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Abstract. Continuous Grid balancing is essential for ensuring the reli-
able operation of modern smart grids. Current smart grid systems lack
practical large-scale energy storage capabilities and therefore their sup-
ply and demand levels must always be kept equal in order to avoid system
instability and failure. Grid balancing has become more relevant in recent
years following the increasing desire to integrate more Renewable Energy
Sources (RESs) into the generation mix of modern grids. RESs produce
intermittent energy supply that can’t always be predicted accurately [1]
and necessitates that effective balancing mechanisms are put in place
to compensate for their supply variability [2,3]. In this work, we pro-
pose a new energy curtailment scheme for balancing excess RESs energy
using data centers as managed loads. Our scheme uses incentivized inter-
datacenter workload migration to increase the computational energy con-
sumption at a destination datacenter by the amount necessary to bal-
ance the grid. Incentivised workload migration is achieved by offering
discounted energy prices (in the form of Energy Credits) to large-scale
cloud clients in order to influence their workload placement algorithms
to favor datacenters where the energy credits can be used. Implementa-
tions of our system using the CPLEX ILP solver as well as the Best Fit
Decreasing (BFD) heuristic [4] for workload placement on data centers
showed that using energy credits is an effective mechanism to speed-
up/control the energy consumption rates at datacenters especially at
low system loads and that they result in increased profits for the cloud
clients due to the higher profit margins associated with using the pro-
posed credits.

1 Introduction

The lack of large-scale energy storage solutions in modern smart-grids necessi-
tates that their energy generation and consumption levels are always kept equal
in order to avoid system instability and service interruptions. Since making online
fine adjustments to the energy levels of the generators supplying the grid can
be costly (because of the different start-up/shut-down delay constraints of each
generator and the monetary costs associated with making such adjustments),
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many Demand-Response (DR) proposals were introduced by the utility compa-
nies to exploit the demand-side flexibility of energy consumers for grid balancing.
DR programs generally aim to control the consumers demand for electricity by
using monetary incentives such as variable pricing or time-of-use pricing [5–
7]. Commercial class energy consumers have been the main focus of many DR
proposals because of their higher consumption rates and the higher demand
elasticity of some commercial consumers compared to their residential counter-
parts. Datacenter plants in particular have received a significant share of DR
proposals because of their consistent rapid growth in recent years (as a result of
the increasing popularity of cloud computing applications) and their ability to
control their energy consumption levels by using different energy management
techniques or adjusting the scheduling of their computational workloads [8–11]

Data centers are known to consume a lot of energy to operate since they
typically comprise several thousands of computing and networking equipments
in a physically monitored environment [12]. The high energy consumption of
datacenters has attracted many optimization research efforts [13]. Traditionally
the main focus has been on minimizing their energy consumption cost either
by sever consolidation [14–16], using DVFS [17] or by proposing different work-
load scheduling/migration techniques that take advantage of variable real-time
energy prices to process more workloads when the prices are low [18,19]. More
recently, following the growing demand to integrate more green RESs into the
generation mix of modern smart grids, more attention was given to datacenters
as controllable loads that could play a major role in enabling the integration of
more RESs by compensating for their intermittent supply and help maintain the
grid balance. Such DR related research is mainly concerned with the effective
integration of data centers as a “resource” or a “managed load” into the various
smart grid based DR programs [5,8,20].

Because of their highly intermittent supply, it can be a challenge for the grid
to maintain its balance at times of excess RESs energy generation. Hence, the
ability of the grid to achieve timely and effective renewable energy curtailment
have been a distinctive hurdle that needed to be addressed more effectively in
order to increase the amount of renewable energy deployment into the generation
mix of modern grids [21]. Events of unexpected excess RESs energy generation
can lead to system instability and utility companies opt at times to apply nega-
tive energy prices in order to re-balance the grid in a timely manner. However,
grid failures can still occur due to such events [22,23].

The curtailment of renewable energy have been studied in the past to ensure
balanced grid operation [3,24]. However, unlike existing curtailment strategies
that blocks excess RESs energy from entering into the system [25], in this work,
we try to leverage the demand side flexibility of datacenters in order to effec-
tively balance the excess RESs energy. Hence, our proposal has the advantage
of putting the excess RESs energy to use rather than simply discarding it. We
present a new energy curtailment approach that uses data centers as managed
loads to allow the grid system more “downward flexibility” (i.e. the ability to
cope with extra supply or low demand). Our approach is based on offering dis-
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counted energy cost (a monetary incentive in the form of Energy Credits) to
large-scale cloud users to incentivize them to migrate their computational work-
loads to datacenters connected to the part of the grid having excess RESs energy
supply. The amount of Energy credits offered is made equal to the amount of
energy that a grid would need to consume in a timely manner in order to stay
balanced. We formulate our problem as a linear integer programming problem
with the objective of minimizing the cost of assigning computational workloads
on available datacenters. We present our simulation results from implementing
our model using the CPLEX ILP solver as well as the Best Fit Decrteasing
(BFD) workload assignment heuristic [4] that can be more practical in large
scale operations.

The remainder of this paper is organized as follows: in the next section
we briefly discuss previous work related to earlier data center based demand-
response efforts and discuss the importance of these efforts as an enabler for
integrating more renewable energy sources into the generation mix of modern
smart grids. Section 3 introduces our cloud-broker based grid balancing proposal
and presents its system model and optimization formulation. We present the
performance analysis conducted on our system in Sect. 4 and finally conclude
the paper in Sect. 5.

2 Related Work

Since data centers represent a significant load for the smart grids that they draw
power from, many research efforts have proposed closer cooperation between the
two in order to ensure a smooth operation on both sides [11,26]. An example of
such tight coupling between the power grid and the data center is in [27] which
tries to save on the datacenter energy cost by deploying backup batteries locally
at the datacenter and charging them at times of low electricity prices then using
them to power the datacenter when the prices are higher. The significance of
data centers as energy loads and their ability to increase/decrease their energy
consumption by adjusting their computational workload scheduling represents a
valuable opportunity for the smart grid operators to essentially integrate them
as managed loads for grid balancing purposes using DR [6,10].

A successful integration between the datacenters and smart grids would allow
the datacenters to be considered as a “resource” by the smart grid operator
which in turn can then use it for grid balancing purposes. However, a main
obstacle towards this integration is that modern data centers are increasingly
becoming colocation based [28], where multiple organizations host their comput-
ing/networking equipment at a shared physical location in order to save on man-
agement and maintenance costs. In such environments, the colocation operator
has no direct control on the workload scheduling or the energy-saving/server-
consolodation techniques applied by the tenants. This makes the involvement of
such data centers in modern DR programs more challenging compared to the
traditional case of owner-operated data centers as described in [29]. Collocation
operators suffer from the “split-incentive” phenomenon that hinders their par-
ticipation in DR programs. On one hand, they desire to get the monetary gains
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associated with participating in DR programs, yet, they have no direct way to
control the energy consumption of their tenants.

Effective grid balancing is also necessary for enabling large-scale integration
of RESs into the smart-grid. The integration of such sources into the genera-
tion mix of modern smart grids have made significant progress in recent years.
However, because of the indeterministic nature of the power generated by such
sources (wind/solar) and the unavailability of large-scale energy storage facilities
in modern grid systems, their rate of adoption into the generation-mix of modern
grids has been mainly limited by the grid’s ability to stay in balance given the
nature of their intermittent supply [9]. Recent research [1] points to the fact that
excess energy from RESs could often need to be discarded in order to keep the
grid in balance. In some cases negative pricing is applied just to achieve a timely
balancing of the grid and avoid service interruption. Negative/free energy pricing
is applied at times of excess RESs supply when it is cheaper to offer the excess
energy for free or at a negative price than to shut down generation facilities and
risk future service interruptions. The rapid increase of datacenter deployments
in recent years is positioned to play an important role in enabling the integra-
tion of more RESs into the smart-grids by acting as a managed load that can
effectively absorb the introduced supply variability of RESs sources.

A main challenge to overcome in this regard is how to effectively influence
the workload scheduling on the datacenter servers in order to comply with the
DR requirements. This is not easy to accomplish in current colocation based dat-
acenters since they lack coordination between the colocation operator and the
tenants in charge of workloads scheduling on the servers. On one hand, the colo-
cation operator is interested in complying with DR programs so it can qualify for
financial incentives, but on the other hand, the colocation tenants are only inter-
ested in achieving maximum performance for their workloads since they have no
direct relationship with the grid operator and would not receive any financial
gain for adjusting their workload if they comply with the requirements of the
DR programs. We suggest in this work that establishing a direct relationship
between large scale colocation tenants (such as cloud brokers) and the utility
company/grid can lead to a more effective DR implementation in the datacen-
ter domain. Previous work in this area has investigated several mechanisms for
extending demand response programs to colocation based datacenters [29–31].
However with the continuing demand for increased renewable energy integra-
tion in modern smart grids, a tighter coupling between the grid and datacenters
(including their tenants) is of great value in order to take full advantage of the
datacenters as managed loads.

3 Cloud-Broker Based Grid Balancing

As opposed to existing demand-response approaches that only target data cen-
ter operators (that don’t necessarily have direct control on workload schedul-
ing in the case of colocations), we propose a new mechanism that would allow
extending such programs to the enterprise-type tenants (such as Cloud Brokers
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and SaaS/PaaS operators) of colocation data centers. Such tenants typically
host their hardware at multiple colocations in different geographical locations to
achieve high redundancy and shorter response times. Their workloads account
for a large share of the total workloads handled by modern colocation data cen-
ters. Hence, they can be considered as a resource or a managed load that smart
grids can use to scale up/down the energy consumption in order to meet DR
goals.

Our approach is based on introducing a “Market” entity as a communica-
tion medium between the grid/utility company and the cloud-broker/colocation-
tenant as shown in Fig. 1. When a grid/utility company needs to balance a
certain amount of excess RESs energy, it generates a number of energy credits
equal to the amount of excess RESs energy that needs to be balanced/consumed.
Such energy credits are then offered (at a discounted cost) to the cloud bro-
kers/collocation tenants to incentivize them to migrate their workloads from
other datacenter locations to a certain datacenter whose energy consumption
needs to be increased to balance the excess RESs energy. The proposed energy
credits are made available to the brokers via the central market entity (“EC
Market”) that handles all the energy credits assignments/transactions between
the different utility companies and cloud brokers/colocation tenants. Our sys-
tem model shown in Fig. 1 comprises four main entities, cloud brokers/colocation
tenants, colocation data centers, utility companies (grid) and the EC market. We
consider a single cloud broker in our model for simplicity, however, the system
can be expanded to handle multiple brokers via game theoretic approaches. Each
data center is assumed to adopt a different pricing model based on its popular-
ity and the offered performance guarantees. Cloud brokers continuously receive
computing workloads (i.e. Requests) of different weights from their clients and
they need to optimally assign/schedule the received workloads on the available
data centers to maximizes their return.

We assume that each incoming workload (WL) received by a broker has three
main attributes, a Computing weight (WLcpu) that describes how much com-
puting resources it requires, a Memory weight (WLmemory) that describes how
much storage capacity it requires and an Energy Consumption weight (WLkWh)
that describes how much energy it is rated to consume per unit time. We fur-
ther assume that the cloud broker implements a fixed pricing model whereby its
clients are charged solely based on the computing and storage weights of their
submitted workloads at the rates Ccpu

B and Cmemory
B respectively. Accordingly,

the broker’s profit P that the broker charges for handling a request j with a
computing weight of WLcpu

j and a memory storage weight of WLjmemory can
be computed as Pj in Eq. (1) per each allocation interval for the time of its
execution.

Pj = WLcpu
j ∗ Ccpu

B + WLmem
j ∗ Cmem

B (1)

Datacenters on the other hand can charge the requests/workloads submitted
to them via cloud brokers according to the individual pricing model of each dat-
acenter. Additionally, data centers also charge the cloud brokers for the energy
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consumption of their submitted workloads. Accordingly, if a certain workload
consumes WLkWh

j units of energy to run on a certain data center, the data cen-
ter would charge the broker that submitted the workload a total of Ck

j as per
Eq. (2):

Ck
j = WLcpu

j ∗ C cpu
DC + WLmem

j ∗ C mem
DCk

+ WLkWh
j ∗ C kWh

DCk
(2)

Our proposal introduces the concept of “energy credits” which represent a
certain amount of energy refund that a cloud broker can use to help offset the
otherwise regular energy cost (the last term (WLKWh ∗ C kWh

DC ) in Eq. (2)). As
a result, using such credits results in reducing the total amount payable by the
brokers to the datacenter where the credits are available. Energy credits are
issued by the grid operators when they needs to consume a certain amount of
excess RESs energy in order to maintain balance. Energy credits can be claimed
against the energy consumption charges on the datacenter connected to the
smart grid that issued the credits.

Renewable Renewable

Grid1 Grid2

DC1 DC2

Broker

WL1 WLN

EC

M
a
r
k
e
t

Fig. 1. System model

This direct interaction between the smart grid operators and large scale cloud
brokers allows the grid operators to directly influence the scheduling activities
of the cloud brokers (such as workload migration from one datacenter to another
or workload rescheduling on the same datacenter) on the datacenters that they
connect to (by offering reduced energy costs at certain datacenters) and in turn
achieve the desired DR objectives. We next introduce the optimization variables
and equations of our system model before describing its operation in more detail.
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Ccpu
B the cost that broker B charges for the processing capacity allocated

per time slot (in $/FLOPS)
Cmem

B the cost that broker B charges for disk-space usage per time slot (in
$/MB)

Anext
jk a binary variable that is set to 1 if job j is assigned to data center k

in the next time slot
Acurrent

jk a binary variable that is set to 1 if job j is assigned to data center k
in the current time slot (initial value = 0)

UECjk a binary variable that indicates if job j can claim energy credits
available at data center k

M the number of available data centers
C cpu

DCk
the processing cost at datacenter k per time slot allocated (in
$/FLOPS)

C mem
DCk

the disk-space cost at datacenter k per time slot allocated (in $/MB)
CkWh

DCk
the price of energy at datacenter k (in $/kWh)

ECk the number of energy credits available at data center k (in kWh)
MigCostkl a normalized value in the range of [0,1] that represents the cost

of migrating data from datacenter k to datacenter l (distance-
based)

CapcpuDCk
the maximum processing capacity of datacenter k (in FLOPS)

Capmem
DCk

the maximum disk-storage capacity at datacenter k (in MB)
N the number of client workloads that needs to be assigned to data

centers
WLcpu

j the processing capacity needed to process the workload of job j (in
FLOPS)

WLmem
j the amount of disk storage needed to host the workload of job j (in

MB)
WLkWh

j the energy consumption of job j per each time slot allocated to it
(in kWh)

Ljk a normalized value (between 0.8–1) that represents the latency
between request j and datacenter k. (distance-based)

max

M∑

k=1

⎛

⎝
N∑

j=1

([
WL

mem
j ∗ C

mem
B + WL

cpu
j ∗ C

cpu
B

]
∗ Ljk ∗ A

next
jk

)
⎞

⎠ (3)

−
M∑

k=1

⎛

⎝
N∑

j=1

([
WL

mem
j ∗ C

mem
DCk

+ WL
cpu
j ∗ C

cpu
DCk

+ WL
KWh
j ∗ C

kWH
DCk

]
∗ A

next
jk

)⎞

⎠ (4)

+

M∑

k=1

⎛

⎝
N∑

j=1

(
UECjk ∗ WL

KWh
j ∗ C

kWH
DCk

)
⎞

⎠ (5)

−
M∑

k=1

⎛

⎝
N∑

j=1

(
UECjk ∗ WL

KWh
j ∗ 0.1 C

kWH
DCk

)
⎞

⎠ (6)

−
N∑

j=1

(
M∑

k=1

A
current
jk

(
M∑

l=1

A
next
jl ∗ MigCost[k][l] ∗ WL

mem
j

))
(7)
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s.t.

N∑

j=1

(
WLKWh

j ∗ UECjk

)
< ECk, ∀k ∈ M (8)

M∑

k=1

Anext
jk ≤ 1, ∀j ∈ N (9)

UECjk <= Anext
jk , ∀j ∈ N, k ∈ M (10)

N∑

j=1

WLcpu
j ∗ Anext

jk ≤ Capcpuk , ∀k ∈ M (11)

N∑

j=1

WLmem
j ∗ Anext

jk ≤ Capmem
k , ∀k ∈ M (12)

We assume that the cloud broker continuously receives end-user requests
(workloads) of different processing (WLcpu), storage (WLmem) and energy con-
sumption (WLkWh) weights and that it needs to find the most cost efficient
allocation for the received workloads on the available data centers in order to
maximize its revenue. We also assume that each workload and data center in
the system is associated with a location coordinate (x, y) that is used to deter-
mine the distance-based latency Ljk between a workload j and a data center k
as well as the migration cost factor MigCost[k][l] between data centers k and
l. We consider that time is divided into discrete time intervals of equal dura-
tion and that the cloud broker needs to decide a cost efficient allocation for its
workloads at the beginning of each interval. We further assume that the pricing
coefficients of the cloud broker (Ccpu

B and Cmem
B ) remain fixed over all allocation

intervals while the pricing coefficients of the different data centers (C cpu
DC , C cpu

DC

and C cpu
DC ) do change (within a certain range) from one interval to another in

order to simulate a dynamic datacenter pricing and allow the broker to adjust
its workload allocation on each interval according to the new prices in order to
maximize its revenue. We also assume that the cost of purchasing energy cred-
its can be any fraction of the regular price as dictated by the EC market and
consider several example values for this fraction (0.1, 0.4 and 0.7) in our results
section to show the effect of this parameter on our model. This allows the broker
to have enough incentive to reschedule/migrate its workloads in order to take
advantage of the low cost energy and balance the grid in the process.

Our optimization formulation introduced above seeks to maximize the finan-
cial gain of the cloud broker subject to system constraints. This optimization
is evaluated by the cloud broker at the beginning of each allocation interval in
order to decide which data center each of its workloads should be assigned to
and whether the allocated workload can benefit from using energy credits or not.

The decision variables of our optimization model are the matrices Anext
jk

and UECjk introduced earlier. Anext
jk represents the allocation/assignment result

of the broker’s workloads (incoming requests) on the different available data
centers, whereas UECjk on the other hand represents whether each workload is
counted towards the consumption of energy credits at the datacenters that the
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workloads were assigned to (when such credits are available). Our optimization
formulation seeks to choose the appropriate values for Anext

jk and UECjk such
that the objective function is maximized. Assuming that the cloud broker needs
to assign a total of N workload requests, each to one of the M available data
centers, the above decision variables Anext

jk and UECjk can then be represented
as two 2-dimensional boolean matrices of size [N ][M ] where each element Ajk

(s.t. j ∈ N and k ∈ M) is assigned the value of “1” if workload j was assigned
to be hosted on data center k in the next allocation interval and “0” otherwise.
Similarly, each element UECjk is assigned the value of “1” if workload j is
counted towards the consumption of the energy credits available at data center
k in the next allocation interval and “0” otherwise.

Using Anext
jk and UECjk as the decision variables in the above optimization

formulation, the objective function tries to maximize the financial gain of the
cloud broker given the different cost coefficients (Ccpu

DC , Cmem
DC , CkWH

DC ) of the
M available data centers and the weights (WLcpu, WLmem, WLkWh) of the N
workloads that needs to be assigned. The net financial gain is estimated as the
sum of total generated revenues (represented with a “+” sign in the objective
function) minus the sum of total costs (represented with a “−” sign in the
objective function). The first term (3) in the objective function represents the
money that the cloud broker generates from its clients in exchange for hosting
their workloads on the different data centers. If a workload WLj was successfully
assigned to be hosted on a data center k (i.e. Anext

jk = 1), that workload is said
to be generating revenue in the amount shown by the first term of the objective
function. The whole first term is multiplied by a scaling-down factor Ljk that
ranges between [0.8, 1] and represents the distance-based latency between a
workload j and data center k where as the distance between a workload and a
data center increases, Ljk will decrease to approach (0.8). The purpose of scaling
down the first term by Ljk is to enforce the cloud broker to favor assigning
workloads to data centers that are geographically closer to them in order to
minimize the latency. The second term (4) of the objective function represents
the money that the cloud broker would need to pay to the data center that the
workload was assigned to. It is simply the weights of the workload multiplied by
the corresponding cost at the data center and finally multiplied by the allocation
decision variable Anext

jk . The third term (5) of the objective function represents
the regular value of the used energy credits if they were to be bought at the
regular price. The fourth term (6) is the actual (reduced) cost price paid for
acquiring the energy credits. Accordingly, the difference between the third and
fourth terms (actual and reduced costs) represents a monetary gain that the
cloud broker achieves by using the reduced cost energy credits offered by the
smart grid. The last term (7) of the objective function represents the cost of
migrating a workload of size WLmem from data center k to data center l. For
this term, we utilize the [M ]× [M ] size MigCost matrix that contains distance-
based migration cost factors between the different data centers. Migration cost
factors range from [0, 1] and approach the value of 0 as the distance between
data centers gets closer. In order to detect a migration event we use Acurrent

jk to
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hold the allocation results from the previous iteration and we detect a migration
if for a workload WLj we have Acurrent

jk = 1 and Anext
jl = 1 and k �= l.

The first optimization constraint (8) states that the total weight of workloads
that can claim usage of energy credits on a data center may not exceed the total
amount of energy credits available on that data center. The second constraint
(9) limits the number of data center assignments that a workload can get to
a maximum of “1”, since we assume that workloads can only be assigned to a
maximum of one datacenter at a time. The third constraint (10) ensures that
a workload has to be assigned to a data center in order for it to be counted
towards the energy credits consumption at that data center (i.e. energy credits
can not be claimed at a certain data center if the workload is not assigned to
be hosted there). The fourth and fifth constraints (11), (12) are data center
capacity constraints to ensure that each data center does not get assigned more
workloads than what its capacity can accommodate.

4 Performance Analysis

Since our request/workload assignment problem is essentially a multidimensional
binpacking problem where each request is defined by three dimensions (cpu,
memory and kWh), the computational complexity of our problem is known to
be NP-Hard [32]. Therefore, we have implemented our system model using two
approaches, first, as a linear optimization problem into the CPLEX ILP solver
and second, using the more scalable approach of the Best Fit Decreasing (BFD)
assignment heuristic, so we can evaluate our model under the two implemen-
tations. In this section we present our simulation results that measures two
different aspects related to our model, namely the effect of the amount of energy
credits introduced in the system on the time needed to balance a certain amount
of excess energy and the effect of the amount of introduced energy credits on
the revenue generated by a cloud broker. We used a system model consisting
of three data centers and a single cloud broker as discussed before to maintain
system simplicity. Time is modeled in discrete intervals of equal size and the
CPLEX/BFD implementations are ran by the broker at the beginning of each
interval to determine the allocation/mapping of the requests/workloads on the
different available datacenters. Our shown simulation results are the averages of
100 randomized runs where the cost coefficients (Cmem

DC , Ccpu
DC , CkWH

DC ) and loca-
tion coordinates of all data centers are randomized (within the specified ranges
as shown in Table 1) at the beginning of each allocation interval in order to
mimic a dynamic cost system that would require the broker to optimize/adjust
its workload allocations at the beginning of each new interval and induce work-
load migrations between data centers. We have set the range of the datacenter
energy consumption cost parameter CkWH

DC slightly higher than the other dat-
acenter costs in order to make datacenters with available energy credits more
attractive as hosts. On the other hand, the cloud broker adopts fixed cost coef-
ficients (Cmem

B , Ccpu
B ) over all allocation intervals in order to shield its clients

from the uncertainty of the volatile live pricing model applied by datacenters.
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The fixed costs of the broker are set higher than the randomized datacenter costs
to allow it to still make profit under any cost applied by the datacenters. We also
show the effect of variable system loads on the measured parameters by using
different workload arrival rates (10, 20, 30, 40, 50 new request per allocation
interval) for each simulation. The list of the different parameters used in our
performance testing are listed in Table 1.

Table 1. Simulation parameters

Parameter Min Max

Cmem
DC , Ccpu

DC 5 15

CkWH
DC 25 30

Cmem
B , Ccpu

B 100 100

WLmem, WLcpu, WLkwh 5 15

WLduration 3 5

Available energy credits (EC) 0 3000

Workload arrival rate 10 50

Datacenter CPU capacity 5000 5000

Datacenter memory capacity 5000 5000

Figure 2 shows the effect of using different cost fractions (0.1, 0.4 and 0.7)
for energy credits prices on the time needed to balance the grid given that a
certain amount of energy needs to be consumed. Here we assume that 3000
units of energy needs to be consumed by a datacenter in order to balance the
grid and we observe how long it takes (in number of allocation intervals) the
datacenter to consume this amount when different cost fractions of the original
price are offered as energy credits. We notice that reducing the price of offered
energy credits always speeds up the time needed for grid balancing especially
under light system loads as the workloads quickly become concentrated at the
data center that has the energy credits. We also notice that both CPLEX and
BFD perform almost exactly the same in all simulated cases. This is due to
the big size difference between the request/workload size requirements and the
capacity of datacenters (as shown in Table 1), which is a valid assumption in
most realistic situations. Because request sizes are considerably smaller than
datacenter capacities and the fact that the BFD algorithm always orders the
items in a decreasing fashion before assignment, BFD can achieve as optimal
binpacking results as CPLEX except for the last “critical element” that gets
rejected for size capacity violations. Therefore, the size of the last element that
gets rejected from a bin represents an upper bound on the efficiency of the
bin assignment. This upper bound is minimized under the assumption of small
request sizes. Figure 3 shows the effect of using different cost fractions (0.1, 0.4
and 0.7) for energy credits prices on the broker’s generated revenues. We can
see that the generated revenues increase as the cost fraction of energy credits
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Fig. 2. Effect of varying ECs cost on
balancing time

Fig. 3. Effect of varying ECs cost on
Broker’s profit

decrease. This is expected as energy credits represent discounted energy costs
and the lower the cost paid towards acquiring the energy credits the more profits
are generated.

5 Conclusion and Future Work

Effective grid balancing is essential for ensuring the reliable operation of modern
smart grids. In this work we presented a new linear optimization approach that
uses energy credits as an incentive to control the energy consumption levels of
large scale datacenter clients (such as cloud brokers/colocation tenant) for grid
balancing purposes. Simulations performed on our optimization model using
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two different implementation approaches showed that using energy credits as
an incentive can speed up the grid balancing process and increases the brokers
profit margins. In future work we plan to expand the proposed system to include
multiple cloud brokers to compete for the available energy credits by way of game
theory bidding mechanism in order to maximize the smart grid’s return on the
offered energy credits.
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4. Khuri, S., Schütz, M., Heitkötter, J.: Evolutionary heuristics for the bin packing
problem. In: Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds.) Artificial Neural
Nets and Genetic Algorithms, pp. 285–288. Springer, Vienna (1995). https://doi.
org/10.1007/978-3-7091-7535-4 75

5. Albadi, M.H., El-Saadany, E.F.: Demand response in electricity markets: an
overview. In: 2007 IEEE Power Engineering Society General Meeting, pp. 1–5,
June 2007

6. Basmadjian, R., Lovasz, G., Beck, M., Meer, H.D., Hesselbach-Serra, X., Botero,
J.F., Klingert, S., Ortega, M.P., Lopez, J.C., Stam, A., Krevelen, R.V., Giro-
lamo, M.D.: A generic architecture for demand response: the ALL4Green approach.
In: 2013 International Conference on Cloud and Green Computing, pp. 464–471,
September 2013

7. Spees, K., Lave, L.B.: Demand response and electricity market efficiency. Electr.
J. 20(3), 69–85 (2007)

8. Chen, H., Caramanis, M.C., Coskun, A.K.: The data center as a grid load stabilizer.
In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 105–112, January 2014
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