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Abstract. Semantic annotation framework that allows enriching loca-
tions or trajectories with semantic abstractions of the raw spatiotempo-
ral data benefits understanding the semantic behavior of moving objects.
Existing semantic annotation approaches mainly analyze specific parts
of a trajectory, e.g. stops, in association with data from 3rd party geo-
graphic sources, e.g. (POI) points-of-interest, road networks. However,
these semantic resources are static thus miss important dynamic event
information. Recent location-based social networking provides a new
dynamic and prevalent source of human activity data that can be a
potential semantic resource for annotation. However, using the large-
scale spatiotemporal data from online social media gives rise to privacy
concerns. This paper thus presents a privacy-preserving semantic anno-
tation framework P-SAFE that (i) identifies dynamic region of interest
(DRI) from large-scale data provided by location based social networks
whilst labelling of DRI into appropriate categories derived from spatial
and temporal features of geotags, (ii) aligns trajectories to a set of DRI
and enriches trajectories with semantics annotation derived from aligned
DRI via THMM model, and (iii) embeds robust privacy-preserving mech-
anisms under differential privacy in each stage that accesses to raw data.
P-SAFE approach tackles the privacy and utility trade-offs for meaning-
ful geographic regions identification and labeling as well as trajectory
semantic annotation under differential privacy whilst combining them
into a single task. We demonstrate the effectiveness of P-SAFE approach
on a dataset of large-scale geotagged tweets and a benchmark trajectory
dataset for DRI construction and trajectory semantic annotation evalua-
tion. The experimental results illustrate that P-SAFE not only provides
robust privacy guarantees but remains approximate 45–56% accuracy for
meaningful geographic regions labelling and 62–76% accuracy for trajec-
tory semantic annotation.

c© Springer International Publishing AG, part of Springer Nature 2018
H. Jin et al. (Eds.): ICWS 2018, LNCS 10966, pp. 353–372, 2018.
https://doi.org/10.1007/978-3-319-94289-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_23&domain=pdf


354 S. Wang et al.

1 Introduction

Generally, existing works on trajectory data mainly focus on raw trajectories
that are typically demonstrated as streams of spatiotemporal (x, y, t) points, for
data management and mining applications, rarely considering the background
semantic information that can provide a further understanding of human move-
ments. Analysis on raw trajectories hardly answers questions like what is the
purpose for this person to visit a certain location at a particular time. Some
works have implemented a semantic interpretation, e.g., semantic annotation
framework that allows enriching trajectories with semantic abstractions of the
raw mobility data, known as semantic trajectory, to benefit understanding the
semantic behavior of moving objects. An example of semantic trajectory anno-
tation is shown in Fig. 1. Semantic enrichment of trajectory data materializes
as annotations that attach additional knowledge to the spatiotemporal positions
in the trajectory. Such semantics is commonly obtained from geometric proper-
ties, e.g., stops or moves, in the geography on which the trajectory passed, e.g.,
landmarks [1]. As detecting homologous daily activity categories for regular peo-
ple using their large-scale spatiotemporal data is a tractable due to the spatial
and temporal recurrence of these activities. Thus semantic information can also
derive from large-scale spatiotemporal data that enables insights into patterns
of people’s mobility and activities, e.g., eating, leisure or at work, as illustrated
in Fig. 1.

(lat1,lon1,t1)

(lat2,lon2,t2)

(lat3,lon3,t3)

(lat4,lon4,t4)

Working Leisure Eating At home

+

Reflec ng characters of regions

Pos ng personal ac vi es

Semantic trajectory

POI-based:(Home)=>(Coffee)=>(Park)=>(Office)

Activity-based:(At home)=>(Eating)=>(Leisure)=>(Working)

Fig. 1. The semantic trajectory annotation.

However, there are several challenges when implementing a semantic anno-
tation framework for generating semantic trajectories.

(1) Resource constraints. The commonly-adopted semantic annotation frame-
work is based on 3rd-party geographic information sources, e.g., POI.
Densely populated urban areas may have many candidates POIs for annota-
tion but it is not clear which POIs were visited. In contrast, there is a high
number of venues not recorded by POI services, especially suburbs, rural
areas or in the field. Therefore, it is intractable to infer the POI instance
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for scenarios with restricted POI resources, e.g., annotation of residential
places in rural area. On the other hand, semantics resources for location
and trajectory semantic annotation, e.g., 3rd-party geographic information
sources, e.g., land-use categories [2], point of interest (POI)/landmarks [3]
or landscapes [4], are generally assumed to be static regardless of the time.
However, the category of functional regions will be dynamically changed
due to different social activities performed there at the different time [5].
For example, City Conference Center, a common multi-purpose venue, could
hold food festival (eating), business meeting (working) and art exhibition
(leisure) as well as many other events. Therefore, such static semantic anno-
tation will cause inappropriate annotating results.

(2) Periodic activity-based semantic annotation. Existing semantic annotation
frameworks mainly ignore further insights on motivation or preferences of
daily periodic activities reflected at the point of a trajectory. The study of
underlying daily periodic activities performed at the position of trajectory
that motivates the movements to conduct semantic enrichment is still on
a less-explored stage. A periodic activity-based semantic annotation might
benefit to understanding the impact of inhabiting dynamics in the city,
better characterizing human mobility, and hence better urban planning and
management [6]. Large-scale geo-referenced data from online social media
offers a unique opportunity to gain insights into people’s movements and
activities that can be used in location and trajectory semantic annotation.
Consequently, it is important to infer and implement the connection between
spatiotemporal data and activity knowledge.

(3) Privacy concerns. The analysis of harvested (raw or processed) spatiotempo-
ral data may compromise individuals’ privacy (e.g., home location, political
views or categories of disease based on their visited locations). The risk of
revealing individual privacy are exacerbated when the adversaries possess
background knowledge. It is essential that personal and sensitive informa-
tion is not leaked when using individuals’ spatiotemporal data, while the
utility of the perturbed data should be maintained as far as possible.

Consequently, we propose P-SAFE, a semantic annotation framework that
enables identifying dynamic and meaningful geographic regions and using them
to turn raw trajectory data into semantic trajectories without breaching indi-
viduals’ privacy. The core contributions of the article are summarized as follows.

(1) To solve the resource constraints of semantic resources and meet the dynamic
requirement of external contextual information, we use the large-scale geo-
tagged social media data as the sources for identifying the dynamic and
meaningful geographic regions that reveal the spatial distribution of social
media users at a different time is proposed. Specifically, a time-aware clus-
tering approach is proposed to identify dynamic and meaningful geographic
regions from a large-scale collection of geotagged social media data to explore
the spatial distribution of geotags in a domain from the point view of indi-
vidual social activity and mobility. The discovered clusters represent the
dynamic and meaningful geographic regions.
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(2) Daily activity categories are introduced as a new dimension for semantic
enrichment of trajectories. To identify the dynamic region of interest (DRI)
from meaningful geographic regions whilst labelling them using the daily-
activity-based features, a location-entropy-based feature extraction model is
proposed that allows accurately identifying and labelling of DRI into appro-
priate category derived from semantic analysis of inside geotags. Specifically,
we identify DRI based on the distribution of users in the cluster reflecting
in location entropy, as well as the temporal feature of the cluster. Then we
label DRIs with semantics that reflects individuals’ interests or purposes at
a particular time, used to annotate human movement.

(3) Using the labelled DRI dataset, a semantic annotation model is proposed
to infer the activity-based semantic trajectory behind raw trajectories, only
using spatiotemporal information. There are two components: (i) a spatial
alignment approach to discovery nearby DRI set for the position of a trajec-
tory, and (ii) a Time-aware Hidden Markov Model (THMM) that intends to
improve the inference accuracy, which is used to infer the daily activity type
as the semantic annotation of the position of a trajectory from the nearby
DRI set.

(4) Privacy. To address the privacy concerns, we embed robust privacy-
preserving mechanisms under differential privacy in each stage that accesses
to raw data. Specifically, there are two raw spatiotemporal data for protect-
ing, i.e., the geotagged social media data for DIR discovery and labelling, as
well as the raw trajectory as the input of semantic annotation. We apply a
privacy-preserving mechanism to the results of time-aware clustering before
releasing for the further use. In the location-entropy-based feature extraction
model, we embed a differentially private mechanism into the location entropy
calculation that accesses to raw spatiotemporal data. In the semantic anno-
tation model for trajectory, we apply a privacy preserving mechanism to the
spatial alignment to protect the privacy of trajectory. We conduct experi-
ments on a dataset of large-scale geotagged tweets from Twitter and bench-
mark trajectory datasets for evaluation.

The rest of this paper is structured as follows. Background is presented
in Sect. 2. Section 3 describes the ideas and mechanisms of privacy-preserving
semantic annotation framework. Section 4 presents the evaluation metrics and
the experimental performance of the approach. A survey of related work is given
in Sect. 5. Section 6 draws conclusions on the work as a whole.

2 Problem Formulation

2.1 Preliminary Concepts

Definition 1 (Dynamic Region of Interest - DRI). A set of meaningful geo-
graphic regions from spatiotemporal data of social media, associated with a
dynamic semantics that reflects individuals’ interests or purposes at a partic-
ular time and used for representing trajectory data. Each DRI is composed of
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geographic coordinate and semantic information to describe the location, denoted
by D = {d1, d2, · · · , d|D|}, where di =(geographic value, semantic annotation).
The DRI can be a spatial polygon or the geometric center of this polygon.

Definition 2 (Location Entropy). Given a location l, let the GTl be the set of
geotags (visits) to location l by all social media users. Let cl = | GTl | represent
the amount of visits at location l. Let Ul be the set of distinct individuals who
visit at location l, and GTl,u be the set of visits that user u has made at location
l. The sl,u = | GTl,u | is represented as the amount of visits that user u made to

location l. Thus pl,u =
| cl,u |
| cl | denotes the portion of total visits that belongs to

user u. The location entropy of l based Shannon entropy [7] is denoted by:

H(l) = H(pl,u1 , pl,u2 , · · · , pl,u|Ul|) = −
∑

u∈Ul

pl,ulog2pl,u (1)

A higher location entropy value means the visits on this location are more evenly
distributed among users that visited this location, i.e. it is a more popular loca-
tion.

There are five generic daily activity labels defined in this article, denoted by
DAC= {E: eating, H: at home, N: nightlife, R: recreation (leisure), W: working},
as well as five time slot categories.

Definition 3 (Semantic trajectories-ST). A semantic trajectory st ∈ ST is
a structured trajectory where the spatial positions of a raw trajectory are
replaced by geo-annotations and further semantic annotations, denoted by
st = {stp1, stp2, · · · , stp|st|}. Each semantic annotation of a position is defined
by stpi =(semantic position, temporal value, semantic annotation). Here, the
semantic position is a meaningful geographic region that represents the spatial
location of the position at a semantic abstract level, e.g., the index of a nearby
DRI. The semantic annotation is semantic enrichment about the position of a
raw trajectory, e.g., the daily activity type performed at the position.

The semantic annotation model aims to obtain an annotation sequence that
can be potentially associated with a raw trajectory, based on the geographic
sources DRI derived from geotagged social media data.

Definition 4 (ε-Differential privacy [8]). Let ε > 0 be a constant, a randomized
function F satisfies ε-differential privacy if for all datasets D1 and D2, differing
at most by one element from each other, all outcomes of the database S (S ⊂
Range (F )) there is:

Pr[F (D1) ∈ S] ≤ eεPr[F (D2) ∈ S] (2)

The parameter ε > 0 is called the privacy budget and it allows users to control
the level of privacy. A smaller privacy budget suggests more limits posed on the
influence of an individual item, leading to a stronger privacy protection.

The basic idea to protect the privacy is to generate perturbed profiles or
results such that the privacy leakage is minimized while the utility of the per-
turbed values can be still maintained.
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2.2 Solution Overview

In this article, we aim to identify dynamic meaningful geographic region and label
them with semantic information using the spatiotemporal information derived
from social media, e.g., geotagged tweets, then use them to annotate the raw
trajectories of moving objects. There are two types of input data: the raw tra-
jectories, collected from a variety of platforms such as mobile devices and web
services, denoted by RTu = {p1, p2, · · · , p|RT |}, and spatiotemporal informa-
tion from geotagged social media, i.e., geo tags, at a different time, denoted by
GT = {g1, g2, · · · , g|GT |}, used as a prior knowledge of the individual activity
and its transition pattern.

There are two main data processing components used to identify and label
DRI and use them to conduct semantic annotation, based on the check-in data
and raw trajectory data respectively, achieved in 5 steps, as shown in Fig. 2.

Time-aware Omega-
Cluster Clustering 

Check-in DataCheck-in Data

Sanitized and Labelled DRI Sanitized and Labelled DRI 
Sanitized Semantic 

Trajectories
Sanitized Semantic 

Trajectories

Raw TrajectoryRaw Trajectory

Privacy 
Mechanism

S3: Data Statistics 

+

LE-based DRI 
Identifying and 

Labelling 

Privacy 
Mechanism+

Dynamic Meaningful Geographic RegionsDynamic Meaningful Geographic Regions

S2

S1Daily Activity 
Transition Pattern

Daily Activity 
Transition Pattern

Semantic 
Annotation 
(THMM)

Privacy 
Mechanism+S5

Nearby DRI 
Alignment

Privacy 
Mechanism+S4

Fig. 2. The overview of P-SAFE framework.

The first component is private DRI identifying and labelling that extracts
dynamic and meaningful geographic regions with semantic labels to annotate raw
trajectory (S1–2). Specifically, a time-aware clustering approach is conducted
on the large-scale geotags from Twitter to discover dynamic and meaningful
clusters, followed by a privacy mechanism embedded into the clustering approach
to protect the location privacy (S1). The output of S1 is an initially labelled
sanitized clustering results. Then, the LE-based DRI identifying and labelling
model is conducted, embedded with a privacy mechanism (S2). The output of
S2 is the identified and labelled DRI dataset after sanitization for public use.
In addition, a data statistics approach is used to generate the daily activity
transition probability matrix (S3).

The other component is private trajectory abstraction and annotation to pro-
cess raw trajectory data (S4–5). A private semantic annotation model is pro-
posed to perform the semantic enrichments, achieved into: nearby DRI alignment
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(S4) that discover the nearby DRIs for the spatial positions of a raw trajec-
tory, and semantic annotation (S5) that annotates the positions with DRI daily
activity categories. The output of the second component is a sanitized semantic
trajectory dataset for public use.

3 Private Semantic Annotation

3.1 Private DRI Identifying and Labelling

In this part, the input data is the geo-referenced social media data that enables
users to share their activity-related choices, providing a new source of human
activity data. The aim of the private DRI identifying and labelling is to identify
and label dynamic and meaningful geographic regions associated characteriza-
tion from geo-referenced posts in online social networks (specifically Twitter).
Substantially, it is the task to conduct meaningful place recognition and annota-
tion using the frequent temporal daily patterns and periodic occurrence of geo-
tagged tweets for a geographic region. The dynamic human mobility patterns
revealed by the check-ins over geo-referenced social media have been explored
by existing works [9–12]. There are also some works that develop place classi-
fier to conduct place annotation using machine learning based on the temporal
and spatial features of geo-referenced social media data or using the 3rd party
resources, e.g., POI or Foursquare database. However, the prediction accuracy
of machine learning approaches heavily depends on the number of instances in
the training data and cannot well scale to the large-scale dataset. Further, many
places cannot be mapped to 3rd party resources, e.g., POI or land-use data, that
are generally static. Therefore, in this part, we develop a fast and lightweight
regions identifying and labelling framework to discover meaningful geographic
regions (time-aware clustering) and conduct the DRI identifying and labeling
based on the location entropy and the crowd behavioral patterns reflected in
the temporal and spatial features of georeferenced tweets data (LE-based DRI
identifying and labelling). Furthermore, we embed privacy-preserving mecha-
nisms into these stages to handle the privacy concerns when accessing to raw
spatiotemporal data.

Private Time-Aware Clustering. Existing works have demonstrated that
there is a strong relationship between characteristics of a region and human daily
mobility and activity patterns, reflected in geo-referenced social media data [9].
The collective dynamics of the greater metropolitan area are reflected in the
geographic dynamics of Twitter usage [13]. Thus, the straightforward approach
to identify the meaningful geographic regions relevant to dynamic activities is
to perform density-based clustering algorithms on the various aggregated sub-
sets of geotagged tweets in the term of the temporal features. For instance, a
density-based clustering approach can be conducted on the geotagged tweets
posted during the sleeping time period (e.g., 22:00 to 6:00 of weekdays) to iden-
tify potential residential regions. Therefore, this process can be divided into
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Temporal-feature-based Aggregation and Spatial-feature-based Clustering as well
as a Clustering Results Sanitization to sanitized clustering results for public use.

(1) Temporal-Feature-Based Aggregation. Based on the previous works and our
observation of collected massive geotagged tweets (10 million for a year from
users), we can see the periodic behavior of Twitter users reflected in the temporal
patterns of geotagged tweets. The observation of the tweets frequency during the
course of a week can confirm such periodic behaviors. We discover some temporal
features that seem to mirror user daily behaviors, which is also confirmed in
the previous works [6,13,14]. And users have very common temporal patterns
of crowd daily activities, e.g., eating, working or leisure. For instance, during a
week day, users always spend morning and afternoon on working while on leisure
during weekends. As to exploit these patterns, we divided the day into five time
slots with the difference between weekdays and weekends highlighted, according
to the temporal patterns of five daily activity categories, formally specified by
the following:

Definition 5 (Time Slots Set-TSS). TSS is a set of time slots, where ts ∈
TSS is a subset of varying time duration belonging to a day. TSS =
{Ets,Hts, Nts, Rts,Wts}, summarized in the following:

Ets (Eating): [12:00, 15:00) of Weekdays;
Hts (At Home): [17:00, 22:00), [22:00, 6:00) of Weekdays;
Nts (Nightlife): [20:00, 6:00) of Weekends;
Rts (Recreation): [6:00, 20:00) of Weekends;
Wts (Working): [9:00, 12:00), [15:00, 17:00) of Weekdays.

We aggregate the geotagged tweets into five subsets according to the TSS, and
then conduct clustering algorithms on each subset to cluster coordinates into
meaningful geographic regions (clusters).

(2) Spatial-Feature-Based Clustering. Common density-based clustering algo-
rithms such as DBSCAN [15], aggregate many locations within the density
definition, and each of these can be used to discover further density-reachable
locations. Based on DBSCAN clustering algorithm, we can find dense regions
on each subset from the temporal feature based aggregation and filter out any
non-clustered locations as noise. Each cluster is considered to be a poten-
tial DRI candidate, represented by the geographic centroid of the cluster.
Accordingly, we discover five clustering subsets (potential DRI subsets) using
the five subsets from temporal feature based aggregation, denoted by PD =
{PDE , PDH , PDN , PDR, PDW }. Intuitively, we can associate the category of
a potential DRI subsets to the accordingly activity category at that time slot.
For instance, we can associate the category of PDE to “Eating”.

(3) Clustering Results Sanitization. We adopt the geo-indistinguishable mech-
anism [16] as the planar geographic centroid perturbation approach. The basic
idea is to generate a new sanitized location with some privacy budget to protect
the secret location. Given a centroid of a cluster that requires to be perturbed
and the privacy budget allocated in this step, the sanitized result is generated
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Algorithm 1. Clustering Results Perturbation Algorithm
Input: M , γc, εct, εcc.
Output: Perturbed centroid.

1 CT ′
i = |Pmci|+ Lap(

Δfi
ct

εct
);

2 if CT ′
i > γc then

3 Figure out centroid CentroidCCi ;
4 Transform CCi from (x,y) to polar coordinate (θ, r);
5 Drawing θ uniformly from [0, 2π];
6 Drawing p uniformly from [0, 1];

7 r = − 1

εcc
(W−1(

p − 1

e
) + 1);

8 CC′
i = CCi+ < rcos(θ), rsing(θ) >;

by the Algorithm 1. The clustering results from a subset of PD can be denoted
by M = {mc1, · · · ,mc|M |}, where Pmci is a set of points in the ith cluster of M .
The count and centroid of the cluster mci is denoted by CTi and CCi = (x, y)
respectively, and the perturbed values are denoted by CT ′

i and CC ′
i. The input

parameters are threshold for counts γc, and privacy budgets εct, εcc used for count
and centroid perturbation respectively. Here, count sensitivity for the cluster mci

is given as Δf i
ct = MAX(NUMindividual(points)),∀user u ∈ Pmci. And the

W−1 is the Lambert W function (−1 branch). We release the sanitized cluster-
ing results for the further use under the robust guarantees of differential privacy.

Private LE-Based DRI Identifying and Labelling. After discovering
potential DRIs from the previous steps, the next step is to identify the actual
DRIs based on the location entropy value. [17] shows that locations with high
entropy are more likely to be shared (visited) than places with low entropy.
Therefore, a higher location entropy value means the visits on this location
are more evenly distributed among users that visited this location, i.e. it is a
more popular location while the regions with small location entropy might be
personal/residential regions. Thus, we can use location entropy to identify real
DRI and label it using the category of activity, if the location entropy values
meet the threshold of different activity scenarios. For instance, in the clustering
results PDts derived from Hts subset, we can infer the cluster with low loca-
tion entropy as a DRI associated to “at home” activity category. In contrast,
for the Nts scenario, we can infer the cluster with higher location entropy as
the DRI region where the type of user’s behavior is typical in “nightlife”, since
a higher entropy implies that many users tweet from this region but they have
few tweets. Note that, the threshold of different activity scenarios, denoted by
θ = {θE , θH , θN , θR, θW }, might be different as well as the identifying rules. E.g.,
the rule in “at home” is ≤θH while it is ≥θi in others scenarios.

However, there are privacy concerns when directly using true values of loca-
tion entropy. For instance, location entropy can reveal whether users visit a loca-
tion or not by potential adversaries. Therefore, perturbation mechanisms should
be implemented for true values of location entropy to ensure that any given
adversary cannot determine whether or not a particular user visited a location.



362 S. Wang et al.

More specifically, random noise is added to the real location entropy value to
achieve differential privacy guarantees via Laplace mechanism. According to the
definition of differential privacy, the first step is to decide the global sensitivity,
denoted by ΔH, which controls the magnitude of the random noise. ΔH reveals
the maximum change of location entropy of all locations when adding (or delet-
ing) a single user from the dataset. Let C represent the maximum amount of
visits a user contributes to a location, thus the function of C can be used as the
sensitivity bound. Global sensitivity is decided as follows [18]:

ΔH = max{log2, logC − log(logC) − 1)} (3)

Then, the bounded change of adding (or deleting) a single user from the
dataset on the entropy of all visited locations can be obtained by Δf =
ΔH × Mmax, where Mmax is the maximum number of locations visited by a
user. Thus, the random Laplace distribution is generated with mean 0 and scale

σ =
Δf × Mmax

ε
. Algorithm 2 illustrates the private LE-based DRI Identifying

and Labelling.

Algorithm 2. Private LE-based DRI Identifying and Labelling
Input: A subset of potential DRIs PDx = {sp1, · · · , sp|PDx|}, a set of users

Usp = {u1, · · · , u|Usp|} visited cluster sp, privacy budget εwp, thresholds set θ.

Output: Sanitized DRI dataset DD.
1 for sp ∈ PDx do
2 Calculate ΔH based on Equation(3) using C=Cmax;
3 for i = 1 to |PDx| do
4 for j = 1 to

∣
∣Uspi

∣
∣ do

5 Calculate cspi,uj
and pspi,uj

;

6 Calculate H(spi) = − ∑

u∈Uspi
pspi,u

logpspi,u
;

7 Ĥ(spi)=H(spi)+ Lap(
ΔH × Mmax

εwp

);

8 if Ĥ(spi) meets the rule associated with θ then
9 sp.label = PDx.catagory;

10 DD.add(sp);

3.2 Private Semantic Annotation

Once the DRIs are identified and labelled, we use them to associate each position
location of a raw trajectory with the most-likely activity type that represents the
semantic enrichment. This semantic annotation can be achieved by two steps:
select the nearby DRIs for each position and associate a most-likely activity cat-
egory inferred from the activity labels of nearby DRIs. Furthermore, we embed
privacy-preserving mechanisms into these steps to handle the privacy concerns
when accessing to raw spatiotemporal data.
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Private Nearby DRI Alignment. The basic idea of nearby DRI (from san-
itized DRI dataset DD) alignment is that the locations in a raw trajectory are
aligned to specific DRI set according to a geometric strategy. The strategy used
in this method is to discover nearby DRIs, for every location in the trajectory
within a specific domain. The maximum distance threshold η is used to restrict
the maximum distance to search nearby DRIs for a position location of a raw
trajectory, e.g., pi, denoted by NDRIi

η. Thus if there is no DRI within η for one
location in a given trajectory, this location will be skipped.

Then we embed a privacy-preserving into the nearby DRI searching. Expo-
nential mechanisms can be adopted to privately select nearby DRIs. Specifically,
the chosen probability of a nearby DRI is calculated based on sensitivity and
the score function. Using the chosen probability, the nearby DRI searching can
be executed. The Euclidean distance between a position location of a raw tra-
jectory, e.g., pi, and a nearby DRI, e.g., drij , is used as the score function q that
is defined as:

q(drij ∈ NDRIi
η, pi) = (GS − dist(pi, drij)), (4)

Prdrij =
exp(

εrs × q(drij , pi)
2 × GS

)

∑
drij

exp(
εrs × q(drij , pi)

2 × GS
)
, (5)

The maximal change in the distance between pi, drij can be used for the
sensitivity GS. Note that the GS can be set as η in this case, since it is the
maximum distance between pi and nearby DRIs within η. Then the probability
arranged for each drij ∈ NDRIi

η, pi is calculated as Eq. (5). Here the εrs is the
privacy budget used in the randomization. Based on the chosen probability, k
most possible nearby DRIs can be chosen to generate a nearby DRI set, denoted
by ̂NDRIi

η, ̂NDRI for short.

THMM-Based Semantic Annotation. This layer annotates each position of
a trajectory with semantic information derived from its nearby DRI set ̂NDRI.
Specifically, we infer the most likely type of daily activities for each point of an
individual trajectory from the types of its nearby DRI set. The Hidden Markov
Model (HMM) [19] is improved for conducting this task, named Time-aware
Hidden Markov Model (THMM). Generally, the probability of transition between
two states at different time slots is different, e.g., the probability of transition
from eating to working is different at daytime and night period respectively due
to the essence of daily activity patterns. In THMM, a time dimension is used to
the state transition along with the observation sequence advancing.

In this case, the observed states correspond to the sequence of positions in
a raw trajectory, as the initial input. The DIR dataset is the superficial hidden
states, which is identified as the nearby IDR set for each point of a raw trajectory.
In this work, the hidden states, i.e., DAC ={C1 : E,C2 : H,C3 : N,C4 :, C5 : W},
are the semantic enrichment for positions of a raw trajectory. Our goal is to iden-
tify the hidden states to annotate the points of a trajectory, e.g., the types of
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activities (eating, working or at home) performed by an individual at certain
times, derived from the types of nearby DRIs.

The THMM, i.e., λ = (π,A,B), is defined as follows. π = {πi} is the initial
state matrix, where πi = Pr(Ci). A = {a

jq
ip

} is the state transition probability

matrix, where a
jq
ip

= Pr(Cq
j |Cp

i ). It represents the probability to engage in type
of activity Ci at time slot p after the previous activity with type Cj at time slot q.
Here, the p, q refer to the index of time slot in previous definition. B = {bp

i } is the
observation probability matrix, where bp

i = Pr(o|Cp
i ). It reveals the probability

that an individual is observed at the location o at the time slot p to engage in
type of activity Ci.

It is a sophisticated work to estimate these three components. As a possible
approach, we approximate these values of THMM based on the activity patterns
derived from the statistical analysis of geotagged social media information as a
prior knowledge. The initial state matrix π can be estimated as the percentage of
geotags belonging to each category of activity. The state transition probability
matrix A can be approximated using the transition pattern in geotags among
different categories of activity. bp

i = Pr(o|Cp
i ) in observation probability matrix

B can be approximated as
∑

drij∈ ̂NDRI
Pr(o|driCi

j ) [1], where only the DRIs in
the nearby DRI set are considered. In this paper, we assume a location in space
o follows a normal distribution with driCi

j as the mean and a constant σ as the
variance, i.e., Pr(o|driCi

j ) = N(driCi
j , σ2).

Given the estimated values of three components in THMM, λ = (π,A,B) can
be used to annotate the hidden states (categories of activity behind the point of
a trajectory) HS = {HS1,HS2, · · · ,HSn} from the observed points sequence
O = {o1, o2, · · · } from stop/move identified or raw trajectory. Here, the HSi is
a category of activity from DAC. This problem can be treated as a dynamic
programming problem, i.e., identifying the optimal state sequence associated
with given observation sequence, known as the decoding of THMM. The input
of THMM is a trajectory with each timestamp abstracted to the defined five
time slots, and then let δd(i) denote the highest probability of the dth point of a
trajectory caused due to engaging in type of activity Ci at the time slot, defined
in Eq. (6).

δd(i) = max
i

Pr(HS1, · · · ,HSd = Ci, o1, · · · , od|λ) (6)

δd+1(j) = max
i

{δd(i)Aij} × Bj(ot+1) (7)

ψd+1(j) = arg max
i

δd(i)Aij (8)

Then, the corresponding induced the form of the highest probability of the
(d + 1)th point of a trajectory caused due to engaging in the type of activity
Cj at time slot t is given in Eq. (7), via state transition probability. Further,
the previous state Ci that give the highest probability to current state Cj is
recorded as ψd+1, i.e., maximized Eq. (7), given in Eq. (8). The Viterbi algorithm
[20] is used to conduct this dynamic programming problem to obtain the hidden
state sequence for an input trajectory. Specifically, the first step is to recursively
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compute δd(i), following by deducing the state of the final point with the highest
probability in the last point. Then return to the state of previous point via
HS∗

d−1 = ψd(HS∗
d).

3.3 Private Analysis

The P-SAFE can be achieved into private DRI identifying and labelling and pri-
vate semantic annotation. For private DRI identifying and labelling, there are
two steps that access to the original geotags data: time-aware clustering and LE-
based DIR identifying and labelling. To handle the privacy, privacy mechanisms
are embedded into the first step to sanitize the clustering results (count and cen-
troid of each cluster) for the further use and the second step for location entropy
calculation of each cluster, which are the only two processes that access to the
original data. For the perturbation of location entropy, [8,18] have proved that
it is sufficient to achieve εwp-differential privacy using Laplace mechanisms with
global sensitivity. The private perturbation of anchor point is divided into two
step: planar centroid perturbation and counting perturbation with privacy bud-
get εcc and εct respectively. For counting perturbation, it satisfies εct-differential
privacy using a Laplacian mechanism scaled by εct [8]. For centroid perturba-
tion, given privacy budget εcc to perturb each centroid, this satisfied εccdχ -
privacy, which is a generalized variant of differential privacy under the metric
dχ [16]. For private semantic annotation, it can be divided into private nearby
DRI alignment and THMM-based semantic annotation. We use an exponential
mechanism to perturb the nearby DRI searching with given privacy budget εrs

and global sensitivity GS. It is proved to satisfy εrs-differential privacy in [21]. As
THMM-based semantic annotation is considered as post-processing on differen-
tially private sanitized nearby DRI set without assessing user private data, there
is no privacy loss in this phase. Based on the composition property of differential
privacy, private DRI identifying and labelling and private semantic annotation
satisfy differential privacy and then P-SAFE satisfies differential privacy.

4 Experiments

4.1 Experimental Data and Setting

In this article, experiments on real-world database and benchmark database to
compare the efficiency and utility of our proposed approach were conducted.
When permissions are given, each of their tweets can be attached with a cor-
responding geolocation. Experiments on one real-world dataset are conducted
using geotagged Twitter data, specifically, we use a large-scale tweets data col-
lected from Feb 25, 2015 to January 25, 2016, within Melbourne City. We select
geotagged tweets to be GT . In addition, an individual’s mobility traces can be
constructed using the geotagged tweets of users who have more than 50 check-
ins. Specifically, the traces are created by aggregating two or more geo-located
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tweets produced by the same user in locations more than d = 100m far away
from one to another, within a time interval less than t = 75min. This trace
dataset can be used to infer the transition patterns among different categories of
activity. Further, we use the land-use data and Foursquare venues database to
be evaluation database, i.e., the prior knowledge used to evaluate the accuracy
of labelled DRIs. For instance, if there are venues with the type of Pub, Night-
club, Bar, Entertainment, Theatre, Dance Studio, Opera House, etc., within the
DRI associated to the type of “Nightlife”, then we can say this DRI is properly
labelled. The benchmark database, i.e., RT , is a labelled raw trajectory data
that consists of 10 volunteers and 3568 geo-referenced records collected in Mel-
bourne from August 2016 to September 2016 (30 days). In addition, volunteers
defined their own activity type at the logged location. RT is used to evaluate
the accuracy of outputs from P-SAFE.

We conducted the experiments on a personal computer equipped with
2.5 GHz CPU and 16 GB RAM. Each experiment was tested 10 times and the
average result reported. The default threshold value parameters for different
time slot scenarios were set experimentally, and default privacy budget set is
ε = {εcc = 5, εct = 5, εwp = 5, εrs = 5}. Note that the experiments were per-
formed on six classical differential privacy leakage levels, i.e., ε = Strong: 0.1 and
0.5; Normal: 1 and 5; Weak: 10 and 20. There are also some default parame-
ters derived from experiments: γc = 10, θ = (0.5, 0.3, 0.5, 0.5, 0.5), k = 5, η =
100, Eps = 50,MinPts = 0.1.

4.2 Experimental Evaluation

In order to estimate the accuracy of labelled DRIs and semantic annotation of
raw trajectories, we use a set of metrics typically used in classification problems:
precision, recall, and f-measure. On the other hand, we use Average Distance
Error (ADE) as the utility metric for the sanitized DRIs and Mean Absolute
Error (MAE) is used for the sanitized location-entropy values. These are denoted
as follows.

ADE =

∑
idri∈RI

dist(idri − idr′
i)

|RI| ,MSE =

∑
idri∈RI

|H(i) − ̂H(i)|

|RI| (9)

Here, RI is the set of original DRIs that have sanitized values. dist(drii −
dri′i) is the Euclidean distance between them. H(i) and ̂H(i) are the actual and
sanitized weights respectively.

Evaluation on DRI. First, we evaluated the average accuracy of identified
DRIs using the F-measure metric, as shown in Fig. 3. The F-measure was adopted
as the accuracy metric, which was the harmonic mean of precision and recall. We
used the land-use category data to evaluate the accuracy of “At home” labels
associated to DRIs and Foursquare venues data for other scenarios. We compared
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the labelling accuracy of DRI labelling approach with and without the privacy-
preserving mechanism (denoted by ON and OFF). As we can see, the highest
average accuracy was obtained for characters “At home” and “Working”. The
DRI labelling approach labelled the “At home” relevant regions, i.e., residential
regions, with an accuracy 91% referring to the land-use data, even achieving
an accuracy 76% with perturbation mechanisms. “Working” relevant regions
had average accuracy at 90% using OFF and 74% using ON. For the labelled
“Recreation” and “Eating” regions, we observed that the average accuracy was
approximately than 85% with OFF and 70% with ON, 87% and 84% using OFF
while 71% and 65% using ON respectively. “Eating” relevant regions had average
accuracy at 77% using OFF and 62% using ON. Most of the labelling results
had accuracy more than 70% using the private DRI labelling approach, which
was a satisfying result for the semantic annotation.

0%

20%

40%

60%

80%

100%

At home Working Eating Recreation Nightlife

Accuracy OFF ON

Fig. 3. The accuracy evaluation of DRI.

Furthermore, in order to show the utility of the perturbed DRI and perturbed
location entropy over varying ε, a range of experiments were conducted as follows.
Figure 4 showed the ADE metric with varying ε on the each subset of the GT
dataset. As ε increased, i.e. reducing privacy preserving level, the ADE decreased
while the recall increased in all scenarios, as less noise was needed. The ADE
was similarly in each privacy budget set for the subset associated to a different
time slot with various amount of geotags, which revealed the amount of noise
is not related to the size of the dataset. As shown, the distortion of perturbed
cluster centroids under differential privacy with normal privacy preserving level
was approximately 400 m in subset associated to “At home” and 400 m in other
scenarios, which was acceptable for general location-based services, e.g., POI
recommendation. In addition, Fig. 4 also gave the MAE metric with varying ε on
the each subset of the GT dataset. Note that, as the value of location entropy can
be negative and/or huge, we normalized the original values of location entropy for
the MAE evaluation. The same trend appeared again, as ε increases, the MAE
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Fig. 4. The effect of varying ε on ADE evaluation of DRI.

and KL-divergence decrease while the recall increases, as less noise was needed.
As illustrated, the distortion of perturbed location entropy under differential
privacy with normal privacy preserving level was approximate 28% to 31% in all
subsets compared to the true value of location entropy, which slightly impacted
the DRI identification when appropriate thresholds were chosen.

Evaluation on Semantic Trajectory. The following experiments were con-
ducted to evaluate the utility and accuracy of semantic trajectory generated by
private semantic annotation using the labelled DRIs from previous steps. First,
we evaluated the accuracy of semantic annotation using P-SAFE with and with-
out the privacy-preserving mechanism (denoted by ON and OFF), compared
with two competitors: P-SAFE without the THMM mechanism, denoted by
Near, and POI-based annotation, denoted by POI. For competitor Near, we
changed the THMM mechanism to a nearest DRI searching mechanism that
adopted the label of the nearest DRI to be the semantic annotation for the posi-
tion of a raw trajectory. For competitor POI, we used the 3rd party POI data,
e.g., Foursquare venues, to be the semantics source instead of DRIs. Note that,
the daily activity transition patterns can be derived from geotags data after con-
structing human mobility traces. We used the Variable Order Mobility Markov
Models [22] to infer the daily activity transition probability matrix.

The first sub-figure in Fig. 5 illustrated the values of F-measure of P-SAFE
and its competitors. As shown in this figure, the OFF was the most performing
approach with the highest accuracy in all five characters annotation. Generally,
the accuracy obtained by OFF was 10% more than the Near approach, which
demonstrated that the accuracy of semantic annotation using P-SAFE with-
out privacy-preserving mechanisms was improved by adopting the THMM. The
Near approach achieved the second highest accuracy of semantic annotation,
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Fig. 5. The accuracy evaluation of semantic trajectory.

generally, 10–18% more than POI, which illustrated the accuracy of seman-
tic annotation was improved by using DRIs than using POIs. In addition, the
accuracy obtained by P-SAFE, even with privacy-preserving mechanisms, was
better than the POI approach. Furthermore, this figure also demonstrated the
ability to annotate residential activity of P-SAFE with and without the privacy-
preserving mechanism. As evidenced by these comparisons, P-SAFE achieved
an overall better performance in trajectory semantic annotation. The accuracy
evaluation on evaluation dataset with varying ε are illustrated in Fig. 5. Due to
the similar trends, we only compared the Recall, Precision and F-measure of
“At home” and “Working” scenarios for example. As ε decreased, i.e. improv-
ing privacy preserving level, the Recall, Precision and F-measure decreased in
both scenarios, as more noise was added. This confirmed the trade-off between
privacy and utility again. Based on these experiments, it demonstrated that
P-SAFE enabled to achieve two contradictory goals: provable robust privacy
protection and efficient meaningful geographic regions labelling and trajectory
semantic annotation.

5 Related Work

The semantic information used for trajectory semantic annotation can be derived
from 3rd party. E.g., comparing the positions with locations of predefined places
of interest, land-use as well as from large-scale spatiotemporal data that enables
insights into patterns of people’s mobility and activities. Many existing works
have illustrated the relation between geo-referenced social networks data and
potential semantic enrichment resources. [13] developed insight into both geo-
graphic social dynamics and attention through social media analysis. [13] devel-
oped insight into both geographic social dynamics and attention through social
media analysis. [12] used the spatiotemporal data from online social media check-
in data to characterize urban human activity and mobility patterns. Specifically,
they characterized individual activity patterns by finding the timing distribution
of visiting different places depending on activity category. [23] proposed an app-
roach that uses unsupervised learning and automatically determines land uses
in urban areas by clustering geographical regions with similar tweeting activity
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patterns. [11] proposed an approach that learns how to classify personal places
and trips while a human analyst visually analyzes and semantically annotates
selected subsets of movement data using Twitter data. While we still have to
be aware of the privacy concerns in exploring individual data. Many of these
issues are discussed in [24]. Differential privacy presented in [8] has been broadly
adopted to protect sensitive data in geospatial locations [16] and trajectory-based
data [25].

To the best of our knowledge, there is no research on combining dynamic
geographic regions identifying and labeling, trajectory semantic annotation and
privacy preserving into single task.

6 Conclusions

In this paper, we proposed the P-SAFE approach to infer meaningful geographic
regions that can reflect the periodic human activity using dynamic spatiotem-
poral data from online social media and then use them for trajectory semantic
annotation, embedded with robust privacy guarantees. The approach improves
the accuracy of DRI identifying and labelling as well as trajectory semantic anno-
tation with robust privacy guarantees from three aspects. (1) A time-aware clus-
tering approach is proposed to discover activity-related clusters whilst identifying
dynamic region of interest (DRI) and labelling such regions via a LE-based DRI
identifying and labelling approach; (2) A THMM model is used to infer most-
likely activity category of each position of a raw trajectory from nearby DRIs
that it passed through, as the semantic enrichment, improving the accuracy of
semantic annotation; (3) Robust privacy preserving mechanisms are embedded
into clustering, labelling and spatial queries perturbation under differential pri-
vacy. The P-SAFE approach tackles the privacy and utility trade-offs for mean-
ingful geographic regions identifying and labelling as well as trajectory semantic
annotation under differential privacy, combining them into a single task. Exten-
sive experiments illustrate that it not only provides robust privacy guarantees
but remains approximate 45–56% accuracy for meaningful geographic regions
labelling and 62–76% accuracy for trajectory semantic annotation compared to
competitors. On the future, we will extend P-SAFE into more comprehensive
and practical cases from two aspects: (1) we will develop a utility-enhanced
perturbation embedded into semantic labelling and annotating, e.g., location
entropy calculation; (2) we will consider the content of tweets both in privacy
and semantic aspects.
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