
Min-Forest: Fast Reachability Indexing
Approach for Large-Scale Graphs

on Spark Platform

Liu Yang1, Tongyong Liu1(&), Zhigang Hu1, Zhifang Liao1,
and Jun Long2

1 School of Software, Central South University, Changsha 410075, China
{yangliu,tongyongliu,zghu,zfliao}@csu.edu.cn

2 School of Information Science and Engineering, Central South University,
Changsha 410075, China
jlong@csu.edu.cn

Abstract. Reachability query is an important graph operation in graph database
which answers whether a vertex can reach another vertex through a path over the
graph, and it is also fundamental to real applications involved with graph-shaped
data. However, the increasingly large amount of data in real graph database
makes it more challenging for query efficiency and scalability. In this paper, we
propose Min-Forest approach to handle with reachability problem in large
graphs. We present Min-Forest structure to transfer and label the original DAG,
and introduce a 4-tuple labeling scheme to construct index for each vertices,
which integrate interval labels for trees and non-tree labels. We design efficient
reachability query algorithms for Min-Forest approach on the Cloud Platform of
Spark. The experiment results show that query time of Min-Forest approach is
also on average about 10−4 ms for large dense graphs, and query time and index
construction time of our approach are linear for both sparse graphs and dense
graphs. It can answer reachability queries much faster than the state-of-art
approaches on real graphs database, especially on large and dense ones.

Keywords: Min-Forest � Reachability query � Large-scale graphs
GraphX

1 Introduction

Reachability query is one of most important research in graph processing, especially in
large-scale graph processing, which is widely used in Semantic Web, such as Light-
weight Service [1], semantic query [19] and Semantic Mining [2], knowledge ontology,
biological network and social network. We know that a directed graph can always be
transformed into a directed acyclic graph (DAG) by coalescing strongly connected
components into vertices, and the reachability query of the original graph can be
answered on DAG [3]. Let G = (V, E) be the DAG with n vertices (n = |V|) and m
edges (m = |E|), and a reachability query (u ! v? u, v 2 V) is to answer if there exists a
path (u, v) = (v1, v2, …, vp) in G where (vi, vi+1) is an edge in E, for 1 � i < p, u = v1,
and v = vp. However, the recent dramatically increasing graph data poses new

© Springer International Publishing AG, part of Springer Nature 2018
H. Jin et al. (Eds.): ICWS 2018, LNCS 10966, pp. 437–454, 2018.
https://doi.org/10.1007/978-3-319-94289-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_28&domain=pdf

challenges for reachability computing. For example, the Linked Open Data
(LOD) project [4] has contained 2973 open datasets and more than 149.4 billion triplets
up to August 2017. Therefore, some graph indexing approaches were proposed to
improve the efficiency of reachability query.

2 Related Work

There are two kinds of graph indexing approaches according to the size of graph data:

(1) the approaches for small-scaled and medium-scaled graph with below 1 million
vertices, including Chain-Cover [5, 6], Tree-Cover [7–10], 2-Hop and 3-Hop
[11–13].

(2) the approaches for large-scaled graph with above 1 million vertices, including
Refined Online Search [14–16], and Bloom Filter Labeling [17]. All these
approaches are trade-off between online processing cost and the offline processing
cost, while online processing cost is reachability query time, and offline pro-
cessing cost contains index construction time and index size.

The above approaches present different reachability query algorithms based on
different indexing approaches. However, there are several problems:

(1) The balance between reachability query time, index construction time and index
size of graph: those algorithms are trying to speed up the query answering time
while reducing the index construction time with a reasonable index size.

(2) The scalability bottleneck for handling massive graphs: some reachability algo-
rithms cannot scale to very large real-world graphs.

(3) The limitation of platform: most of the algorithms are implemented in C++ based
on the Standard Template Library (STL), and they have not been extended to
Cloud Platform [18], which have significant advantages for large-scale data
processing.

In this paper, we propose Min-Forest by using forest structure index to prune the
search space of original graph, so as to speed up query time. In addition, Min-Forest
algorithms are implemented on the Cloud platform of Spark to increase scalability for
large-scale graph. The main idea of Min-Forest is as follows:

(1) (Min-Forest) The original DAG is divided into a Forest structure with minimal
number of trees (Min-Forest) by cutting some edges from the original graph, and
then each tree in Min-Forest carries the major reachability information of the
whole tree vertices, and the deleted edges called Non-Forest Edge carry the
relation information between trees. Each Non-Forest Edge in the original DAG is
the deleted incoming edge of ending vertex in the Min-Forest, so as to ensure the
in-degree of ending vertex is at most 1 in the Min-Forest.

(2) (Interval Labeling) Each vertex in Min-Forest is assigned an interval labels (X, Y),
where X is the tree id in the forest, and Y is the vertex position on the tree.
Therefore, the positive reachability query between the two vertices in the
Min-Forest can be immediately answered by the interval labels.

438 L. Yang et al.

(3) (Start Vertex Set of Non-Forest Edge) As for each Non-Forest Edge carrying the
relation information between trees, we record all the starting vertices of it in order
to achieve the reachability query, and name them Start Vertex Set of Non-Forest
Edge.

Therefore, the positive reachability query between any two vertices in the original
DAG can further be answered by Start Vertex Set of Non-Forest Edge and Nearest
Ancestor Vertex of Non-Forest Edge, because they connect trees in Min-Forest.

The rest of the paper is organized as follows. In Sect. 3, we introduce how to
construct a Min-Forest from original DAG. In Sect. 4, we assign interval labels of each
vertex of Min-Forest, which label the tree and the branch each vertex belongs to. In
Sect. 5, we assign connectivity label for each vertex of Min-Forest to ensure the
connectivity of original DAG. In Sect. 6, we present reachability query approach of
Min-Forest, and describe the corresponding query algorithm and its optimized query
algorithm for special graph with redundant data. We analyze experiment results of four
kinds of graphs from query time, index size and construction time, including small
sparse graphs, large sparse graphs, small dense graphs and large dense graphs. We also
analyze scalability of Min-Forest.

3 Construction of Min-Forest

Our study is motivated by a list of tree-based approaches, and we propose Min-Forest
consisted by tree-shape subgraphs to cover a DAG G.

Let T1= (V1, E1) and T2 = (V2, E2) are two trees in G = (V, E), we use T1 \ T2 to
denote the intersection of Tree T1 and Tree T2 with vertices and edges, and T1 [T2 to
denote the union of T1 and T2 with vertices and edges. We use ET1 to denote the edge
set of T1, ET1 [T2 to denote the union of edges of T1 and T2, and ET1 − T2 to denote the
complement of edges in T1 and T2. We define Non-Forest Edge based on the above
terminology.

Definition 1 (Forest). Given a DAG G = (V, E), and (T1, T2, …, Tn) are divided
multiple trees by deleting some edges from G, where Ti \ Tj = £(i 6¼ j, i, j 2(1, n)),
and FG = T1 [T2 […[Tn = (V*, E*) (V* = V, E* 2 E^E* = ET1 [T2 […[Tn)
is called the Forest of G, and S = E − E* = {(u, v)|(u, v) 2 E && (u, v) 62 E*} is called
Non-Forest Edge Set.

As an example, Fig. 2 represents a decomposed Forest FG from DAG G in Figs. 1,
and 2(a) and (b) show two trees of T1 and T2 in FG. Non-Forest Edge Set is generated
in the decomposition process of G, S = E − ET1 [T2 = {(4, 6), (4, 7), (5, 9), (6, 9), (7,
10), (9, 8), (9, 15), (10, 12), (10, 13), (11, 10), (12, 13), (12, 16), (13, 16), (14, 13), (15,
16), (16, 17)}.

There may be several possible forests as the results when converting a DAG to
Forest, and different forests may contain different number of trees. We know the worst
result is that each vertex in the original DAG is converted into a tree in the forest, so the
number of trees of the forest is the number of vertices in the original DAG. Therefore,
we proposeMin-Forest to define as the least number of trees in Forest as possible while
converting the original DAG to Forest.

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 439

Lemma 1 (Min-Forest Criterion). Given DAG G, if the number of vertices with
in-degree 0 in G is N, the minimal number of trees in Min-Forest F is N.

Proof: The vertices with in-degree 0 can only be the root vertices in the tree. Suppose
there are N vertices with in-degree 0, then there are at least N root vertices when
converting G to Min-Forest. That is, the number of trees in Min-Forest is N.

From Lemma 1, the converting process from G to Min-Forest is as following:
(1) Traverse G to find out N vertices with in-degree 0, (2) and then delete incoming
edges from the vertices with in-degree more than 1 and just keep one incoming edge, to
ensure in-degree of each vertex is no more than 1, (3) finally, we get Min-Forest FG
with N trees and E* edges, and the set of deleted edges S, where E = E* + S.

According the converting process, we design the algorithm of Min-Forest Con-
struction, and we concern the scalability and space-saving of the algorithm.

Algorithm 1: ConstructMinForest(G)
Parameter: G is the DAG
Parameter: (srcId, dstId) is the data type of edge

1: savedEdgeRDD ← G.aggregateMessages(
2: sendMsg ←{triplet =>triplet.sendToDst(srcId, dstId)} //map
3: mergeMsg ← {(a, b) => if(a.Id < b.Id) a else b} //reduce
4:)
5: .map(_ => (srcId, dstId))
6: .map(_ => Edge(srcId, srcId)) //create edge object
7: G ← Graph.fromEdges(savedEdgeRDD, 1)

Using Algorithm 1, we get the converted Min-Forest with Tree1 and Tree2 in
Fig. 2 from the original DAG G in Fig. 1. We can also get Non-Forest Edge set during
this converting process. Two sets of edges are generated by executing Map operation
twice, including E-the edge set of G and E*-the edge set of the converted Min-Forest,
and then Non-Forest Edge set is the complement of E and E*.

Algorithm 1 of constructing Min-Forest has two advantages. The first is that the
forest structure based on tree structure helps to increase the reachability query. The

17

16 13

15 12 14

8 9 10 11

5 6 7

3 4

1 2

17

16 13

15 12 14

8 9 10 11

5 6 7

3 4

1 2

Fig. 1. DAG G.

2

4

1

3

5 7

1110

14

8 13

1715

6 9

1612

(a) Tree 1 (b) Tree 2

Fig. 2. Decomposed Forest FG from G.

440 L. Yang et al.

second is that the integrated functions of Spark can filter out all the isolated vertices
automatically, which reduce the difficultly of dealing with large-scale graph data.

4 Interval Labeling of Min-Forest

In Sect. 3, we get Min-Forest with trees and Non-Forest Edge set when converting the
original G to Min-Forest. We will introduce how to label each vertex with a 3-tuple to
cover these two kinds of information by Min-Forest in this section.

The beginning two elements of 3-tuple cover the position of vertex in Min-Forest,
which help to answer the reachability query among trees in Min-Forest, and the last
element cover the connection information between trees in Min-Forest. These three
elements of 3-tuple can compress the full transitive closure of G to answer the
reachability query of the original G.

4.1 Interval Label of Vertex in Min-Forest

In this section, we present how to assign the vertex with the interval label of the
beginning two elements. Similar to Path-Tree approach [8], we also perform a
Depth-First Search (DFS) to create an X label for each vertex, which denotes the tree ID
in the order of the Min-Forest by DFS, and create a Y label, which denotes the branch
ID in the whole Min-Forest. By utilizing the interval label (X, Y), we can easily answer
the reachability query among the Min-Forest.

A. The DFS order of Min-Forest

We assign X label of the interval label (X, Y) for each vertex by DFS algorithm. The
procedure of the algorithm is as following: (1) Find the vertices with in-degree 0 in
Min-Forest, which are root vertices of the trees in Min-Forest. For example, the ver-
tices in the set of {1, 2} are root vertices with in-degree 0, (2) and then perform DFS
traversal from the root vertex set sequentially, until all vertices in Min-Forest are
visited, (3) finally, order all vertices in Min-Forest by DFS traversal order, and then
label the order as their X. As for the isolated vertices deleted during the process of
generating Min-Forest, we label 0 as their X (Fig. 3).

(2,15)

(1,15)

(3,5) (10,12)

(5,5)

(6,9)

(4,5) (8,9)

(9,9)

(7,7) (11,12)

(12,12)

(14,14) (15,15)

(13,15)

2

4

1

3

5 7

1110

14

8 13

1715

6 9

1612

(16,17)

(17,17)

Fig. 3. Interval label of Min-Forest.

(2,15)

(1,15)

(3,5) (10,12)

(5,5)

(6,9)

(4,5) (8,9)

(9,9)

(7,7) (11,12)

(12,12)

(14,14) (15,15)

(13,15)

2

4

1

3

5 7

1110

14

8 13

1715

6 9

1612

(16,17)

(17,17)

a

b

c d

e f g

Fig. 4. Branches of Min-Forest.

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 441

Lemma 2. For any two vertices u, v in Min-Forest, if u can reach v, then u.X < v.X.

Proof: Clearly, if u can reach v, DFS traversal will visit u earlier than v, and it turns to
u only after visiting all v’s neighbors. So, if u can reach v, u.X < v.X based on DFS,
but not vice versa.

B. The Branch Order of Min-Forest

Using X of interval label (X, Y), it can answer the reachability query between root
vertex and its child vertices, but cannot answer the query between the child vertices
below the same root vertex. Therefore, we assign Y of interval label (X, Y) to the vertex
as the branch order of Min-Forest to solve this kind of reachability queries. The
branches are just like the tree branches from the root, and these help to label different
branches.

Definition 2 (Branch of Min-Forest). A branch is a subdivision of Min-Forest FG

that starts at the root vertex and explores vertices as far as possible along each edge
until the leaf vertex with out-degree 0, and this subdivision path formed is a branch of
FG.

As shown in Fig. 4, the branches of a, b, c, d, e, f, g are seven branches of
Min-Forest FG. We observe that different branches never join back up together, each
root vertex or father vertex may belong to different branches, and each leaf vertex can
only belongs to one branch. For example, root vertex 6 belongs to branch b and branch
c, but leaf vertex 16 only belongs to branch b. Therefore, we design a post-order
traversal algorithm for fast assigning the branch order of Y to each vertex in
Min-Forest.

The procedure of the algorithm is as following: (1) Initial the branch order of Y for
each vertex. We initial the DFS order as the branch order for the leaf vertex with
out-degreee 0, and initial 0 as the branch order for non-leaf vertex with out-degree
more than 0, (2) and then post-order traverse vertices in Min-Forest, that is, it always
first visit the child vertices from left to right, and then visit the father vertices of them,
(3) finally, label the branch order of Y for each vertex during post-order traversal. If the
branch order of father vertex is less than that of its child vertices, then it is updated with
the branch order of its child.

For example, vertex 6 belongs to branch b and branch c, and it is the father of
vertex 10 and vertex 13, with the branch order 7 and 9 respectively, so vertex 6 is
assigned with the branch order of 9, which is the maximal branch order of vertex 10
and vertex 3. From Fig. 4, we also note that the vertices below the same father vertex
belong to different branches, and their interval label (X, Y) are mutually exclusive. The
branch order of root vertex is always labeled with the maximal branch order among all
its child vertices, and its interval label (X, Y) is larger than that of its child vertices. The
Pregel iterative algorithm in Cloud Platform of Spark can easily label branch order of
vertices of Min-Forest.

Algorithm 2 of BranchVisit shows the algorithm for assigning Y label of interval
label (X, Y) for each vertex in Min-Forest by post-order traversal. Figure 4 shows the
Y label based on the post-order traversal algorithm and the branch order of isolated
vertices is labeled with 0.

442 L. Yang et al.

Algorithm 2: BranchVisit (adjList, N, startVertices)
1: visited(0) to visited(N-1) ← false
2: branchArray ← null
3: foreach vertex v
4: if (outDegree = 0)
5: branchArray(v) ← v.X // X is DFS order
6: else
7: branchArray(v) ← 0
8: for (i ← 0 to startVertices.length)
9: if (visited(startVertices(i)) = false)
10: LRD(startVertices(i))
11: end if
12: end for

Procedure LRD(v)
1: if (adjList(v) is null)
2: for (i ← 0 to adjList(v).size)
3: v’ ← adjList(v)(i)
4: if (visited(v’) = false)
5: LRD(v’)
6: end if
7: end for
8: visited(v) ← true
9: for (j ← 0 to adjList(v).size)
10: if (v.Y < adjList(v)(j).Y) //Y is Branch order
11: v.Y ← adjList(v)(j).Y
12: end if
13: end for
14: else
15: visited(v) ← true
16: end if

Lemma 3. For any two vertices u, v in Min-Forest, if u can reach v, then u.Y � v.Y.

Proof: (Case 1:) if u only belongs to the same branch of v belongs to, then u.Y = v.Y.
(Case 2:) if u also belongs to different branches besides the branch of v belongs to, u is
the root vertex with the maximal branch order of all its child vertices based on the
post-order traversal in Algorithm 2, then u.Y � v.Y. Combining both Case 1 and Case
2, we prove our result.

4.2 Connectivity Between Vertices in Min-Forest

We map the connectivity between vertices in Min-Forest to a two-dimensional space,
according to the interval label (X, Y) of vertices. As shown in Fig. 6, X-axis represents
vertex’s DFS order, and Y-axis represents the vertex’s branch order in Min-Forest. As
we know, for any two vertices u, v in Min-Forest, if u can reach v, then u.X < v.X &&
u.Y � v.Y, based on Lemmas 2 and 3, that is, v is located at the lower right of

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 443

u corresponding to the two-dimensional space. Therefore, we use two-dimensional map
of Min-Forest to express the interval label (X, Y) of each vertex, and it also reflects the
reachability between vertices. This approach is similar to the labeling approach of
Path-Tree [8].

Lemma 4. For any two vertices u, v in Min-Forest, u can reach v if and only if u.
X < v.X ^ u.Y � v.Y.

Proof: First, we easily prove u ! v) u.X < v.X ^ u.Y � v.Y based on Lemmas 2
and 3. Second, we prove u.X < v.X ^ u.Y � v.Y) u ! v. (Case 1:) if u.Y = v.Y,
then u and v are on the same branch of Min-Forest, and we will visit u before v in DFS
traversal because u is the ancestor of v (u.X < v.X), so we have u ! v. (Case 2:) This
can be proved by contradiction. Let us assume u cannot reach v. Then if u.Y > v.Y, u is
the root vertex in Min-Forest or u and v belongs to two different branches but under the
same father vertex. However, if u is the root vertex in Min-Forest, then u can reach
v obviously, this contradicts the assumption. If u and v are under the same father vertex,
and u.Y > v.Y means that it first visits v and then u according to post-order traversal in
Algorithm.2, then we get v.X < u.X, a contradiction. Combining both cases 1 and 2, we
prove our result (Fig. 5).

5 Connectivity Labeling for Vertices in Trees of Min-Forest

In Sect. 4, we introduce how to judge the reachability of vertices among trees in
Min-Forest. However, we cannot answer the reachability query of any two vertices in
the original DAG, because we delete some edges as Non-Forest edges from the original

a

3 4 5 6 7 8 91 2 12 13 14 15 16 17 1810 11

b

c
d

e
f

g

X

Y
Tree 1 Tree 2

12

1 3

2 4

5

6

7

8 15

9

11 14

10

16

13 17

Fig. 5. Branches of Min-Forest.

444 L. Yang et al.

DAG when constructing Min-Forest, which weakens the connectivity of the original
DAG. We will build the connections that Non-Forest edges break in this section.

From the definitions of Forest, Min-Forest and Non-Forest Edge Set, we know
E = EF + S, where Non-Forest Edge Set of S break the connectivity of the original
DAG G. We define two concepts to study the connectivity besides Min-Forest:
Start-Vertex Set of Non-Forest Edge (SVS) and Nearest Ancestor Vertex of Non-Forest
Edge (NAV).

Definition 3 (SVS). Start-Vertex Set for Non-Forest Edge (SVS) is the staring vertex
set for each ending vertex existing Non-Forest edge to connect them in the original
DAG. As for the ending vertex v, SVSv = {U| ui, ui 2 V* && (ui, v) 2 S}.

We can get SVS of each vertex from Non-Forest Edge Set. Figure 6 shows
Non-Forest edges of the original G by dotted lines. For instance, SVS8 = {9}, and
SVS9 = {5, 6}. In particular, if there is no starting vertex for a Non-Forest edge v, we
record SVSv= Null.

Definition 4 (NAV). Nearest Ancestor Vertex of Non-Forest Edge (NAV) is the nearest
ancestor vertex for each ending vertex existing Non-Forest edge to connect them in the
tree of Min-Forest FG. Suppose the vertex set {u1, …, ui, …, un} ! v, where ui 2 V*
&& SVSui 6¼ ∅, i 2[1, n], n = |V*| − 1, then

NAVv ¼ MAX u1,. . .,ui,. . .,unf g; i 2 ½1; n�
0; i ¼ 0

�
ð1Þ

For instance, NAV15 = 8, and NAV11 = 7. For any vertex v without NAV, we record
NAVv = Null.

We can find NAV of each vertex by DFS traversal or BFS traversal with the same O
(n’ + m’) time, where n’ and m’ are the number of vertices and edges in Min-Forest.
However, the practical results from later experiments show that DFS traversal is better
than BFS traversal, especially to the large-scale data, because BFS traversal may result
in pop operation and push operation consciously for some vertices. Therefore, we
design an algorithm to find out NAV based on DFS traversal. The procedure of the
algorithm is as following: (1) First, find out the ending vertices connected to the
Non-Forest edges according to Non-Forest Edge Set. We know the connectivity of
these ending vertices is weakened by the deleted Non-Forest edges they originally
connect to. Figure 6 shows the deleted Non-Forest edges in red of the original
G. Figure 7 shows the ending vertices connected to the Non-Forest edges in red of
Min-Forest, (2) and then find out NAV of the ending vertex connecting to Non-Forest
edge in Min-Forest based on DFS traversal. If the father vertex of vertex v is just the
starting vertex connecting to a Non-Forest edge, then we record this father vertex as
NAV of vertex v, that is, NAV of vertex v is its father vertex, else NAV of vertex v is its
father’s NAV recursively, that is, NAV of vertex v is its father’s NAV. In particular, if

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 445

vertex v does not exist NAV, that means this vertex’s ancestor vertices does not connect
to any Non-Forest edges, then we record NAVv = 0.

From the above, we can see that vertex u may reach vertex v from one branch of the
trees in Min-Forest, or through deleted Non-Forest edges. Although the deleted
Non-Forest edges decrease reachability between vertices, the reachability also exists by
using SVS and NAV. Therefore, reachability query (u ! v? u, v 2 V) can be answered
by the following 3-step judges: (1) check the scopes of interval label (X, Y) for u and v,
(2) and then check the reachability from u to any vertex in SVSv, (3) and then check the
reachability for u to NAVv.

For example, if there is a reachability query (5 ! 9?), we first check whether
vertex 5 and vertex 9 are not on the same branch in Min-Forest from Fig. 7. If no, we
cannot immediately conclude that vertex 5cannot reach vertex 9, because there actually
exists an edge (5, 9) connecting vertex 5 and 9 in Fig. 6, which is just deleted when
constructing Min-Forest. Therefore, we should use SVS9 to judge whether there exist
starting vertices connecting to vertex 9. From Fig. 6, we get SVS9= {5, 6}, so we can
conclude 5 ! 9.

Theorem 1. Given vertex u and vertex v in the Min-Forest FG with the original DAG
G, u can reach v if and only if (1) u can reach v in FG, i.e., u.X < v.X ^ u.Y � v.Y,
(2) u can reach v by one of vertices in SVSv directly or indirectly, (3) u can reach v by
NAVv indirectly.

Proof: The proposition of u ! v is equivalent to the proposition that u can reach v or
v’s ancestors, and we can check v’s ancestors by the following: (1) v’s ancestors are
direct ancestors of v in Min-Forest by Definition 2, that is, u ! v is equivalent to u.
X < v.X ^ u.Y � v.Y; (2) v’s ancestors are vertices in the set of SVSv by Definition 3,
that is, u ! v is equivalent to u ! w, w 2 SVSv; (3) v’s ancestor is NAVv by Definition
4, that is, u ! v is equivalent to u ! NAVv.

In conclusion, we can answer reachability query by the interval label (X, Y) of
Min-Forest, SVS or NAV, so we construct vertex index by Theorem 1, and build index

17

16 13

15 12 14

8 9 10 11

5 6 7

3 4

1 2

Fig. 6. Deleted edges of Min-Forest (Color
figure online)

2

4

1

3

5 7

1110

14

8 13

1715

6 9

1612

0

0

0 000

0 6 6 7

8

9 9

13 7

0

0

Fig. 7. NAV of Min-Forest (Color figure
online)

446 L. Yang et al.

for each vertex by 3-tuple (X, Y, NAVv) and SVSv. Table 1 lists the index for each
vertex in Fig. 1, and the construction time for index is O(n’ + m).

6 Reachability Query of Min-Forest Approach

To answer reachability query between two vertices of u and v, Min-Forest query
processing presents a 3-step querying approach, and it answers whether u can reach
v after the following checking:

(1) Whether the interval label (X, Y) of u includes that of v by Min-Forest, that is, to
check whether u.X < v.X ^ u.Y � v.Y.

(2) Whether u can reach w in SVSv, where w is one of ancestor vertices in SVSv. This
step is an iterative process to find ancestor vertices for the vertices in SVSv.

(3) Whether u can reach v by NAVv.

Vertex u can reach vertex v if and only if (1) or (2) or (3) holds.
We design an efficient reachability query algorithm with O(d), where d is the

number of deleted edges for all vertices, and we know that d � n (n is the number of
vertices in DAG). The reachability query algorithm is described in Algorithm 3.

Table 1. DAG index for vertices in DAG G of Fig. 1

Node Id (X, Y, NAVv) SVSv

1 (1, 15, 0) Null
2 (16, 17, 0) Null
3 (2, 15, 0) Null
4 (17, 17, 0) Null
5 (3, 5, 0) Null
6 (6, 9, 0) {4}
7 (10, 12, 0) {4}
8 (4, 5, 0) {9}
9 (13, 15, 0) {5, 6}
10 (7, 7, 6) {7, 11}
11 (11, 12, 7) Null
12 (14, 14, 9) {10}
13 (8, 9, 6) {10, 12, 14}
14 (12, 12, 7) Null
15 (5, 5, 8) {9}
16 (15, 15, 9) {12, 13, 15}
17 (9, 9, 13) {16}

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 447

Algorithm 3 Query(u, v)
1: flag ← false
2: if (getForestQuery(u, v) = true)
3: flag ← true
4: else
5: if (getDeletedInEdgeQuery (u, v) = true)
6: flag ← true
7: else
8: flag ← getFatherVertexQuery(u, v)
9: end if
10: end if

Procedure getForestQuery(u,v)
1: flag ← false
2: if ((u.X < v.X && u.Y >= v.Y) || u = v)
3: flag ← true
4: end if
5: return flag

Procedure getDeletedInEdgeQuery(u,v)
1: flag ← false
2: i ← 0
3: while (i < deletedInEdges.length && flag = false)
4: flag = getQuery(u, deletedInEdges(v)(i))
5: i ← i + 1
6: end while
7: return flag

Procedure getFatherVertexQuery(u,v)
1: flag ← false
2: if (nearestAncestors(v) != 0)
3: flag = getQuery(u, nearestAncestors (v))
4: end if
5: return flag

7 Reachability Query of Min-Forest Approach

We conducted an extensive set of experiments in order to evaluate the performance of
Min-Forest in comparison with state-of-art reachability approaches. We also focused
on three important measures for reachability query: query time, index size and con-
struction time.

7.1 Reachability Query

Our experiments are conducted by a Dell desktop computer equipped with 4 Intel Core
i5 CPUs at 3.20 GHz, and 36 gigabyte of main memory. We use OS CentOS7/Linux
with Cloud Platform of Spark using version 2.1.0. We study other reachability algo-
rithms implemented by C++, such as Grail [12], Path-Tree [8], and BFL [15], and in
real environment we implement Min-Forest approach using Scala languagewith ver-
sion 2.11.8 on Spark GraphX with version 2.1.0 on local mode, which is a special
standalone cluster mode of Spark for computing, namely stand-alone mode.

448 L. Yang et al.

As for dataset size, we consider dataset with less than 500,000 vertices as small
dataset, and others as large dataset. As for dataset density, we consider dataset with the
ratio of edges to nodes below 1.5 as sparse dataset, and others as density dataset.
Therefore, we divide 22 datasets into 4 categories based on dataset size and dataset
density which are Small Sparse Datasets, Small Dense Datasets, Large Sparse Datasets
and Large Dense Datasets. We use the real graph datasets listed in Tables 2, 3, 4 and 5,
which are the benchmark sets for recent reachability research. We get these graph
datasets from the URI of https://code.google.com/arc-hive/p/grail/downloads, which is
provided by Dr. Wei Hao of Chinese University of Hong Kong.

In Tables 2, 3, 4 and 5, columns of |V|, |E| and |E|/|V| record the number of vertices,
edges, and ratio of edges to vertices in the original DAG, respectively. Columns of |VF|
and |EF| record the number of vertices and edges in the Min-Forest converted from the
original DAG, and the column of |Ed| records the number of deleted Non-Forest edges.
We order all four groups of datasets by the vertex number in datasets.

Table 2. Small sparse datasets.

DataSet |V| |E| |E|/|V| |VF| |EF| |Ed|

kegg 3617 4395 1.22 2619 2436 1472
amaze 3710 3947 1.06 2333 2152 1448
nasa 5605 6538 1.17 5605 5604 933
xmark 6080 7051 1.16 6080 6079 946
vchocyc 9491 10345 1.09 9491 9490 653
mtbrv 9602 10438 1.09 9602 9601 644
anthra 12499 13327 1.07 12495 12493 611
ecoo 12620 13575 1.08 12620 12619 731
agrocyc 12684 13657 1.07 12684 12683 725
human 38811 39816 1.01 38811 38810 766

Table 3. Small dense datasets.

DataSet |V| |E| |E| /|V| |VF| |EF| |Ed|

arxiv 6000 66707 11.12 5389 5039 61668
yago 6642 42392 6.38 1857 1466 40926
go 6793 13361 1.97 6777 6729 6632
pubmed 9000 40028 4.45 7437 6391 33637
citeseer 10720 44258 4.13 7598 6148 38110

Table 4. Large sparse datasets.

DataSet |V| |E| |E| /|V| |VF| |EF| |Ed|

citeseer 693947 312282 0.45 142749 80450 231832
unip_22 m 1595444 1595442 1 78562 39286 1556156
unip_100 m 16087295 16087293 1 2834057 1488335 14598958
unip_150 m 25037600 25037598 1 6329139 3387543 21650055

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 449

https://code.google.com/arc-hive/p/grail/downloads

7.2 Query Time, Index Size and Construction Time

We use four groups of real datasets to verify the efficiency of Min-Forest approach. In
this section, we report these four groups of experiment results to address query time,
index size and construction time.

Min-Forest approach is implemented by Spark GraphX, which is different from
other approaches implemented by STL C++. We mainly compare our Min-Forest
approach with the state-of-the-art reachability approaches including Grail, Path-Tree
and BFL+, which generally perform well as analyzed in [12, 15]. All experiments in
[12] are performed on machine with x86_64 Dual Core AMD Opteron (tm) Processor
870, 32 GB RAM with Linux OS, and all experiments in [15] are performed on
machine with 3.60 GHz Intel Core i7-4790 CPU, 32 GB RAM with Linux OS, so both
of the machines perform better than ours.

Tables 6, 7, 8 and 9 show query time, construction time and index size for four
groups of datasets. As for small sparse and dense datasets, we compare Min-Forest
with Grail and PT, and as for large datasets, we compare with Grail and BFL+.

Query Time
As for sparse graphs in Tables 6 and 8, we note query time of Min-Forest approach is
on average about 10−4 ms, not only for small sparse graphs, but also for large sparse
graphs. However the query time of state-of-the-art reachability approaches at present is
about 10 ms for sparse graphs.

Table 5. Large dense datasets.

DataSet |V| |E| |E|/|V| |VF| |EF| |Ed|

cit-patents 3774768 16518947 4.38 3567328 3258983 13259964
citeseerx 6540401 15011260 2.3 6452911 5973250 9038010
go-uniprot 6967956 34770235 4.99 31833 21953 34769339

Table 6. Query time (ms), index size and construction time (ms) on small sparse datasets.

Dataset Query time Construction time Index size
Min-Forest Grail Path-Tree Min-Forest Grail Path-Tree Min-Forest

kegg 6.30E−03 1063 7.1 26 3.8 939 5.89
amaze 3.60E−03 764 7 18 3.8 818 5158
nasa 5.52E−04 26.5 7.8 6 6.3 126 6538
xmark 2.20E−04 79 8.2 16 7.5 263 7026
vchocyc 3.18E−04 49.6 7.2 132 12 201 10144
mtbrv 3.60E−04 49 7.2 135 12 208 10246
anthra 2.97E−04 49 8.5 240 16 268 13110
ecoo 2.99E−04 56 8 292 16 276 13351
agrocyc 3.47E−04 57 8 253 16.1 279 26093
human 2.86E−04 80 14 4548 72 822 39577

450 L. Yang et al.

As for dense graphs in Tables 7 and 9, we divide datasets of them into two groups.
The first group are datasets of go, yago and go-uniprot, and the second group are
datasets of arxiv, citeseer, pubmed, citeseerx and cit-patents for better query we use
two query methods, including the original query method described in algorithm 3 for
the first group datasets and the improved query method by restriction of query access
for the second datasets. We observe that the query time of the first group is also on
average about 10−4 ms and the second group’s is less than 5.3 ms.

Above all, the query time of our Min-Forest approach can be several orders of
magnitude faster than other algorithms.

Index Size
We label for each vertex in Min-Forest with interval label of (X, Y), which denotes tree
ID and branch ID of the vertex. We also assign the connectivity labels for each vertex
in Min-Forest, including SVS and NAV. Therefore, the index size for Min-Forest
approach is |V| + |Ed|, where V is the set of all vertices in Min-Forest, and Ed the
deleted edge set from the original edge set E when constructing Min-Forest.

Table 7. Query time (ms), index size and construction time (ms) on small dense Datasets.

Dataset Query time Construction time Index size
Min-Forest Grail Path-Tree Min-Forest Grail Path-Tree Min-Forest

arxiv 1.22E−01 575 24.4 12 21.7 9639 67668
yago 3.50E−04 46.9 13.8 7 18.2 512 47568
go 9.99E−04 51.4 11.6 9 9.5 220.9 13425
pubmed 2.92E−03 75.5 22.1 14 43.9 774 42637
citeseer 2.60E−03 82.6 24.5 11 43.1 751.5 48830

Table 8. Query time (ms), index size and construction time (ms) on large sparse datasets.

Dataset Query time Construction time Index size
Min-Forest Grail BFL+ Min-Forest Grail BFL+ Min-Forest

citeseer 4.79E−04 94.9 14.5 145 413 51 925779
unip_22 m 3.89E−04 132.3 14.7 273 595 61 3151600
unip_100 m 4.58E−04 186.1 14.4 2465 7472 857 30686253
unip_150 m 4.67E−04 183 14.7 4926 12083 1538 46687655

Table 9. Query time (ms), index size and construction time (ms) on large dense datasets.

Dataset Query time Construction time Index size
Min-Forest Grail BFL+ Min-Forest Grail BFL+ Min-Forest

cit-patents 7.30E−01 1579.9 257.671 3355 61911.9 1375 17034732
citeseerx 5.3 12496.6 29.543 15875 19836 1022 15578411
go-uniprot 3.82E−04 194.1 17.458 2487 32678.7 955 23645698

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 451

Note that |Ed| is positively correlated to |E|, and we know |Ed| < |E|, so we get the
index size as:

Index Size ¼ jV j þ ajEjð0\a\1Þ ð2Þ

We observe that the index size is positive correlative to |V| and |E|, with the
coefficient of 1 and a, respectively. Therefore, the index size of Min-Forest approach is
not large and has good scalability.

Construction Time
We note that construction time increase with increasing density of datasets. As for
small sparse datasets, construction time of Min-Forest is almost less than that of PT but
almost 11 times higher than that of Grail. However, as for small dense datasets con-
struction time of ours is always 23 times less than that of PT and always less than that
of Grail. As for large datasets, construction time of Min-Forest is almost 2.1 times less
than that of Grail and 2.4 times higher than that of BFL+, which can keep about 75
percent the pruning power even in the densest datasets. However, we know Min-Forest
is several orders of magnitude faster than BFL+ on query time.

Above all, the construction time of our Min-Forest approach is not bad and is good
scalable in dense graph and large graph.

7.3 Scalability

In this section, we study the scalability for sparse graphs and dense graphs from the
aspects of query time, according to the experiments results shown in Tables 2, 3, 4, 5,
6, 7, 8 and 9. We show the experiment results of query time for four kinds of datasets in
Fig. 8.

Query time
As for the sparse datasets, we observe from Fig. 8(a) and (c) that query time doesn’t
increase with the number of vertices increasing, but decrease rapidly at first and tend to
be stable then. And the stable value of query time is about 10−4 ms no matter small
sparse datasets and large sparse datasets, of which the range of number of vertices is
5605 to 25037600. From it, we can see the scalability of Min-Forest approach is very
good for the sparse datasets.

As for the dense datasets, query time isn’t always linear growth with the number of
vertices increasing. In terms of small dense datasets, the change trend of query time is
decrease quickly at begin and slowly linear growth with the number of vertices after.
As for large dense datasets, except exceptional data citeseerx, the query time is a
downward trend with the number of vertices. Above all, the scalablity of Min-Forest
for dense datasets is still good.

In summary, our experimental results on query time indicate that Min-Forest
approach is scalable, especially in sparse datasets, since query time is always about
10−4 ms for sparse datasets, of which the range of number of vertices is 5605 to
25037600.

452 L. Yang et al.

8 Conclusion

In this paper, we propose Min-Forest approach to solve large-scale reachability queries
in large graphs. We present a 4-tuple labeling scheme to construct index of original
DAG, with two tuples of interval labels for vertices in the same tree and two tuples of
connecting labels for vertices in the different trees. We design algorithms for our
Min-Forest approach by Scala and implement them on the Cloud Platform of Spark,
which also help to speed up reachability query in large graphs. Our experiment results
on four kinds of real datasets demonstrate that Min-Forest approach have the fastest
query time and comparable index construct time compared with the state-of-art
approaches, including Grail, Path-Tree and BFL+. Furthermore, the query time and
index construction time of our approach are linear for both sparse graphs and dense
graphs, and it performs quite well when graph are large and dense, so it is scalable and
applicable to large-scale datasets. In the future, we plan to apply Min-Forest approach
to the dynamic large graphs, and we will further study the reachability problem in
query reasoning by Min-Forest approach.

Acknowledgement. This work is sponsored by China Scholarship Council, and supported by
the National Natural Science Foundation of China under Grant No. 61472450 and No. 61572525.

(a) Query Time for Small Sparse Datasets (b) Query Time for Small Dense Datasets

(c) Query Time for Large Sparse Datasets (d) Query Time for Large Dense Datasets

Fig. 8. Query time in four kinds of datasets

Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs 453

References

1. Cheng, B., Zhai, Z., Zhao, S., Chen, J.: LSMP: a lightweight services mashup platform for
ordinary-users. IEEE Commun. Mag. 55(4), 116–122 (2017)

2. Cheng, B., Li, C., Chen, J.: A web services discovery approach based on interface
underlying semantics mining. IEEE Trans. Knowl. Data Eng. 29(5), 950–962 (2017)

3. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4471-3886-01

4. Linking Open Data (2018). http://www.w3.org/wiki/SweoIG/TaskFores/CommunityProjects/
Lin-kingOpenData. Accessed 8 Mar 2018

5. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM Trans.
Database Syst. 15(4), 558–598 (1990)

6. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries. In: 24th
ICDE Proceedings, pp. 893–902. IEEE, New York (2008)

7. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. In: ACM SIGMOD Proceedings, pp. 253–262. ACM, New
York (1989)

8. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph reachability
queries in constant time. In: 22th ICDE Proceedings, pp. 1–12. IEEE, New York (2006)

9. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very
large directed graphs. In: 8th SIGMOD Proceedings, pp. 595–608. ACM, New York (2008)

10. Jin, R., Ruan, N., Xiang, Y., Wang, H.: Path-tree: an efficient reachability indexing scheme
for large directed graphs. ACM Trans. Database Syst. 36(1), 73–84 (2011)

11. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop
labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

12. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for
reachability query. In: 9th ACM SIGMOD Proceedings, pp. 813–826. ACM, New York
(2009)

13. Cai, J., Poon, C.K.: Path-hop: efficiently indexing large graphs for reachability queries. In:
10th CIKM Proceedings, pp. 119–128. ACM, New York (2010)

14. Yildirim, H., Chaoji, V., Zaki, M.J.: GRAIL: a scalable index for reachability queries in very
large graphs. VLDB J. 21(4), 509–534 (2012)

15. Seufert, S., Anand, A., Bedathur, S., Weikum, G.: FERRARI: flexible and efficient
reachability range assignment for graph indexing. In: 13th ICDE Proceedings, pp. 1009–
1020. IEEE, New York (2013)

16. Jin, R., Ruan, N., Dey, S., Xu, J.Y.: SCARAB: scaling reachability computation on large
graphs. In: 12th SIGMOD Proceedings, pp. 169–180. ACM, New York (2012)

17. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster? IEEE Trans.
Knowl. Data Eng. 29(3), 683–697 (2017)

18. Spark GraphX Homepage. http://spark.apache.org/graphx/. Accessed 12 Dec 2017
19. Yang, L., Yang, L., Niu, J., Hu, Z., Long, J., Zheng, M.: A semantic data parallel query

method based on hadoop. In: Cellary, W., Mokbel, Mohamed F., Wang, J., Wang, H., Zhou,
R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 396–404. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48740-3_29

454 L. Yang et al.

http://dx.doi.org/10.1007/978-1-4471-3886-01
http://www.w3.org/wiki/SweoIG/TaskFores/CommunityProjects/Lin-kingOpenData
http://www.w3.org/wiki/SweoIG/TaskFores/CommunityProjects/Lin-kingOpenData
http://spark.apache.org/graphx/
http://dx.doi.org/10.1007/978-3-319-48740-3_29

	Min-Forest: Fast Reachability Indexing Approach for Large-Scale Graphs on Spark Platform
	Abstract
	1 Introduction
	2 Related Work
	3 Construction of Min-Forest
	4 Interval Labeling of Min-Forest
	4.1 Interval Label of Vertex in Min-Forest
	4.2 Connectivity Between Vertices in Min-Forest

	5 Connectivity Labeling for Vertices in Trees of Min-Forest
	6 Reachability Query of Min-Forest Approach
	7 Reachability Query of Min-Forest Approach
	7.1 Reachability Query
	7.2 Query Time, Index Size and Construction Time
	7.3 Scalability

	8 Conclusion
	Acknowledgement
	References

