSet Data,number of trees t, height limit hlim, size limit slim
Output: A set of TB-Trees, TB-Forest

Forest «— set();
sample-size < uniform(min())
for i=1 to t do

1)« uniform(0.2,0.8)

Data «— sample(Data, v).

tree «— Building—Tree(%,O,hlim,slim)
Forest « [Forest, tree]

end
return Forest;

© 0 N s W N

Algorithm 3: Local density of an instance(den(x))

Input: An instance z, a height limit hlim, A T-tree root
Output: The anomaly score of this instance

if root is external or cur >= hlim then

return w,
end
if x4 < root.q; then

return Local-density(x,cur + 1,hlim, root — left);
else if x4 > root.q; then

return Local-density(x,cur 4+ 1,hlim, root — right);
else

return Local-density(z,cur + 1,hlim, root — middle);
end

© 0N O Uk W N
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The detection algorithm with larger AUC has the better detection accuracy,
otherwise, the detection algorithm is less effective.

Experimental Setup: There are two types of experiments. First, we compare
the differences in the AUC value between our proposed algorithm and other
classic algorithms. Second, we compare the effect of parameters on our proposed
algorithm and iForest. All above experiments are performed on the selected
twelve datasets from public UCI datasets [21], which are summarized in Table 2.
Most of these datasets include two labels, and we use the most class as the normal
class and the less class as the anomaly class, for example, Http which is from
KDD CUP 99 network intrusion data [22] includes two classes 0, 1. For other
datasets that include multiple classes, we need process these into two labels.
Arrhythmia has 15 classes, and we choose 3, 4, 5, 7,8,9, 14, 15 as the anomaly
class and other classes as the normal class. We choose NON-MUSK-252, NON-
MUSK-j146, and NON-MUSK-j147 as the normal class, and choose MUSK-213,
MUSK-211 as the anomaly class in musk dataset. In HAPT dataset, we choose
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the class 5 as the normal class and the class 11 as the anomaly class to form the
hapt511 dataset.

In order to present the efficiency of our proposed algorithm, we choose four
representative anomaly detection algorithms, which include LOF [23], iForest
[19], HS-Forest [24], RS-Forest [25]. LOF is the same as our proposed algorithm
to determine the abnormality of data points by calculating the local density of
data points, but LOF calculate the local density of data points by calculating the
similarity between data points and it needs O(N?) time complexity. HS-Forest,
RS-Forest are the same as our proposed algorithm to calculating the local density
of data points by counting the instances number of a terminal node in model
tree, but each model tree in these two algorithms is constructed without training
datasets. And these two algorithms can be used to stream data, but we only use
their function on static datasets. Because our algorithm is an improvement on
iForest, we choose it as a comparision algorithms. As for LOF, we set kK = 10
in our experiment. As for HS-Forest, RS-Forest, and iForest, we set height limit
hlim = 6 and the trees number t = 25. For our proposed algorithm, we set the
height limit hlim = 4 and the trees number ¢ = 25.

Table 2. Benchmark data sets, where n denotes the size of datasets, and d denotes
the number of attributes of datasets.

Datasets n d Anomaly ratio
Http 567497 3 10.4%
Satellite 6435 | 37 | 31.6%
ann_throid 7200 6 | 7.4%
Cardiotocography | 1831 | 20 | 9.6%
Musk 5682 165 | 1.7%
Epileptic 11500 | 178 | 20%
hapt511 1513 | 561 |5.9%
Breast 569 | 10 | 35.7%
Arrhythmia 452 | 273 | 14.6%
Shuttle 14500 | 10 |5.9%
Pima 768 9 |35%
Tonosphere 351 | 34 | 35.8%

3.2 Performance on AUC

This experiment is to compare our proposed algorithm with other algorithms
in term of AUC. Table3 presents the results of all compared algorithms on
benchmark datsets. From this table, we can find that our algorithm outperforms
other algorithms on most of this benchmark datasets. The AUC performance
of our algorithms are approximative to RS-Forest, HS-Forest, and iForest, but
it is much better than LOF algorithm on all these datasets. From this table,
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we can find that our proposed algorithm outperforms iForest on nine of twelve
datasets, which can illustrate that our improvement is successful. And we can
observe that our algorithms performs well on these datasets, which contain a
small percentage of anomaly class from Table 2.

As we all known, the Http dataset is a network traffic data set provided by
KDD99. There is a small amount of traffic data in this dataset as abnormal
traffic, and we treat these small amount of abnormal data as data with class
0. Our detection algorithm can efficiently detect such abnormal network traffic,
and our algorithm only requires a logarithmic level of runtime. So our algorithm
can be used to detect whether there is abnormal traffic in the public cloud of
private cloud.

Table 3. Performance comparison of different methods on different benchmark data
sets. AUC score is measured, and the bold font indicates that the algorithm performs
significantly better.

Data sets TB-Forest* | iForest | LOF | RS-Forest | HS-Forest
Http 0.9925 1.00 |NA 0.999 0.996
Satellite 0.68 0.71 |0.52 |0.7 0.59
ann_thyroid 0.85 0.81 0.72 10.68 0.8
Cardiotocography | 0.93 0.92 0.539 |0.88 0.74
Musk 0.77 0.64 0.531 |0.64 0.66
Epileptic 0.984 0.98 0.57 10.88 0.94
hapt511 0.999 0.998 |0.595 |0.997 0.982
Breast 0.88 0.84 0.6293 | 0.518 0.94
Arrhythmia 0.836 0.80 0.69 |0.695 0.686
Shuttle 0.992 1.00 |0.55 |0.998 0.999
Pima 0.71 0.67 0.513 |0.49 0.71
Tonosphere 0.94 0.85 0.546 | 0.89 0.78

Parameters Analysis: In this experiment, we show the effect of two parame-
ter (hlim and t) values on the detection results of all compared algorithms on
benchmark datasets. Due to the space limitations, we only show the experiment
results on Http and shuttle datasets.

Figure 2 shows that the value of AUC changes as the tree height changing in
the Http dataset, when the number of trees is set to 25. This figure shows that
our proposed algorithm performs better when the height limit is in the range 2
to 6. Since Http dataset has only three attributes, it does not require a very high
tree to get good performance. Figure 3 shows that the value of AUC changes as
the tree height changing in the shuttle dataset, when the number of trees is
set to 25. In this figure, with the increasement of height limit, all comparable
algorithms perform better and better and tend to converge. From these two
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Fig. 2. AUC changes with hlim, when
fixed t = 25, on http data.
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Fig. 3. AUC changes with hlim, when
fixed t = 25, on shuttle data.

examples, we can find that the tree height limit of each T-tree in T-Forest can
be in the range of 4 to 6, in our proposed algorithm.

Therefore, we run two experiments to detect the effect of changes in the
number of trees on the AUC value with height limit hlim = 6. Figure4 shows
that the value of AUC changes as the number of trees changing in the http
dataset, when the height limit of trees is set to 6. Figure 5 shows that the value
of AUC changes as the number of trees changing in the shuttle dataset, when
the height limit of trees is set to 6. From these two figures, we can observe
that changes in the number of trees have little effect on the effectiveness of our
algorithm. To accommodate most data sets, the parameters ¢ can be in the range

of 10 to 25.

—&— TB-Forest —#— iForest —&— HS-Forest —— RS-Forest
1.0

0.9
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AUC
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0 5 10 15 20 25
Tree number t With Height=6

Fig. 4. AUC changes with ¢, when fixed
hlim = 6, on http data.
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Fig. 5. AUC changes with ¢, when fixed
hlim = 6, on shuttle data.
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4 Conclusions

In this paper, we propose a novel anomaly detection, T-Forest, based on isolation
principle. Our algorithm constructs many TB-Trees using sampled datasets by
variable sample technique, and each T-tree is a trigeminal tree which is built by
recursively segmenting dataset to map dataset to different subtrees by 3 sigma
principle. Then, we have performed some experiments to illustrate the detection
effect of our algorithm. The experiment results show that our algorithm can
detect anomaly data points effectively and efficiently. In the future, we will focus
on how to improve the detection accuracy of our algorithm on the datasets, in
which normal and anomaly points are mixed distributions.
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