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Abstract. Source localization, the process of estimating the originator
of an epidemic outbreak or rumor propagation in a network, is an impor-
tant issue in epidemiology and sociology. With the graph topology of the
underlying social network, the localization can be realized with obser-
vations of a few designated nodes or a snapshot of the whole network
at a certain time. Though there are several methods for this task, all
of them have limitations. These approaches either place little weight on
information about susceptible nodes or rely on extra information about
the propagation process. In this paper, we take both susceptible and
infected nodes into account, and put forward a novel metric called Clas-
sifying Quality (CQ) centrality to quantify the property of a node to
separate the susceptible and infected sets. Inspired by Fisher criterion,
CQ centrality makes a trade-off between the inner-class and the inter-
class distances, which are based on length of the shortest path between
nodes. CQ centrality can be calculated without any extra information
about the spread process, hence, it can serve as a universal estimator for
source localization. Moreover, we improve the proposed metric in case
that the infection rates of edges have been already known. Simulation
results on various general synthetic networks and real-world networks
indicate that our methods lead to significant improvement of perfor-
mance compared to existing approaches.

Keywords: Source localization · Shortest paths · Centrality
Fisher criterion

1 Introduction

Epidemic dynamical behavior can be observed in different scenarios and fields,
such as computer worms spreading in networks and rumor propagation on the
Internet. If not under control, epidemic outbreaks will bring great negative effects
to economy and society. Therefore, how to model, analyze and contain the
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dynamics of epidemic outbreaks in social networks has been receiving consid-
erable attention. Whereas the prediction of the diffusion process has attracted
a considerable number of works (e.g., [1,2]), the inverse problem of estimating
the original source has been studied only recently [3]. The task of source local-
ization is inherently challenging because of the stochastic nature of infection
propagation. Indeed, different initial conditions can lead to the same observed
results, and the epidemic outbreak can be explained by multiple and possibly
very different dynamical processes.

Researchers have proposed various models and algorithms for source local-
ization, and these studies can be roughly divided into two categories, i.e., graph-
centrality measures and maximum likelihood methods. Graph-centrality mea-
sures quantify the influence of nodes based on the network topological structure,
and select the most influential node as an estimator for the actual epidemic
source. Besides, graph-centrality measures could be applied to estimating a set
of origins by using spectral methods [4]. Examples include the closeness central-
ity [5], betweenness centrality [6], or the Jordan center of a graph [7]. In general,
graph-centrality measures focus on exploiting the information about infected
nodes, i.e., the nodes which recieved and spread the harmful content (e.g., rumor
or computer worm) in the spreading process. The advantage of graph-centrality
measures is that they are easy to implement; however, their precision is limited.
Graph-centrality measures take advantage of the network topology for estima-
tion, whereas maximum likelihood methods require much more detailed infor-
mation, thereby supporting more precise estimation. For instance, Lokhov et al.
proposed a fast Dynamic Message-Passing method (DMP) to compute the prob-
ability of a given node in the network to be the origin of the epidemic [8]. To
construct the DMP estimator that locates the most probable origin, the infection
rate of each node and the terminal time slot need to be given in advance. Other
Bayes inference approaches also employ extra information about the epidemic
process such as the exact infection time of some given infected nodes to calculate
the probability [9,10]. However, information collection is never free, and it is not
realistic to obtain too much node information in large-scale social networks.

In order to improve the performance of localization without extra informa-
tion, we focus on making better use of the information about susceptible nodes,
which are neglected in graph-centrality measures. Susceptible nodes are the ones
which the epidemic propagation did not spread to, but information about them
is also valuable. In our model, we take both susceptible and infected nodes into
account, and propose a novel metric called Classifying Quality (CQ) central-
ity for source localization. Inspired by Fisher criterion [11], CQ centrality views
infected nodes and susceptible nodes as two different classes, and quantifies the
property of a node to separate the two classes. All observed infected (respectively,
susceptible) sensor nodes constitute the infected (respectively, susceptible) set,
and our target is to find the node which achieves the optimal separation between
the two sets, i.e., the node which has the maximum CQ centrality.

As far as our knowledge goes, our study is the first to connect source local-
ization with classification criterion. Due to the efficient use of the information
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about the susceptible nodes, the proposed metric outperforms other centrality
measures. CQ centrality only utilizes length of the shortest path between nodes,
so it can still work even if there was no extra information about the epidemic out-
break. Moreover, if the infection rates of edges are already known, the proposed
metric can be improved by using effective distances [12].

The rest of the paper is organized as follows. First, we briefly review related
works in Sect. 2. Then, we give details of our approach of CQ centrality in Sect. 3.
Next, we present our experimental results and the corresponding analysis in
Sect. 4. Finally, conclusions and discussions are given in Sect. 5.

2 Related Works

Many different methods have been proposed to estimate the rumor (or worm)
source, and they mainly fall into two categories: graph-centrality measures and
maximum likelihood methods. In this section, some important works are intro-
duced.

2.1 Graph-Centrality Measures

Graph-centrality measures use a topological index to score the importance of
nodes in a network. The index reflects some of the characteristics of the network
topological structures and is generally referred to as the centrality. The nodes
with high centrality are probable suspects of the real source. The earliest cen-
trality used for scoring is the degree, which represents the number of neighboring
nodes adjacent to a node [13]. The idea is that the importance of one node is
closely related to the neighboring nodes directed towards it. Since the spread
of rumor or virus relies heavily on the distance between nodes, in subsequent
studies, researchers proposed various distance-based centrality indicators. The
Closeness Centrality (CC) indicator is one of them, which describes how fast a
node can propagate information to other nodes in the network [14]. Its value
is defined as the inverse of the sum of the distances between a node and all
other nodes, given by: CC(u) = 1∑

v �=u

duv
, where duv is the minimum hop required

from node u to node v. Betweenness Centrality (BC) is another metric based on
shortest paths, proposed by Freeman et al. [15]. The principle is that if a node
is located closer to the information center, then the node is more likely to be on
the shortest path between other nodes, reflecting the node’s ability to control
the flow of information. BC is one of the most common centrality indicators and
is a core concept in social network analysis. The definition of BC is given by:

BC(u) =
∑

s �=v �=u

σsv(u)
σsv

, where σsv is the number of shortest paths between node

s and node v, and σsv(u) counts the shortest paths in which node u is included.
Another important centrality, which is widely used in source localization, is the
Jordan centrality. The Jordan centrality of a node is the maximum of the min-
imum distances with respect to a given infected node set [16]. Generally, the
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node with the minimal Jordan centrality is called the Jordan center, which is
an estimator for the actual source. Studies have shown that the Jordan Center
method can achieve good performance in different network structures and has
strong robustness [7].

2.2 Maximum Likelihood Methods

Maximum likelihood methods solve the problem of localization with probabil-
ity theory. For instance, according to Bayes rule, the probability that node
u is the source s∗ given some observations O about the diffusion process is
in proportion to the joint probability of observations given the source, i.e.,
P (u = s∗|O) ∝ P (O|u = s∗). This idea is very naive and its key point lies in the
construction of likelihood probability formula. The solution proposed by Dong
et al. was to construct a posteriori estimator [9], while Zheng and Tan carried
out a probabilistic analysis of the propagation boundary by using the connected
nature of spreading subgraph and the infection time of observed infected nodes
[10]. However, their methods are only suitable for tree structure. Jiang et al.
did more detailed work. They considered different network topologies with time
delays, and gave log-likelihood probability formulas under three categories of
observations (WaveFront, Snapshot, Sensor) [17].

The time delays on different edges are expected to be inconsistent, and many
researches focus on studying the influence of distribution types. For example,
Spencer and Srikant assumed that rumor propagation conforms to the SI model
and the time delay on each edge complies with the exponential distribution [18].
Based on their assumptions, they proposed an explicit, non-iterative, maximum
likelihood estimator for the source. The aforementioned works mostly rely on
the assumption that there is only one single source node, and there are also
many pioneer works studying multi-source locating problem. For example, Zang
et al. presented an approximate multi-source locating algorithm, which involves
three principal steps [19]. Firstly, they introduced a reverse propagation model to
detect all infected nodes, which were then clustered into multiple infected com-
munities by employing a community detection method. At last, they computed
the maximum likelihood estimate in each infected community and obtained all
the source nodes.

3 Proposed Approach

In the following subsections, we present our assumptions, localization algorithm
and various notations used throughout this paper.

3.1 Assumptions

We make the following assumptions.

• The graph topology of the underlying social network is already known.
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• The epidemic process follows the SI model in which each node keeps in one of
the two possible states: susceptible (s), infected (i). Once a node receives the
harmful content (e.g., rumor or computer worm), it is infected. After that, it
will remain in state i forever and try to infect its susceptible neighbors with
the same probability at any following time. This is a common assumption
widely adopted [8,16,20].

• Time can be divided into discrete slots and the spread follows a Markov
process. Specifically, there is only one node s∗ in state i at initial time slot
T0 = 0, which is called the epidemic source.

3.2 Notations and Definitions

We model the connections across which an epidemic can spread with a binary
group G = (V,E), where V is the set of all nodes and E is the set of all links.
The problem of source-localization can be abstracted as follows: Which node in
V is the most probable origin, given some current knowledge about the state of a
subset of V ? The subset is denoted by M and the nodes in it are called sensors.
A sensor gives information about which state it keeps in. If it reveals that it is
in state i (respectively, s), we say that the sensor gives a positive (respectively,
negative) observation. It is reasonable that an observation contributes to the
localization process even if it is negative. For simplicity sake, we divide M into
two subsets, and denote the set of sensors who give positive (respectively, nega-
tive) observations by M+ (respectively, M−). Both M+ and M− are assumed
to be nonempty. After that, two important indexes, the spectral radius and the
centre distance, are introduced.

Definition 1 (spectral radius). Let d(u, v) be the length of the shortest path
between node u and node v in the network G (i.e., the shortest distance between
them). For any set of nodes V0 ⊂ V in G, the spectral radius d̃(u, V0) of u with
respect to (w.r.t.) V0 is defined as the maximum distance from u to any node v
in V0, given by:

d̃(u, V0) = max
v∈V0

d(u, v) (1)

Definition 2 (centre distance). Given all the distance d(u, v) (v ∈ V0), let
the centre distance d̄(u, V0) of u w.r.t. V0 be the mean of them, represented as:

d̄(u, V0) =
1

|V0|
∑

v∈V0

d(u, v) (2)

3.3 CQ Centrality for Source Locating

Inspired by Fisher’s linear discriminant [11], which is a classical approach to
dimensionality reduction for classification, we put forward a backward diffusion
method to locate the epidemic source in social networks by calculating the CQ
centrality of nodes w.r.t. M .
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The objective of CQ centrality is to give a function that quantifies the prop-
erty of a node to separate the M+ from M− in terms of the spectral radius and
the centre distance. The simplest measure of the separation of the two sets is the
separation of the distance means, i.e., the centre distances, based on the con-
sideration that infected nodes should be close to the epidemic source, whereas
susceptible nodes should locate relatively distant from the epidemic source so
that they could have survived the infection transmission. This idea is naive and
the difference between the two centre distances is called inter-class distance in
analogy to the between-class variance in the Fisher criterion. Besides, the smaller
the spectral radius of a node w.r.t. M+ is, the less expected time is needed for
the node to infect M+, thus increasing the likelihood of the node being the epi-
demic source. This thesis has been proved in [7] and is frequently used for source
localization. From another point of view, if we use u as the center to form a cir-
cle to cover all the nodes in V0, the spectral radius d̃(u, V0) gives the minimum
radius. A smaller d̃(u, V0) implies that the area of the circle is also smaller, mean-
ing that the circle is denser. Hence, d̃(u, V0) can reflect the clustering coefficient
of V0 w.r.t. u. In the spreading process, the epidemic source is the information
center of M+, rather than M−, so we only consider the spectral radius w.r.t.
M+, i.e., d̃(u,M+). For uniformity, d̃(u,M+) is named the inner-class distance,
versus the inter-class distance. The CQ centrality of node u is defined to be the
ratio of the inter-class distance to the inner-class distance and is given by

CQ(u) =
d̄(u,M−) − d̄(u,M+)

d̃(u,M+)
(3)

CQ centrality provides in-depth information w.r.t. both the structural char-
acteristics of the network and propagation features of the diffusion process. Thus,
we can utilize CQ centrality to locate the source. Our locating algorithm contains
the following three steps:

(i) Because the graph topology is known, we can calculate the shortest dis-
tances from any node u to sensors. This problem can be solved by means
of Dijkstra algorithm [21] or Floyd-Warshall algorithm [22].

(ii) For any node u, compute d̄(u,M−), d̄(u,M+), and d̃(u,M+) with Eqs. (1)
and (2).

(iii) Calculate the CQ centrality of each node w.r.t. M using Eq. (3), and the
node with the maximum value is considered to be the source.

The key and difficult part of this method lies in calculating the shortest dis-
tance between every pair of nodes. Generally, we view the number of hops needed
as the distance. But when the infection rate is known, we improve our method
by using the effective distance instead, a concept proposed by Brockmann and
Helbing [12]. The effective distance from node u to its neighboring node v is
defined as

d̂(u, v) = 1 − ln Puv (4)

where Puv is the fraction of a propagation with destination v emanating from u.
In our experiments, we replace the fraction with the infection rate from u to v.
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4 Experimental Results

4.1 Experiment Setup

In our experiments, we use the Jordan center (JD), optimized Jordan center
with effective distances (JD-E), and Dynamic Message-Passing (DMP) estima-
tors as benchmarks to compare with our two CQ centrality based algorithm,
i.e., one that regards hops as the distance (CQ), and one that utilizes the effec-
tive distance instead (CQ-E). We evaluate the performance of these different
approaches in terms of the error distance, which is the number of hops between
the estimated source and the actual source. The results are averaged over 1000
simulation runs, in which the position of the epidemic source is chosen randomly.

4.2 Network Topologies

We conduct experiments on both synthetic and real-world networks, and the
statistics of these networks are presented in Table 1. Diameter represents the
length of the longest shortest path between node pairs, and avg distance is
the average length of all shortest paths. Avg clustering indicates the average
clustering coefficient of the given network.

Table 1. Statistics for the networks used in our experiments.

RG BA ER WS GR-QC Fb BitA

Nodes 200 200 100 100 4158 4039 3775

Edges 300 591 501 400 13428 88234 14120

Avg degree 3.00 5.91 10.02 8.00 6.46 43.69 7.48

Diameter 10 5 4 4 17 8 10

Avg distance 5.77 2.89 2.23 2.51 6.05 3.69 3.57

Avg clustering 0.005 0.081 0.107 0.184 0.557 0.606 0.177

Synthetic Datasets. We generated synthetic networks for experiments from
the following classes: Regular Graph of degree 3 (RG), Barabasi-Albert net-
work (BA) [23], Erdos-Renyi random network (ER) [24] and Watts-Strogatz
small world network (WS) [25]. For each network class, we generated connected
weighted instances of size 100 or 200, in which the weight on each edge represents
the infection rate between the adjacent node pair.
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Real-World Datasets. We use three kinds of real-world networks, which are listed
below:

• In the General Relativity and Quantum Cosmology collaboration network
(GR-QC), nodes represent scientists, while edges represent collaborations,
i.e., co-authoring a paper. This dataset was obtained from the e-print arXiv,
covering papers submitted in the period from January 1993 to April 2003.

• The Facebook network (Fb), which is a typical online social network, was
collected from survey participants using the Facebook app. This network
consists of ‘friend lists’. To be specific, if there were interactions among user
a and user b, the network contains an undirected edge between a and b.

• The Bitcoin Alpha trust network (BitA) is a who-trusts-whom network of
people who trade using Bitcoin on a platform called Bitcoin Alpha [26]. We
preprocess this network by converting it to an undirected graph, and then
select the maximal connected subgraph.

We refer the readers to [27] for more detailed information of these three datasets.

4.3 Experiments on Synthetic Networks

For each synthetic network class, the infection rates of the edges are assumed
to obey a truncated normal distribution with mean 0.5 and variance 0.25 in
the scope (0, 1), or a uniform distribution in the interval (0.2, 0.8). Since these
networks are relatively small, we just observe the state of all nodes at time slot

Fig. 1. An example of snapshot on a random ER network with |V | = 30 nodes. The
epidemic source is the blue node. All green nodes appear in state s, while all red
nodes and the blue node appear in state i. The epidemic is generated under a uniform
distribution in the interval (0.2, 0.8); the snapshot is obtained at time T = 5. (Color
figure online)
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(a) Uniform distrubution

(b) Truncated normal distribution

Fig. 2. Average error distances in various networks under different distributions

T = 3 for source localization. In other words, we set all nodes as sensors and
estimate the location of the actual epidemic source based on the snapshot at
T = 3. An example of snapshot is given in Fig. 1, and the simulation results are
shown in Fig. 2.

From Fig. 2, we can see that our proposed estimators CQ and CQ-E perform
consistently better than the benchmarks JD, JD-E and DMP in all synthetic
networks. Clearly, these benchmark localization methods are sensitive to network
topology. The JD and JD-E methods perform well in RG network, but achieve
bad results in the other three networks. The performance of the DMP method is
not good, as its average error distance is more than 1 in all considered networks.
The CQ and CQ-E methods outperform these three methods, but they are also
sensitive to network topology. In the ER network, they get their worst results
and the error distances are around 1. Moreover, by comparing the results shown
in Fig. 2(a) and (b), we can find that these methods behave similarly under
the uniform distribution and the truncated normal distribution, which indicates
that the distribution type has little effect on the performance of these source
localization approaches.
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(a) GR-QC network (b) Fb network

(c) BitA network

Fig. 3. Average error distances with different sensor proportions

4.4 Experiments on Real-World Networks

Since the computation cost for DMP estimator in large-scale networks is too
high to be accepted, we only compare the performance of the JD, JD-E, CQ
and CQ-E methods in terms of the fraction of sensors, i.e., the value of |M |/|V |.
Sensors are randomly sampled from V , and the infection rates of edges are set to
follow the truncated normal distribution. Observations of sensors are obtained at
the time when there are more than 20% nodes get infected in the whole network.

In Fig. 3, we present the average error distances in three real-world networks
w.r.t. different sensor proportions, which range from 5% to 50%. Results show
that a higher proportion of sensors dramatically reduces the average error dis-
tance in GR-QC. This is because a higher proportion of sensors implies that
there is more information for source localization, which decreases the estimated
deviation. However, the impact of sensor fraction is not obvious in Fb and BitA.
We believe the cause lies in the selection strategy of sensors. As shown in Table 1,
the average distances between nodes is much shorter in these two networks than
in GR-QC, which means that the difference between shortest paths is less signif-
icant in Fb and BitA. Hence, valuable information about shortest paths hardly
increases when we improve the ratio of random sampling in Fb and BitA. From
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Fig. 3, we can see that CQ, CQ-E outperform JD and JD-E in all three real-world
networks, which is consistent with the results on synthetic networks.

5 Conclusions and Future Work

In this paper, we propose a novel metric of centrality measurement, Classifying
Quality (CQ) centrality, to estimate the most probable source of an infectious
outbreak in social networks. One superiority of our method, compared to existing
algorithms, is that our metric makes efficient use of the information about suscep-
tible nodes which the epidemic did not spread to. As is usual for graph-centrality
measures, our approach only utilizes statistics of shortest paths for estimation,
thus is easy to be realized. Importantly, if the infection rates of edges are already
known, the proposed metric can be improved by using effective distances. We
use the SI model to simulate the dissemination of information and evaluate the
performance of our CQ, CQ-E methods against JD, JD-E and DMP estimators.
Experimental results on both synthetic and real-world networks reveal that CQ,
CQ-E outperform the other three approaches because they have smaller average
error distances.

Let us mention a few possibilities of extension of our approach, the study of
which is left for future work. First, in our source localization method, the infor-
mation spreading process is modeled by the SI model, meaning there are only two
types of nodes. However, the patterns of nodes are more complex in social net-
works. Thus, it is important to combine CQ centrality with more sophisticated
models such as the SIR model in future work. Second, in this paper, the topolo-
gies of networks are static, whereas the structure of a social network usually
changes dynamically in real life. How to apply CQ centrality to time-changing
networks is a significant topic of future study. Third, if we select sensors with
better strategies, rather than random selection, we can boost the performance
of CQ. Potential solutions include stratified sampling, systematic sampling and
selecting sensors according to their centralities (e.g., degree). Finally, when it
comes to multi-source scenario, whether the CQ algorithm remains useful has to
be investigated further.
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