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Abstract. Offloading computation to resource-rich servers is effective
in improving application performance on resource constrained mobile
devices. Despite a rich body of research on mobile offloading frame-
works, most previous works are evaluated in a single-tenant setting,
i.e., a server is assigned to a single client. In this paper we consider
that multiple clients offload various continuous mobile sensing appli-
cations with end-to-end delay constraints, to a cluster of machines as
the server. Contention for shared computing resources on a server can
unfortunately result in delays and application malfunctions. We present
a two-phase Plan-Schedule approach to mitigate multi-tenant resource
contention, thus to reduce offloading delays. The planning phase pre-
dicts future workloads from all clients, estimates contention, and devises
offloading schedule to remove or reduce contention. The scheduling phase
dispatches arriving offloaded workloads to the server machine that min-
imizes contention, according to the running workloads on each machine.
We implement the methods into ATOMS (Accurate Timing prediction
and Offloading for Mobile Systems), a framework that adopts predic-
tion of workload computing times, estimation of network delays, and
mobile-server clock synchronization techniques. Using several mobile
vision applications, we evaluate ATOMS under diverse configurations
and prove its effectiveness.

1 Introduction

Problem Background: Recent advances in mobile computing have made many
interesting vision and cognition applications feasible. For example, cognitive
assistance [1] and augmented reality [2] applications process continuous streams
of image data to provide new capabilities on mobile platforms. However, advances
in computing power on embedded devices do not satisfy such growing needs. To
extend mobile devices with richer computing resources, offloading computation
to remote servers has been introduced [1,3–5]. The servers can be either deployed
in low-latency and high-bandwidth local clusters that provide timely offloading
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Fig. 1. ATOMS predicts processor contention and adjusts the offloading time (t send)
to avoid contention (queueing). (Color figure online)

services, as envisioned by the cloudlet [4], or the cloud that provides best-effort
services.

A low end-to-end (E2E) delay on a sub-second scale is critical for many
vision and cognition applications. For example, it ensures seamless interactivity
for mobile applications [1], and a low sensing-to-actuation delay for robotic sys-
tems [6]. Among previous works on reducing offloading delays [1,10], a simple
single-tenant setting that one client is assigned to one server is usually used to
evaluate prototypes. However, in a practical scenario that servers handle tasks
from many clients running diverse applications, contention on the shared server
resources may raise up E2E delays and degrade application performance. Unfor-
tunately, this essential issue of multi-tenancy is still untapped in these works.

While cloud schedulers have been well engineered to handle a wide range
of jobs, new challenges arise in handling offloaded mobile workloads. First,
there are stringent limits on server utilizations for conventional low latency
web services [7]. However, computer vision and cognitive workloads are much
more compute-intensive, which results in a large infrastructure cost to keep uti-
lization levels low. Indeed, it is even not feasible for cloudlet servers that are
much less resourceful than cloud. Second, there are many works on schedul-
ing of batch data processing tasks with time-based Service-Level-Objectives
(SLOs) [8,11,12]. However, these methods are inadequate in handling mobile
workloads that desire sub-second E2E delays, compared to data processing tasks
with minutes makespans and deadlines to hours.

Our Approach: This paper presents ATOMS, a mobile offloading framework
that maintains low delays even under a high server utilization. Motivated by low-
latency mobile applications, ATOMS consider a cloudlet setting where mobile
clients connect to servers via high-bandwidth Wi-Fi networks, as in [1,4]. On
the basis of load-aware scheduling, ATOMS controls future task offloading times
in a client-server closed loop, to remove processor contention on servers. See
Fig. 1, a client offloads an object detection task to a multi-tenant server. Due
to processor contention, it may be queued before running. By predicting pro-
cessor contention, the server notifies the mobile client to postpone offloading.
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Fig. 2. 4 clients offload DNN object detection tasks to a 8-core server with periods 2 s
to 5 s. The time slots of offloaded tasks are plotted and the load line (red) gives the
total number of concurrent tasks. The dashed curve gives the CPU usage (cores) of the
server. (Color figure online)

The postponed offloaded task is processed without queueing, and thus provides
a more recent scene (blue box) that better localizes the moving car (green box).

Accordingly, we propose the Plan-Schedule strategy: (i) in the planning
phase, ATOMS predicts time slots of future tasks from all clients, detects con-
tention, coordinates tasks, and informs clients about new offloading times; (ii) in
the scheduling phase, for each arriving task, ATOMS selects the machine that
has minimal estimated processor contention to execute it. Figure 2 illustrates
the effectiveness of ATOMS for removing processor contention. Figure 2a shows
the time slots of periodically offloaded tasks. The load lines (red) give the total
number of concurrent tasks, and contention (queueing) takes place when the
load exceeds 1. Figure 2b shows that contention is almost eliminated because of
the dynamic load prediction and the task coordination by ATOMS.

The challenge of deciding the right offloading times is that the server and
the clients form an asynchronous distributed system. For scheduling activities,
the uncertainties of wireless network delays and clock offsets must be carefully
considered in the timeline of each task. ATOMS leverages accurate estimations
on bounds of delays and offsets to handle the uncertainties. Variabilities of task
computing times put additional uncertainties on the offloading timing, which are
estimated by time series prediction. The predictability relies upon the correlation
of continuous sensor data from cameras.

In addition, to ensure a high usability in diverse operating conditions,
ATOMS includes the following features: (i) the support for heterogeneous server
machines and applications with different levels of parallelism; (ii) the client-
provided SLOs that control the offloading interval deviations from the desired
period, which are caused by dynamic task coordination activities; (iii) the deploy-
ment of applications in containers, which are more efficient than virtual machines
(VMs), to hide the complexities of programming languages and dependencies.
ATOMS can be deployed in cloud environments and mobile networks as well,
where removing resource contention is more challenging due to higher network
uncertainties and network bandwidth issues. We analyze these cases by experi-
ments using simulated LTE network delays.
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This paper makes three contributions: (i) a novel Plan-Schedule scheme that
coordinates future offloaded tasks to remove resource contention, on top of load-
aware scheduling; (ii) a framework that accurately estimates and controls the
timing of offloading tasks through computing time prediction, network latency
estimation and clock synchronization; and (iii) methods to predict processor
usage and detect multi-tenant contention on distributed container-based servers.

The rest of this paper is organized as follows. We discuss the related work
in Sect. 2, and describe the applications and the performance metrics in Sect. 3.
In Sect. 4 we explain the offloading workflow and the plan-schedule algorithms.
Then we detail the system implementations in Sect. 5. Experimental results are
analyzed in Sect. 6. In Sect. 7 we summarize this paper.

2 Related Work

Mobile Offloading: Many previous works are on reducing E2E delays in mobile
offloading frameworks [1,9,10]. Gabriel [1] deploys cognitive engines in a nearby
cloudlet that is only one wireless hop away to minimize network delays. Time-
card [9] controls the user-perceived delays by adapting server-side processing
times, based on measured upstream delays and estimated downstream delays.
Glimpse [10] hides network delays of continuous object detection tasks by track-
ing objects on the mobile side, based on stale results from the server. This paper
studies the fundamental issue of resource contention on multi-tenant mobile
offloading servers, however, not yet considered by the previous works.

Cloud Schedulers: Workload scheduling in cloud computing has already been
intensely studied. These systems leverage rich information, for example, esti-
mates and measurements on resource demands and running times, to reserve
and allocate resources, and reorder tasks in queue [8,11,12]. Because data pro-
cessing tasks have much larger time scales of makespan and deadline, usually
ranging from minutes to hours, these methods are inadequate in handling real-
time mobile offloading tasks that desires sub-second delays.

Real-Time Schedulers: Real-time (RT) schedulers in [13–15] are designed for
low latency and periodical tasks on multi-processor systems. However, these
schedulers do not work in the scenario of mobile offloading. First, the RT sched-
ulers can not handle network delays and uncertainties. Second, the RT schedulers
are designed to minimize deadline miss rates, whereas our goal is to minimize
E2E delays. In addition, the RT schedulers use worst-case computing times in
scheduling. It results in an undesired low utilization for applications with highly
varying computing times. As a novel approach for the mobile scenarios, ATOMS
makes dynamic predictions and coordinations for incoming offloaded tasks, using
estimated task computing times and network delays.
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3 Mobile Workloads

3.1 Applications

Table 1 describes the vision and cognitive applications used for testing our work.
They all require low E2E delays: FaceDetect and ObjectDetect lose trackability
as delay increases; FeatureMatch can be used in robotics and autonomous sys-
tems to retrieve depth information for which timely response is indispensable.
In another aspect, the three applications present differences in parallelism and
variability of computing time. We use the differences to explore the design of a
general and highly usable offloading framework.

Table 1. Test applications

Application Functionalities Time Parallelism

Face detection Haar feature cascade
classifiers [16] in
OpenCV [17]

Variable Single-threaded

Feature matching Detects interest points in left
and right frames from a
binocular camera, extracts
and matches SURF [18]
features

Variable Feature extraction on
two threads, then
matching on one thread

Object detection Localizes objects and labels
each with a likeliness score
using a DNN (YOLO [19])

Constant Uses all cores of a CPU
in parallel

3.2 Performance Metrics

We denote a mobile client as Ci with an ID i. The offloading server is a dis-
tributed system composed of resource-rich machines. An offloading request sent
by Ci to the server is denoted as task T i

j , where the task index j is a monotoni-
cally increasing sequence number. We ignore the superscript for simplicity when
discussing only one client. Figure 1 shows the life cycle of an offloaded task. Tj

is sent by a client at t sendj . It arrives at a server at t serverj . After queueing,
the server starts to process it at t startj and finishes at t endj = t startj +
d computej , where d computej is the computing time.1 The client receives the
result back at t recvj . Tj uses T paralj cores in parallel.

We evaluate a task using two primary performance metrics of continu-
ous mobile sensing applications [20]. E2E delay is calculated as d delayj =
t recvj − t sendj . It comprises upstream network delay d upj , queueing delay
d queuej , computing time d computej and downstream delay d downj . ATOMS
reduces d delayj by minimizing d queuej . Offloading interval represents

1 A symbol starting with “t ” is a timestamp and “d ” is a duration of time.
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the time span between successive offloaded tasks of a client, calculated as
d intervalj = t sendj − t sendj−1. Clients offload tasks periodically and are
free to adjust offloading periods. Applications can thus tune offloading period
for energy consumption and performance trade-off. Ideally any interval is equal
to d periodi, the current period of client Ci. In ATOMS, however, the inter-
val becomes non-constant due to task coordination. We desire stable sens-
ing and offloading activities, so smaller interval jitters are preferred, given by
d jitterij = d intervalij − d periodi.

4 Framework Design

As shown in Fig. 3, ATOMS is composed of one master server and multiple
worker servers. The master communicates with clients and dispatches tasks to
workers for execution. It is responsible for planning and scheduling tasks.

Master

Scheduler

Workers

Compu ng
Engines

Client

App

Client Heap

Planner
Reserva on queues

Fig. 3. The architecture of the ATOMS framework.

4.1 Worker and Computing Engine

We first describe how to deploy applications on workers. A worker machine
hosts one or more computing engines. Each computing engine runs an offload-
ing application encapsulated in a container. Our implementation adopts Docker
containers.2 We use Docker’s resource APIs to set processor share, limit and
affinity, as well as memory limit for each container. We focus on CPUs as the
computing resource in this paper. The total number of CPU cores of worker Wk

is W cpuk. The support for GPUs lies in our future work.
A worker can have multiple engines for the same application in order to

fully exploit multi-core CPUs, or host different types of engines to share the
machine by multiple applications. In this case, the total workloads of all engines
on a worker may exceed the limit of processor resource (W cpu). Accordingly,
2 Docker: https://www.docker.com/.

https://www.docker.com/
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Fig. 4. A dual-core worker machine have two engines of FaceDetect (T paral = 1)
and one engine of FeatureMatch (T paral = 2). The plot on right gives an example of
processor contention.

we classify workers into two types: reserved worker and shared worker. On a
reserved worker, the sum of processor usages of engines never exceed W cpu.
Therefore whenever there is a free computing engine, it is guaranteed that dis-
patching a task to it does not induce any processor contention. Unlike a reserved
worker, the total workloads on a shared worker may exceed W cpu. See Fig. 4,
a dual-core machine hosts two FaceDetect engines (T paral = 1) and one Fea-
tureMatch engine (T paral = 2). Both applications are able to fully utilize the
dual-core processor. When there is a running FaceDetect task, an incoming Fea-
tureMatch task will cause processor contention. Load-aware scheduling described
in Sect. 4.4 is used for shared workers.

Workers measure the computing time d compute of each task and returns it
to the master along with the computation result. The measurements are used
to predict d compute for future tasks (Sect. 5.1). A straightforward method is
measuring the start and end timestamps of a task, and calculating the difference
(d computets). However, it is vulnerable to processor sharing that happens on
shared workers. We instead get d compute by measuring CPU time (d cputime)
consumed by the engine container during the computation.

4.2 Master and Offloading Workflow

In addition to the basic send-compute-receive offloading workflow, ATOMS has
three more steps: creating reservation, planning, and scheduling.

Reservation: When the master starts the planning phase of task Tj , it creates
a new reservation Rj = (t r startj , t r endj , T paralj), where t r startj and
t r endj are the start and end times respectively, and T paralj is the demanded
cores. As shown in Fig. 5, given the lower and upper bounds of upstream net-
work delay (d uplowj , d upupj ) estimated by the master, as well as the pre-
dicted computing time (d compute′

j), the span of reservation is calculated as
t r startj = t sendj + d uplowj and t r endj = t sendj + d upupj + d compute′

j .
The time slot of Rj contains the uncertainty of the time when Tj arrives at the
server (t serverj), and the time consumed by computation. Provided that the
predictions on network delays and computing times are correct, the future task
will be within the reserved time slot.
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Fig. 5. Processor reservation for a future offloaded task includes the uncertainty of
arriving time at the server and its computing time.

Planning: The planning phase runs before the real offloading. It coordinates
future tasks of all clients to ensure that the total amount of all reservations never
exceeds the limit of total processor resources of all workers. Client Ci registers
at the master to initialize the offloading process. The master assigns it a future
timestamp t send0 indicating when to send the first task. The master creates a
reservation for task Tj and plans it when tnow = t r startj − d future where
tnow is the master’s current clock time, and d future is a parameter for how far
after tnow that the planning phase covers. The planner predicts and coordinates
future tasks that start before tnow + d future.

T i
next is the next task of client Ci to plan. The master plans future tasks

in ascending order of start time t r startinext. For a new task to be planned
with the earliest t r startinext, the planner creates a new reservation Ri

next. The
planner takes Rnext as input. It detects resource contention, and reduces that
by adjusting the sending times of both the new task and a few planned tasks.
We defer the details of planning to Sect. 4.3. d informi is a parameter of Ci for
how early the master should inform the client about the adjusted task sending
time. A reservation Ri

j remains adjustable until tnow = t sendi
j - d informi.

The planner then removes Rj and notifies the client. Upon receiving t sendj ,
the client sets a timer to offload Tj .

Scheduling: The client offloads Tj to the master when the timer at t sendj
timeouts. After receiving the task, using the information of currently running
tasks on each worker, the scheduler selects the worker that induces the least
processor contention. The master dispatches it to the worker and gets back the
result. We give the details in Sect. 4.4.

4.3 Planning Algorithms

The planning algorithm decides the adjustments to sending times of future tasks
from each client. An optimal algorithm minimizes jitters of offloading intervals,
while ensuring that the total processor usage is within the limit, and SLOs on
offloading intervals are satisfied. Instead of solving this complex optimization
problem numerically, we adopt a heuristic and feedback-control approach that
adjusts future tasks in a fixed window from tnow +d inform to tnow +d future.
Our approach is able to improve the accuracy of computing time prediction by
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using a small predicting window (see Sect. 5.1), and naturally handle changes of
client number and periods.

The planner buffers reservations in reservation queues. A reservation queue
stands for a portion of processor resource in the cluster. A queue Qk has a
resource limit Q cpuk with cores as the unit, used for contention detection. The
sum of Q cpu of all queues is equal to the total cores in the cluster. Each com-
puting engine is assigned to a reservation queue. The parallelism of a reservation
T paral is determined by the processor limit of computing engines. For example,
T paral of a fine-parallelized task is different for an engine on a dual-core worker
(T paral = 2) and one on a quad-core worker (T paral = 4).

Contention Detection: When the planner receives a new reservation Rnew, it
first selects a queue to place it in. It iterates over all queues, for Qk, calculates
the needed amount of time (Δ) to adjust Rnew, and the total processor usage
(Θk) of Qk during the time slot of Rnew. The planner selects the queue with
the minimal Δ. In doing so, it checks whether the total load on Qk after adding
Rnew exceeds the limit Q cpu. If so, the algorithm calculates Δ: the contention
can be eliminated after postponing Rnew by Δ. Otherwise Δ = 0. We give an
example in Fig. 6 that a new reservation R2

0 is being inserted into a queue. The
black line in the lower plot is the total load. Contention arises after adding R2

0.
It can be removed by postponing R2

0 to the end time of R1
1. Δ is thus obtained.

Fig. 6. An example of detecting processor contention and calculating required reser-
vation adjustment. The top plot shows a reservation queue and the bottom plot shows
the calculated total load load(t).

If two or more planning queues have the same Δ, e.g., several queues are
contention-free (Δ = 0), the planner calculates the processor usage Θ during
the time slot of Rnew: Θ =

∫ t r endnew

t r startnew
load(t)dt. We consider two strategies.

The Best-Fit strategy selects Q that has the highest Θ, which packs reservations
as tightly as possible and leaves the least margin of processor resources on the
queue. The other strategy is Worst-Fit that, in contrast, selects the queue with
the lowest Θ. We study their difference through evaluations in Sect. 6.3.
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SLOs: In the next coordination step, rather than simply postponing Rnew by
Δ, the planner moves ahead a few planned reservations as well, to reduce the
duration to postpone Rnew. The coordination process takes Δ as input and
adjusts reservations according to cost (R cost), a metric on how far the measured
offloading interval d interval deviates from the client’s SLOs (a list of desired
percentiles of d interval). For example, a client with period 1 s may require a
lower bound d slo10% > 0.9 s and an upper bound d slo90% < 1.1 s.

The master calculates R cost when it plans a new task, using the mea-
sured percentiles of interval (d intervalp). For the new reservation (Rnew) to
be postponed, the cost R cost+ is obtained from the upper bounds: R cost+ =
max(maxp∈∪+(d intervalp − d slop), 0) where p is a percentile and ∪+ is the
set of percentiles that have upper bounds in the SLOs. R cost+ is the maximal
interval deviation from the SLOs. For tasks to be moved ahead, deviation from
lower bounds (∪−) are used instead to get the cost R cost−. The cost is a weight
between two clients to decide the adjustment on each. SLOs with tight bounds
on d interval make the client less affected during the coordination process.

4.4 Scheduling Algorithms

The ATOMS scheduler dispatches tasks arriving at the master to the most suit-
able worker machine that minimizes processor contention. The scheduler keeps
a global FIFO task queue for buffer tasks when all computing engines are busy.
For each shared worker, there is a local FIFO queue for each application that it
serves. When a task arrives, the scheduler first searches for available computing
engines on any reserved workers. It dispatches the task if one is found and the
scheduling process ends. If there is no reserved worker, or no engine is free, the
scheduler checks shared workers that are able to run the application. It selects
the best worker based on processor contention Φ and usage Θ. The task is then
dispatched to a free engine on the selected shared worker. If no engine is free on
the worker, the task is put into the worker’s local task queue.

Here we detail the policy to select a shared worker. The scheduler uses esti-
mated end time t end′ of all running tasks on each worker, obtained by predicted
computing time d compute′. To schedule Tnew, it calculates the load load(t) on
each worker using t end′, including Tnew. The resource contention Φk on worker
Wk is calculated by Φk =

∫ t end′
new

tnow
max(load(t) − W cpuk, 0)dt. The worker

with the smallest Φ is selected to run Tnew. For workers with identical Φ, similar
to the planning algorithm, we use processor usage Θ as the selection metric. We
compare the two selection methods, Best-Fit and Worst-Fit, through evaluations
in Sect. 6.

5 Implementation

In this section we present the implementation of computing time prediction,
network delay estimation and clock synchronization.
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5.1 Prediction on Computing Time

Accurate prediction of computing time is essential for resource reservation.
Underestimation leads to failure in detecting resource contention, and overes-
timation causes larger interval jitters. We use upper bound estimation for appli-
cations with a low variability of computing times, and time series prediction for
applications with a high variability. Given that Tn is the last completed task
of client Ci, instead of just predicting Tn+1 (the next task to run), ATOMS
needs to predict Tnext (the next task to plan, next > n). Npredict = next - n
gives how many values it needs to predict since the last sample. It is decided
by the parameter d future (Sect. 4.2) and the period of the client, calculated as
�d future/d periodi�.

Upper Bound Estimation. The first method estimates the upper bound
of samples using a TCP retransmission timeout estimation algorithm [21]. We
denote the value to predict as y. The estimator keeps a smoothed estimation
ys ← (1 − α) · ys + α · yi.) and a variation yvar ← (1 − β) · yvar + β · |ys − yi|.
The upper bound yup is given by yup = ys + κ · yvar, where α, β and κ are
parameters. This method outputs yup as the prediction of d compute for Tnext.
This lightweight method is adequate for applications with low computing time
variability, such as ObjectDetect. It tends to overestimate for applications with
highly varying computing times because it uses upper bound as the prediction.

Time Series Linear Regression. In the autoregressive model for time series
prediction problems, the value yn at index n is assumed to be a weighted
sum of previous samples in a moving window with size k. That is, yn =
b + w1yn−1 + · · · + wkyn−k + εn, where yn−i is the ith sample before the nth,
wi is the corresponding coefficient and εn is the noise term. We use this model
to predict yn. The inputs (yn−1 to yn−k) are the previous k samples measured
by workers. We use a recursive approach to predict the Npredictth sample after
yn−1: to predict yi+1, the predicted yi is used as the last sample. This approach
is flexible to predict arbitrary future samples, however, as Npredict increases, the
accuracy degrades because the prediction error is accumulated. The predictor
keeps a model for each client which is trained either online or offline.

5.2 Estimation on Upstream Latency

As discussed in Sect. 4.2, because network delays dup may have large fluctuations,
we use the lower and upper bounds (d uplow, d upup) instead of the exact value
in the reservation. The TCP retransmission timeout estimator [21] described in
Sect. 5.1 is used to estimate network delay bounds. We use subtraction instead
of addition to obtain the lower bound. The estimator has a non-zero error when
a new sample of dup falls out of the bounds, calculated as its deviation from the
nearest bound. The error is positive if dup exceeds d upup, and negative if it is
smaller than d uplow. The estimation uncertainty is given by d upup - d uplow.
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Because the uncertainty is included in task reservation, a larger uncertainty
overclaims the reservation time slot, which causes higher interval jitters and
lower processor utilizations.

We measure dup of offloading 640×480 frames with sizes from 21 KB to 64 KB,
using Wi-Fi networks. To explore networks with higher delays and uncertain-
ties, we obtain simulated delays of Verizon LTE networks using the Mahimahi
tool [22]. The CDFs of network latencies are plotted in Fig. 7a. We demonstrate
the estimator performance (error and uncertainty) in Fig. 7b. Results show that
the estimation uncertainty for Wi-Fi networks is small, and it is very large for
LTE (maximal value is 2.6 s). We demonstrate how errors and uncertainties
influence offloading performance through experiments in Sect. 6.
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Fig. 7. Upstream latency of Wi-Fi and LTE networks, with uncertainty and error of
estimation. The maximal latency is 1.1 s for Wi-Fi and 3.2 s for LTE. The parameters
of estimator are α = 0.125, β = 0.125, κ = 1.

5.3 Clock Synchronization

We seek a general solution for clock synchronization without patching the OS
of mobile clients. The ATOMS master is synchronized to the global time using
NTP. Because time service now is ubiquitous on mobile devices, we require clients
to be coarsely synchronized to the global time. We do fine clock synchronization
as follows. Client sends out a NTP synchronization request to the master each
time it receives an offloading result to avoid the wake-up delay [9]. To eliminate
the influence of packet delay spikes, the client buffers Nntp responses and runs
a modified NTP algorithm [23]. It applies clock filter, selection, clustering and
combining algorithms to Nntp responses and outputs a robust estimate on clock
offset. It also outputs the bounds of the offset. ATOMS uses the clock offset to
synchronize timestamps between clients and the master, and uses the bounds in
all timestamp calculations to consider the remaining clock uncertainties.

6 Evaluation

6.1 Experiment Setup

Baselines: We compare ATOMS with baseline schedulers to prove its effec-
tiveness for improving offloading performance. The baseline schedulers use
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load-aware scheduling (Sect. 4.4), but instead of using dynamic offloading time
coordination in ATOMS, they use conventional task queueing and reordering
approaches: (i) Scheduling Only : it minimizes the longest task queueing time;
(ii) Earliest-start-time-first : it prioritizes the task with the smallest start time
at client (t send), which experiences the longest lag until now; (iii) Longest-
E2E-delay-first : it prioritizes the task with the longest estimated E2E delay,
including measured upstream and queueing delays, and the estimated computing
time. Methods (ii) and (iii) are evaluated in the experiments using LTE networks
(Sect. 6.2) where they perform differently from (i) due to larger upstream delays.

Testbed: We simulate a camera feed to conduct reproducible experiments. Each
client selects which frame to offload from a video stream based on the current
time and the frame rate. We use three public video datasets as the camera
input: the Jiku datasets [24] for FaceDetect; the UrbanScan datasets [25] for
FeatureMatch application, and multi-camera pedestrians videos [26] for Object-
Detect. We resize the frames to 640 × 480 in all the tests. Each test runs for
5 minutes. The evaluations are conducted on AWS EC2. The master runs on
a c4.xlarge instance (4 vCPUs, 7.5 GB memory). Each worker machine is a
c4.2xlarge instance (8 vCPUs, 15 GB memory). We emulate clients on c4.2xlarge
instances. Pre-collected network upstream latencies (as described in Sect. 5.2)
are replayed at each client to emulate the wireless networks. The prediction for
FaceDetect and FeatureMatch uses offline linear regression, and the upper bound
estimator is used for ObjectDetect. The network delay estimator setting is the
same as in Fig. 7. We set d inform (Sect. 4.2) to 300 ms for all clients.
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(a) 12 clients.
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(b) 18 clients.
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(c) 24 clients.

Fig. 8. Offloading performance (CDF of each client) of Scheduling Only and ATOMS
running FaceDetect using Wi-Fi. The average CPU utilization is 37% in (a), 56% in
(b) and 82% in (c).

6.2 Maintaining Low Delays Under High Utilization

We set 12 to 24 clients running FaceDetect with periods from 0.5 s to 1.0 s, using
Wi-Fi networks. d future = 2 s is used in planning. We use one worker machine
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(8 vCPUs) hosting 8 FaceDetect engines. The planner has a reservation queue
for each engine with Q cpu = 1. See Fig. 8, with more clients, the interference
becomes more intensive and the Sched Only scheme suffers from increasingly
longer E2E delays. ATOMS is able to maintain low E2E delays even when the
total CPU utilization is over 80%. Using the case with 24 clients as example, the
90% percentile of E2E delays is reduced by 34% in average for all clients, and
the maximum reduction is 49%. The interval plots (top) show that offloading
interval jitters increase in ATOMS, caused by task coordination.

LTE Networks: To investigate how ATOMS performs under larger network
delays and variances, we run the test with 24 clients using LTE delay data.
As discussed in Sect. 5.2, the reservations are longer in this case due to higher
uncertainties of task arriving time. As a result, the total reservations may exceed
the processor capability. See Fig. 9a, the planner has to postpone all reserva-
tions to allocate them, all clients hence have severely dragged intervals (blue
lines). To serve more clients, we remove the uncertainty from task reservation
(as in Fig. 5), and then the offloading intervals can be maintained (green lines
in Fig. 9a). We show the CDFs of 90% percentiles E2E delays of 24 clients in
Fig. 9b. Delays increase without including network uncertainties in reservations,
but ATOMS still presents reasonable improvement: 90% percentile of delays is
decreased by 24% in average and by 30% as the maximum among all clients.
Figure 9b gives the performance of the reordering-based schedulers described in
Sect. 6.1: Earliest-start-time-first scheduler and Longest-E2E-delay-first sched-
uler. The result shows that these schedulers perform similarly to Sched Only,
and ATMOS achieves better performance.
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Fig. 9. (a) Offloading interval running FaceDetect using LTE with 24 clients. The
average CPU utilization is 83% for Sched Only, 59% for ATOMS, and 81% for ATOMS
without network uncertainty. (b) CDFs (over all 24 clients) of 90% percentiles of E2E
delay running FaceDetect using LTE networks. (Color figure online)

6.3 Shared Worker

Contention mitigation is more complex for shared workers. In the evaluations,
we set up 4 ObjectDetect clients with periods 2 s and 3 s, and 16 FeatureMatch
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clients with periods 2 s, 2.5 s, 3 s and 3.5 s. d future = 6 s is used in the planner.
We use 4 shared workers (c4.2xlarge), and each hosts 4 FeatureMatch engines
and 1 ObjectDetect engine.

Planning Schemes: We compare three schemes of planning: (i) a global reser-
vation queue (Q cpu = 32) is used for 4 workers; (ii) 4 reservation queues
(Q cpu = 8) are used and Best-Fit is used to select queue; (iii) 4 queues are
used with Worst-Fit selection. Load-aware scheduling with Worst-Fit worker
selection is used. The CDFs of interval (top) and E2E delay (bottom) of all
clients are given in Fig. 10. It shows that Worst-Fit adjusts tasks more aggres-
sively and causes the largest interval jitter. It allocates FeatureMatch tasks (low
parallelism) more evenly to all reservation queues. Resource contention is more
likely to take place when ObjectDetect (high parallelism) is planned, so more
adjustments are made. The advantage of Worst-Fit is the improved delay per-
formance. See the delay plots in Fig. 10, Worst-Fit evidently performs better for
the 4 ObjectDetect clients: the worst E2E delay of the 4 clients is 786 ms for
Worst-Fit, 1111 ms for Best-Fit and 1136 ms for Global. The delay performance
of FeatureMatch is similar for the three schemes.
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Fig. 10. Interval and E2E delay of 4 ObjectDetect and 16 FeatureMatch clients, using
different planning schemes. The average CPU utilization is 36%.

Scheduling Schemes: Figure 11 shows the E2E delays using different schedul-
ing schemes: (i) a simple scheduler that selects the first available engine; (ii)
a load-aware scheduler with Best-Fit worker usage selection; (iii) a load-aware
scheduler with Worst-Fit selection. The planner uses 4 reservation queues with
Worst-Fit selection. For the simple scheduling, ObjectDetect tasks that can be
parallelized on all 8 cores are more likely to be influenced by contention. Fea-
tureMatch requires 2 cores at most and can get enough processors more easily.
Best-Fit performs the best for ObjectDetect, whereas it degrades dramatically
for FeatureMatch clients. The reason is that the scheduler tries to pack incoming
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tasks as tightly as possible on workers. As a consequence, it leaves enough space
to schedule highly parallel ObjectDetect tasks. However, due to the errors of
computing time prediction and network estimation, there is a higher possibility
of contention for the tightly placed FeatureMatch tasks. The Worst-Fit method
has the best performance for FeatureMatch tasks and still maintains reasonably
low delays for ObjectDetect. Therefore it is the most suitable approach in this
case. Figure 12 compares the 90% E2E delay of all clients between Scheduling
Only and ATOMS (Worst-Fit scheduling). In average, ATOMS reduces the 90%
percentile E2E delay by 49% for the ObjectDetect clients, and by 20% for the
FeatureMatch clients.
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Fig. 11. E2E delay of ObjectDetect and FeatureMatch using different scheduling
schemes. The average CPU utilization is 36% in all cases.
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Fig. 12. 90% percentiles of E2E delay of ObjectDetect (bar 1 to 4) and FeatureMatch
(bar 5 to 20) clients. The CPU utilization is 40% for Sched Only and 36% for ATOMS.

7 Conclusions

We present ATOMS, an offloading framework that ensures low E2E delays by
reducing multi-tenant interference on servers. ATOMS predicts the time slots of
future offloaded tasks, and coordinates them to mitigate processor contention on
servers. It selects the best server machine to run each arriving task to minimize
contention, based on real-time workloads on each machine. The realization of
ATOMS is achieved by key system designs in computing time prediction, network
latency estimation, distributed processor resource management and client-server
clock synchronization. Our experiments and emulations prove the effectiveness
of ATOMS in improving E2E delay for applications with various degrees of
parallelism and computing time variability.
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