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Abstract. Diverse strategically misbehaved entities have severely
degraded the core-functions of trust-enabled interactional networks. At
present, it is still a hard problem to identify them owing to the complex-
ities of malicious behaviors, such as on-off attack, colluding attack, etc.
In this paper, we propose a belief propagation-based algorithm Map-
Trust to quantitatively and qualitatively infer entity’s trustworthiness
and untrustworthiness. Three primary contributions are included: (i) we
define removal probability for each pair of interacted entities via pair-
wise feedback-ratings; (ii) we propose a novel cross-iteration fashion to
infer trustworthiness and untrustworthiness values. The cross-iteration
fashion not only declines time overhead compared to sequential iteration
method, but it also supports a convenient manipulation, i.e. we can flex-
ibly initiate group affinity; (iii) we launch extensive experiments using
synthetic and real-world datasets to verify the efficiency of our proposed
MapTrust. The experimental results show our proposed MapTrust dra-
matically outperforms Monte Carlo Markove Chain and Random algo-
rithms against four representative attacks.
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1 Introduction

Interactional networks enable massive global-scattered distributed resources over
the Internet to benefit customers through providing services on-demand, such as
cloud platforms, P2P networks, WSNs, online social networks and eCommerce,
IoTs, etc. Nevertheless, the emergence of various misbehaved entities, especially
the strategically malicious collectives which can occasionally behave honestly
alike good entities, severely damages the networking utilities and degrades the
service capability. Accordingly, the reputation-based trust management, as an
effective security mechanism, has been proposed and successfully applied in the
real-world systems, such as Amazon, Alibaba, etc. Usually, the trust metrics com-
pute a unique global trust score for each entity to denote how trustworthy it is
through aggregating both direct and recommended feedback-ratings. The higher
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the global trust score, the more reliable the entity. For misbehaved entities,
they attempt to get high global trust via strategically collusive manipulations
to subvert the system, and some malicious entities can succeed indeed. Our pre-
vious work [4] has verified the camouflage and spy entities can indeed gain high
global trust scores using the popular trust model-EigenTrust [9]. As analyzed in
[4], the commonly used uniformly distributed trust propagation kernel almost
fails to block strategically misbehaved entities from gaining trust propagation.
It will inversely yield high global trust scores for the strategically misbehaved
entities, i.e. camouflage and spy entities. Keeping this weakness in mind, we
try to address this sophisticated security question from another perspective-
trustworthiness and untrustworthiness computation, i.e. on the one hand, we
admit the existence of honest behaviors of these strategically misbehaved enti-
ties; on the other hand, we portend their potentially co-existing trustworthiness
and untrustworthiness values.

In this paper, we propose an effective behavioral trustworthiness and untrust-
worthiness inference algorithm MapTrust through calculating a fine-grained
marginal probability using belief propagation (BP) algorithm, replacing the
traditional global trust aggregation fashion [4,9,16]. In MapTrust, we define
belief/unbelief propagating kernel for each pair of connected/interacted entities.
In this way, even though a strategically misbehaved entity can get high feedback-
ratings, it cannot be recognized as trustworthy owning to the low removal prob-
ability with pre-trusted entities which are initially assigned trustworthy entities
by the networked system [4,9,16]. For a good entity recently joined into the
network, although it cannot get many feedback-ratings, it still may be recog-
nized as trustworthy due to high removal probability with pre-trusted entities.
This breaks through the deficiency of referring single global trust as interactional
criterion. Our main contributions can conclude as follows.

(i) We define pairwise removal probability for each pair of interacted enti-
ties using the gravitation model. The removal probability, as the basis of
marginal probability aggregation, stands for the affinity for a pair of enti-
ties.

(ii) We propose a novel cross-iteration fashion to compute marginal probability
through two-layer “message-passing”. This cross-iteration fashion also takes
two facets of advantages. Firstly, it declines the time cost compared to
sequential iteration. Secondly, it also brings a flexible setting on intra/inter-
group affinity.

(iii) We launch extensive experiments using both synthetic and real-world
datasets to investigate the efficiency of our proposed MapTrust, and com-
pared with Monte Carlo Markove Chain (MCMC) and Random algorithms.
The experimental results show that our MapTrust not only assigns differ-
ent categories of entities into adequate groups, but it can also appropriately
calculate fine-grained trustworthiness and untrustworthiness values for each
entity.

The rest of this paper are organized as follows. Section 2 introduces the radical
components in trust-enabled interactional networks. Section 3 details MapTrust
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from the perspectives of removal probability setting and trustworthiness and
untrustworthiness inference. We conduct extensive experiments to evaluate the
efficiency of our MapTrust in Sect. 4, present related work in Sect. 5 and conclude
the paper in Sect. 6.

2 Radical Components in Trust-Enabled Interactional
Networks

2.1 Local Feedback-Rating Aggregate

In a trust-enabled interactional network, the service consumer will give the ser-
vice provider (seller) a feedback-rating to state his/her opinion on the quality
of service. If satisfied, the service consumer would give the service provider a
positive feedback-rating; otherwise a negative feedback-rating if unsatisfied. Let
ςij denote the number of satisfied transactions between entities i and j, and τij

denote the number of unsatisfied transactions. To date, the local feedback-rating
aggregate primarily contains two manners. One is the positive feedback-rating
ratio [4,5,9,16], it can be straightly defined as:

sij =

{
ςij

ςij+τij+1
τij

ςij+τij+1 ≤ θ
1
2 otherwise

, (1)

where constant θ implies the good entities can be allowed to misbehave in a
subtle probability (usually 0.5) owing to some unintentional reasons.

The other manner is to utilize beta-function [7,8]:

f(p|α, β) =
Γ (α + β)
Γ (α)Γ (β)

pα−1(1 − p)β−1, (2)

where Γ is gamma function, 0 ≤ p ≤ 1, α, β > 0, p �= 0 if α < 1 and p �= 1ifβ < 1.
The local feedback-rating value is defined as the probability expectation E(p):

α

α + β
=

ςij + 1
ςij + τij + 2

, (3)

where α = ςij + 1, β = τij + 1. Obviously, the two manners reflect similar
meanings, i.e. both Formulas (1) and (3) aim at mirroring the potential local
trustworthiness to some extent. In this paper, we choose the former to aggregate
local feedback-rating. To facilitate the differential local feedback-rating values
to other interacted entities from the standpoint of a particular entity, and pre-
vent a malicious entity from giving arbitrarily high feedback-ratings to other
misbehaved entities, we need to normalize this local feedback-rating sij :

mij =
{

max(sij , 0)/
∑

j max(sij , 0) if
∑

j max(sij , 0) �= 0
pj otherwise

, (4)

where P = {pj} denotes the set of pre-trusted entities, pj = 1/|P | for j ∈ P and
pj = 0 otherwise.
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2.2 Trust Propagation Kernel

The commonly used global trust aggregation fashion, such as EigenTrust [9],
it is based on uniformly distributed trust propagation kernel, namely

−→
T (r+1) =

(1−u)MT −→
T (r)+u

−→
P , where

−→
T (r+1) denotes all entities’ global trust scores at the

(r + 1)th iteration round, M = {mij} represents the matrix of normalized local
feedback-rating and u is the probability that an entity knows none but relies
on pre-trusted entities. Nevertheless, as analyzed in our previous work [4], this
uniformly distributed trust propagation kernel suffers from several vulnerabilities
to propagate trust along direct links from an entity to all its neighbors when the
strategically misbehaved entities exist. Therefore, in this paper, on the basis
of admitting the property of honesty of strategically misbehaved entities, we
employ the affinity of two entities as a “bridge” to propagate belief/unbelief
information instead of the direct local feedback-rating. Besides the consideration
on connected neighbors of an entity, we also take those unconnected entities into
account for the aggregation of marginal probability in our MapTrust.

3 MapTrust: Trustworthiness and Untrustworthiness
Inference

3.1 Trustworthiness and Untrustworthiness Formulation

BP algorithm was initially proposed by Pearl [12] for solving the inference prob-
lems by passing local messages (belief) over diverse graphs, and successfully
applied in error-correcting coding theory [14,15], social network [17] and bio-
logical networks [1], etc. Empirically, BP algorithm works surprisingly well even
for graphical networks with loops [15], this property well fits the massive loops
embedded interactional networks. In standard BP, a variable hij(xj) which can
intuitively be understood as a “message” from a hidden node i to the hidden
node j about what state node j should be in. The message hij(xj) will be a vec-
tor of the same dimensionality as xj , with each component being proportional
to know likely node i thinks it is that node j will be in the corresponding state.
The belief at node i is proportional to the product of local evidence at this node
(φi(xi)) and all the messages coming into i:

bi(xi) = z · φi(xi)
∏

j∈N(i)

hji(xi), (5)

where z is a normalization constant and N(i) denotes the nodes neighboring i.
It is easy to convince BP in fact gives the exact marginal probabilities for each
nodes [14], and the messages can be formulated by the message update rule:

hij(xj) =
∑
xi

φi(xi) · ψij(xi, xj) ·
∏

k∈N(i)\j

hki(xi), (6)

where ψij(xi, xj) denotes pairwise evidence between node i and node j. The
right-hand side interprets the product over all messages going into node i except
for the one coming from j.
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Behind BP formula, two-layer connotations are included: (i) the belief going
into node i from unconnected nodes (local evidence); (ii) the belief going into
node i from directly connected nodes. To formulate this “message-passing”, we
denote several variables in the light of misbehavior-integrated interactional net-
works. Concretely, the multi-states are redefined as different groups to represent
interacted behaviors’ trustworthiness and untrustworthiness for different cate-
gories of entities. Assume the fraction of entities in each group a is na, the
number of groups is q, correspondingly, a q × q affinity matrix can be defined
to denote the probability Pab over each edge between group a and group b. For
a directed network, the adjacent matrix Aij = 1 indicates there exists an edge
(transactions) from entity i to entity j, otherwise no edge exists with Aij = 0.

We first define the conditional marginal, denoted by bi→j
gi

, namely margin-
al/removal probability, implying entity i belongs to group gi in the absence of
entity j. Accordingly, we can compute the “message-passing” i sends j recur-
sively in terms of the messages that i receives from other neighbors k [3,17]:

bi→j
gi

=
1

Zi→j
· ngi

·
∏

k∈N(i)\j

[∑
gk

PAki
gkgi

(1 − Pgkgi

N
)1−Akibk→i

gk

]
, (7)

where N(i) denotes the neighbors of entity i, Zi→j is a normalization constant
ensuring

∑
gi

bi→j
gi

= 1. Then, we can further define the marginal probability as:

bi
gi

=
1
Zi

· ngi
·

∏
k∈N(i)

[∑
gk

PAki
gkgi

(1 − Pgkgi

N
)1−Akibk→i

gk

]
, (8)

where Zi is a normalization constant ensuring
∑

gi
bi
gi

= 1. Formula (8) denotes
the marginal probability entity i belongs to the group gi.

For a pair of entities i and j, we can further discuss in two cases. If Aij = 0,
then we have (given

∑
gk

bk→i
gk

= 1):

bi→j
gi

=
1

Zi→j
· ngi

·
k �=j∏

Aki=0

[
1 −

∑
gk

Pgkgi

N
· bk→i

gk

]
·

∏
Aki=1

∑
gk

Pgkgi
· bk→i

gk
. (9)

If Aij = 1, then we have:

bi→j
gi

=
1

Zi→j
· ngi

·
∏

Aki=0

[
1 −

∑
gk

Pgkgi

N
· bk→i

gk

]
·

k �=j∏
Aki=1

∑
gk

Pgkgi
· bk→i

gk
. (10)

Hence, we can rewrite the removal probability from entity i to entity j as
(assume bk→i

gk
= bk

gk
if Aki = 0):

bi→j
gi

=
1

Zi→j
· ngi

·
∏

Aki=0

[
1 −

∑
gk

Pgkgi

N
· bk

gk

]
·

k �=j∏
Aki=1

∑
gk

Pgkgi
· bk→i

gk
. (11)
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Correspondingly, the marginal probability for entity i can be redefined as:

bi
gi

=
1
Zi

· ngi
·

∏
Aki=0

[
1 −

∑
gk

Pgkgi

N
· bk

gk

]
·

∏
Aki=1

∑
gk

Pgkgi
· bk→i

gk
. (12)

We define the marginal probabilities in different groups to mirror the fine-
grained trustworthiness and untrustworthiness values with group assignment for
each entity. Next, we interpret how to set transacted behavior-aware removal
probability bi→j

gi
for each pair of entities.

3.2 Removal Probability Setting

In misbehavior-integrated interactional networks, we can easily observe two sce-
narios: (i) good entities provide authentic services for other entities and give
honest feedback-ratings to other entities; (ii) inversely, misbehaved entities pro-
vide inauthentic services and give dishonest feedback-ratings. Furthermore, for
strategically misbehaved entities, they can provide authentic services occasion-
ally in order to gain high positive feedback-ratings, but they always give dishon-
est feedback-ratings. Upon the above analysis, we utilize differential feedback
behaviors to define pairwise removal probability based on the gravitation model:

bi→j
gi

=

{ mij ·mji

d2
ij

mji �= 0
mij ·ϑji

d2
ij

otherwise
, (13)

where ϑji = 0 if transactions happen between i and j and j as the service con-
sumer, denoting j gives negative feedback-ratings to i; otherwise ϑji = 0.5 if
no transaction takes place, implying they are strangers, the potential trustwor-
thiness probability ought to be 0.5. Distance dij stands for the feedback-rating
deviation to their common entities with which both i and j have had transac-
tions. Generally speaking, the smaller the deviation is, the higher the affinity
will be. Thus we define dij as:

dij =

(∑
v∈cmn(i,j) (miv − mjv)2

|cmn(i, j)|

)1/2

, (14)

comn(i, j) is the set of common entities transacted with both entities i and j.
The pairwise removal probability is the base for iteratively computing

marginal probability, thus we need to initially ascertain which group the entity
i belongs to by the affection of entity j. Concretely, we select some seminal
trustworthy (pre-trusted) entities into a group (e.g. group a) as the initial mem-
bers. Then, we define pairwise removal probability sequentially for each pair of
connected entities in three cases as shown in Fig. 1, in which entities e1 − e3
are initially defined trustworthy members, and e4 − e9 are unknown entities:
(i) two connected entities are initially trustworthy entities, e.g. edge (e2, e3),
we define the removal probability as be2→e3

a = me2e3 · me3e2/d2e2e3
; (ii) one is
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e3

e1

e2

e6 e5

e8

e7 e4

e9

1

2
3

Fig. 1. Three cases of removal probability setting.

the initially trustworthy entity, the other is a unknown entity, e.g. edge (e9,
e2). Given that e2 had been dropped into group a, we define its removal prob-
ability be9→e2

a = me9e2 · me2e9/d2e9e2
; (iii) two connected entities are unknown

entities, e.g. (e8, e9), we compute the maximum possibility which group e9 is
dropped into max

q
{e9} = max

ge9

{be9→i
ge9

}. Upon this, we define its removal prob-

ability: be8→e9
max

q
{e9} = me8e9 · me9e8/d2e8e9

. For the edges between initial seminal

entities, it will be easy to define removal probabilities. For case (ii) it is also rel-
atively easy to set removal probabilities referring to pre-selected group identity.
Nevertheless, it would be hard to figure out removal probabilities in case (iii)
since we need to ascertain an entity’s maximum possibility dropped into a par-
ticular group. De facto, for a pair of unknown entities, we can archive removal
probability setting via repeatedly traversal way.

We can assign many groups to represent different-level behavioral trustwor-
thiness, such that literature [2] classified entities’ behaviors into four continuums:
Distrust, Undistrust, Untrust and Trust. Trust and distrust may not be derived
from the same information but can coexist without being complementary [10,11].
Indeed, as our previously studied in [5], the strategically misbehaved entities can
really gain high trust through uploading good services, and simultaneously get
distrust occasionally through providing bad services. This is to say we cannot
simply identify the strategic attackers as good or malicious entities, they hold
both trustworthy and untrustworthy properties at the same time. Therefore, we
focus on quantitatively inferring potential levels of trustworthiness and untrust-
worthiness simultaneously. To achieve this goal, we only need to set the number
of groups as two in conformity with Formula (12).

Upon the defined marginal probability for each entity, we can alternatively
compute the fraction of entities in each group:

na =
1
N

∑
i

bi
a (15)

Accordingly, the group affinity probability can be defined as:

Pab = 1
N · 1

nanb
· ∑

Aij=1

Pab(b
i→j
a ·bj→i

b +bi→j
b ·bj→i

a )

Zij

Zij =
∑
a�=b

Pab(bi→j
a · bj→i

b + bi→j
b · bj→i

a ) +
∑
a=b

Paa · bi→j
a · bj→i

a

, (16)
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where Zij is a normalization parameter. Obviously, we can work out the group
affinity probability by power-law iteration. As aforementioned, the marginal
probability computation also need employ power-iteration. Therefore, the entire
trustworthiness and untrustworthiness inference is a cross-iteration process, and
Algorithm 1 interprets how to accomplish this cross-iteration method.

Algorithm 1. Marginal Probability Computation.
1: Input: number of Groups q, maximum iteration round rmax, minimum iteration

increment δmin, current iteration round r, current increment δ
2: Output: marginal probability (trustworthiness/untrustworthiness) value biq

{Group affinity probability initialization 3-5}
3: for each pair of groups a, b do
4: Initiate P

(0)
ab based on the rule: P

(0)
aa >P

(0)
ab (a�=b)

5: end for
{Trustworthiness initialization 6-8}

6: for each entity i (i∈[1, n]) do
7: Initiate trustworthiness value for each entity (bigi)

(0)

8: end for
{Iteratively compute marginal probability 9-18}

9: while r<rmax and δ>δmin do
10: r=r+1
11: for i=1 to n do
12: Compute (bigi)

(r) using Formula (12) via bi→j
gi and P

(r−1)
ab

13: end for
14: for each pair of groups a, b (a, b∈[1, q]) do

15: Compute P
(r)
ab according to Formula (16) using updated value (bigi)

(r)

16: end for
17: δ=|(bigi)(r)-(bigi)(r−1)|+|P (r)

ab -P
(r−1)
ab |

18: end while

4 Experimental Evaluation

4.1 Experiment Configuration

To evaluate the efficiency of our proposed MapTrust, we introduce four represen-
tative attack models commonly used in interactional networks: Independently
Malicious (IM), Chain of Malicious Collectives (CMC), Malicious Collectives
with Camouflage (MCC) and Malicious Spies (MS). For the detail definitions,
please see references [5,9]. We compare MapTrust with randomly generated
removal probability metric-Random and MCMC, a group assignment general
algorithm. Table 1 depicts the configuration. A service requester first interacts
with the candidates assigned in trustworthiness group. If more than one candi-
dates exist, then utilize probabilistic selection fashion [5,9] to select transacted
target. If no response entity, then give up the query and count a failure trans-
action.



Trustworthiness and Untrustworthiness Inference with Group Assignment 397

Obviously, the higher the precision different categories of entities assigned
appropriately, the more effective the algorithm. Thus, we define overlap between
the original assignment {μi} and its grouped {qi} to evaluate the effectiveness:

A({μi}, {qi}) =
1
N

∑
i

δμi,ω(qi), (17)

where ω ranges over the permutation on q groups with δμi,ω(qi) being Kronecker
delta, denoting if {μi} is equal to {qi}, then δμi,ω(qi) = 1, otherwise δμi,ω(qi) = 0.

Table 1. Experimental parameters.

Experimental environment Value

Number of entities in IM, CMC, MCC, MS 600, 600, 700, 1000

Number of pre-trusted entities 30

Initial neighbors of good, malicious and pre-trusted
entities

2, 10, 10

Hops for query process 7

File distribution at good entities Zipf distribution over 200
distinct files

Ratio of distinct files owned by good entities in IM,
CMC, MCC

15%

Ratio of distinct files owned by good entities in MS 10%

Ratio of file types owned by malicious entities in IM,
CMC, MS

100%

Ratio of file types owned by malicious entities in
MCC

55%

Ratio of requests in which good entities give
inauthentic file

5%

Probability that entities with global trust score 0 are
selected

Interval [0%–10%]

4.2 Iteration Round Investigation

The convergence of BP algorithm is a complicated question [3,17], i.e. there are
no firm results how many iteration rounds are exactly needed for the conver-
gence. However, even the algorithm cannot converge, the messages can provide
useful information after a certain number of iteration rounds [3]. With appro-
priate group number q, fraction of nodes in group na and affinity matrix Pab,
MapTrust will converge to a fixed point in a constant number of iteration rounds,
otherwise it cannot converge. For MCMC algorithm, if the group number, group
fraction and affinity matrix are not at the right values, its equilibration time
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Fig. 2. Overlap with different iteration rounds.

diverges. Therefore, we study how iteration round affects the algorithm perfor-
mance utilizing attack Model MCC with the probability f that attack entities
provide good services is 0.0. The experimental results are shown in Fig. 2.

We see MapTrust maintains a high overlap value with a subtle vibration
as iteration round enlarges, which indicates it can approach an ideal perfor-
mance and become stable within a small number of iteration rounds, e.g. 10.
Nevertheless, MCMC keeps a climbing status as iteration round increases, and
approaches 70% approximately at a large number of iteration rounds, e.g. 1024.
For Random, it makes a little variation and meets the practical case after a few
iterations, e.g. 20. Therefore, this group of experiments verifies that MapTrust
produces an appropriate performance within a small number of iteration rounds,
while MCMC needs a large number to make the performance towards a better
tendency. In the following experiments, we run MapTrust, MCMC and Random
algorithms using 10, 1024 and 20 iteration rounds respectively.

4.3 Group Affinity Probability

Group affinity plays an important role for the group assignment and calculation
of trustworthiness and untrustworthiness values. We here study how this group
affinity probability affects the assignment of different types of entities. We utilize
MCC to perform experiments wherein the probability f is 40%. One big goal is to
identify authentic entities from collusively misbehaved entities, assign them into
different groups. Accordingly, we set the total group number as two and define
inter-group affinity probability from the viewpoints of two primary intervals
as (0.0, 0.5] and (0.5, 1.0], in each range, we again set small intervals. The
experimental results are depicted in Fig. 3.

We can observe the intra-group affinity does not affect the overlap on the
whole. This indicates our proposed cross-iteration algorithm does not need par-
ticular intervals for intra/inter-group affinity to achieve an adequate perfor-
mance. Furthermore, this also verifies the rationality and correctness of our
cross-iteration fashion. In following sections, we do not restrain intra/inter-group
affinity probability and arbitrarily generate a decimal.
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Fig. 3. Overlap with initial intra-group affinity probability.

4.4 Performance with Synthetic Datasets

We launch a set of small-scale experiments, i.e. 63 entities included in IM and
CMC with percentage of malicious entities 40%, 73 entities contained in MCC
with 20 camouflage entities and f = 0.4, 103 entities exist in MS with 20 type
D and 20 type B. The numbers of transactions are 630 in IM and CMC, 730
in MCC and 1030 in MS. The results are depicted in Fig. 4, in which the fine-
grained trustworthiness and un-trustworthiness values are exhibited with gra-
dient color for each entity. “ME”, “PE”, “GE”, “BE” and “DE” denote mis-
behaved, pre-trusted, good, type-B and type-D entities respectively. Obviously,
good and malicious entities are clustered into two groups with quantitative trust-
worthiness and untrustworthiness values. In addition, we increases percentage of
misbehaved entities from 0% to 70% under IM and CMC, vary f from 0% to
80% under MCC, and change combinations of type D and type B entities under
MS. The results are depicted in Fig. 5.

From Fig. 4, we can observe MapTrust clearly clusters the good and misbe-
haved entities into two groups with fine-grained trustworthiness and untrustwor-
thiness values for each entity. From Fig. 5, we can observe MapTrust significantly
outperforms MCMC and Random. The overlap of MapTrust is almost optimal
in IM and CMC, i.e., the overlap values are all 1.0 from 40% and 30% in IM
and CMC, which demonstrate MapTrust is good at handling the worse scenar-
ios. Nevertheless, the overlap in MCMC declines from 0.81/0.84 to 0.32/0.32
in IM/CMC as misbehaved entities increase. The overlap in Random goes up
from 0.50/0.55 to 0.75/0.77 accordingly. The behind reason lies in that MCMC
only utilizes the energy increase to adjust when to move one entity into another
group ignoring the pairwise removal probability setting, thus it performs worse
while confronting isolated and collusive misbehaviors, the performance becomes
worse as the ratio of malicious entities enlarges. For Random, since the pair-
wise removal probability over each edge is set randomly without considering the
feedback-rating feature, thus it must be worse than MapTrust.

In MCC and MS, MapTrust also yields significant results, e.g. the overlaps
are between [0.87, 0.93] and [0.85, 0.91]. In MCC, the misbehaved entities act
as good ones with probability f , thus some malicious entities are misidentified
as good entities. The overlap produced by MCMC is of a little variation as the
f increases, this is because the group affinity will not change dramatically in
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Fig. 4. Trustworthiness and untrustworthiness values with group assignment. (Color
figure online)

the case of only varying f . The overlap produced by Random also has a subtle
change, this is also because the subtle variation of group affinity probability. In
MS, type D entities behave alike good entities to promote all type B entities, thus
it is a little hard to completely identify them. The overlap yielded by MCMC is
almost changeless while confronting various combinations of type B and type D
entities, this is because the group affinity probability will not change obviously in
the case of only varying the combination manners, but not the ratio of malicious
entities. Random also has a subtle variation owing to the same reason. Although
facing the collective camouflage and spy entities, our MapTrust still can achieve
much better than MCMC and Random.

4.5 Performance with Real-World Datasets

We also utilize real-world dataset Epinions [13] to evaluate the effectiveness of
our MapTrust in terms of attack resilience and computational complexity. MCC
and MS are adopted to evaluate attack resilience with an alike configuration,
i.e., 10, 30 and 50 strategically misbehaved entities are added into 100-entity
organized Epinions network. These misbehaved entities are connected to most
of entities with high degrees to receive as many feedback-ratings as possible. For
MCC, all the added misbehaved entities which compose a chain, own a certain
probability f to response good services to gain positive feedback-ratings, then
in return to give exaggerated feedback-ratings (1.0) to their partners. For MS,
the misbehaved entities play two roles: type D and type B. Type D entities
acts as good ones to provide good services to gain high feedback-ratings, then
in return give high feedback-ratings (1.0) to all type B entities. Therefore, an
interval [0.85, 1.0] is used for the setting of feedback-ratings from good entities
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Fig. 5. The performance under four attacks with synthetic datasets.

to all the camouflage and spy entities, another interval [0, 0.05] for the setting
of feedback-ratings from the strategically malicious entities to good ones.

Figure 6 shows the experimental results, where “100GE+10ME” represents
the network contains 100 regular (good) and 10 added (misbehaved) entities,
“100GE+5BE+5DE” denotes 100 good, 5 type B and 5 type D entities. We
can see MapTrust performs much better than MCMC and Random. For MCC
with variable f , the overlap in MapTrust can keep a high level, but MCMC
makes a subtle variation with poor performance. Random performs worst and
declines the overlap a little bit as the f increases. In the case of varying the
amount of misbehaved entities, MapTrust and MCMC can maintain the results
changeless, but Random groups good and malicious entities more correctly. For
MS with different combinations of type B and type D entities, MapTrust, MCMC
and Random keep a relatively steady performance. At the case of varying the
number of malicious entities, MapTrust declines as the amount of misbehaved
entities increases, but Random inversely can improve the overlap gradually. Even
so, our proposed MapTrust still dramatically outperforms MCMC and Random.

From Formula (12), we know the marginal probability for each entity is com-
puted by aggregating all removal probabilities between this entity and connected
neighbors, in addition to the consideration on other unconnected entities, the
update computation needs to ask the other (N −1) entities’ information. There-
fore, it takes O(cN) time overhead totally, c is the average degree. This indi-
cates our MapTrust takes linear time in the common case of a sparse large-scale
collaborative networks. For MCMC, it always needs to compute the energy dif-
ference by adopting group affinity of two entities over all the edges cN , thus
it takes O(cN2), however, in practice we only choose those edges that are con-
nected to the candidate entity i, which might be removed into a new group or
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Fig. 6. The performance under MCC and MS with Epinions datasets.

not, to compute the energy difference. Thus, the energy difference computation
just needs to choose the edge(s) that connected to i, thus it needs to ask all
the neighbors ci. Therefore, the time overhead for all the entities takes O(cN)
totally.

5 Related Work

Gaeta and Grangetto [6] proposed to use BP to assess the probability of an entity
being malicious in P2P streaming, in which a set of pre-trusted monitors are uti-
lized to check the chunk uploaders and mark the chunk as polluted or clean. This
work focuses on the prediction whether an entity is malicious. However, our work
aims at employing marginal probabilities to estimate the multi-probabilities rep-
resenting the possibilities one entity belongs to different groups, simultaneously
infer its fine-grained trustworthiness and untrustworthiness values.

Zhang et al. [17] proposed a core-periphery structure identification algorithm
on empirical network through the application of an expectation-maximization
(EM) algorithm for the parameter computation and BP algorithm. Decelle
et al. [3] also utilized BP algorithm to infer functional groups by maximizing
the overlap with the potential group members, and learn the unknown param-
eters of the block model, in which diverse entities are clustered into different
groups based on topology structure. However, our MapTrust is inspired par-
tially by the above work [3,17], but differently we mainly focus on the problem
of resisting various isolated/collusive attacks by grouping them into adequate
clusters and calculate their different-level trustworthiness and untrustworthiness
values, but not for the exploration on network structure/topology merely. More-
over, we redefine pairwise removal probability for each pair of interacted entities
and endow new content for trust-enabled interactional networks.
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6 Conclusion and Future Work

We have stated our trustworthiness and untrustworthiness inference algorithm
with group assignment through studying pairwise removal probability and
marginal probability. We also verify the efficiency of our MapTrust through
extensive experiments using synthetic and real-world datasets. The experimen-
tal results show our proposed MapTrust not only appropriately groups good
and misbehaved entities under the four representative attack models, but it
can also rationally calculate the trustworthiness and untrustworthiness values
in a fine-grained way for diverse entities. At present, our work mainly takes
into account trustworthiness and untrustworthiness inference through cluster-
ing all participants into two groups, in the future we can explore a fine-grained
solution to divide diverse categories of participants into more than two groups
appropriately with respect to differentially malicious behaviors, such as indepen-
dently/collectively malicious behaviors, camouflage and spy behaviors, etc.

References

1. Bailly-Bechet, M., Borgs, C., Braunstein, A., Chayes, J., Dagkessamanskaia, A.,
Francois, J.M., Zecchina, R.: Finding undetected protein associations in cell sig-
naling by belief propagation. PNAS 108(2), 882–7 (2011)

2. Cho, J.H., Chan, K., Adali, S.: A survey on trust modeling. ACM Comput. Surv.
48(2), Article 28, 40 p. (2015)

3. Decelle, A., Krzakala, F., Moore, C., Zdeborová, L.: Asymptotic analysis of the
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