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Abstract. Meetup brings people with similar interests together to do
things that matter to them. For example, it provides a platform for
getting people who love hiking, coding, running marathons, learning for-
eign languages together so that they can help, teach and learn from
each other. Thanks to the development of web and mobile technolo-
gies, organizing these Meetup groups has become much more easily than
before. Meetup has become an ideal tool for enriching one’s social life.
In this paper, we proposed a coupled linear and deep nonlinear method
for Meetup services recommendation. Our method considers both histor-
ical user item interactions and group features by combining linear model
with deep neural networks. In addition, we designed a pairwise training
algorithm with dynamic negative sampling technique to further enhance
the model performance. Experiments on two real-world datasets show
that our approach outperforms the compared state-of-the-art methods
by a large margin.

Keywords: Recommender systems * Deep learning
Service recommendation

1 Introduction

Meetup® is a social networking website for organizing local offline group meetings
for people with similar interests. Thousands of Meetup groups, such as fitness
group, career and networking group, photography group, hiking group, etc., are
there for us to participate in. It provides a desirable approach to enrich our
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social life. For example, we can find a fitness partner in the Meetup group to
support and encourage each other, or get someone to mentor us on photography.
These Meetup groups provide us with a good way to explore the things we are
interested in, meet new friends, broaden our social circle and even change our
careers.

With so many Meetup group choices being available, a good recommender
model can save our time in finding interesting Meetup groups, attracting more
group members and making them more active. To this end, we propose to explore
user historical interactions as well as group features to better match user interests
with Meetup groups. The main contributions of this work are summarized as
follows:

— A coupled linear and deep nonlinear recommendation model is proposed to
integrate both historical interactions as well as item side information. It can
capture both user’s historical preferences and item characteristics.

— We designed a pairwise learning algorithm for the proposed approach. To fur-
ther improve the recommendation quality, we also adopted a dynamic nega-
tive sampling approach to conduct negative sampling more effectively.

— We did extensive experiments on two large-scale datasets and demonstrated
the superior performances of our approach over state-of-the-art baselines.

The reminder of this paper is structured as follows. In the next section, we
will introduce the research problem we aim to address. Section 3 introduces the
proposed approach. Section 4 shows the experimental setup and results. Section 5
introduces the related work and Sect. 6 concludes this paper.

2 Problem Formulation

Assuming that there are N items and M users, we have an interaction matrix
X € RM*N and most entries of X are unobserved. Let X,,; denote the prefer-
ence of user u to item 4, X,. denote the u'® row of the interaction matrix. For
Meetup recommendation, there are only binary implicit feedback available and
it can be viewed as a one-class recommendation problem [12]. The entries of X
are defined as follows:

(1)

1, if interaction <u,i> is observed
Xui =

0, otherwise

The goal of the recommendation is to predict ranking scores for unobserved
entires given the observed interactions, and then generate a personalized ordered
list of items for each user based on the predicted scores. For a clear presentation,
Table 1 summarizes the notations and denotations used in this paper.

3 Proposed Methodology

In this section, we will introduce the proposed methodology in detail. Our model
combines a linear part to capture the user historical interactions and a nonlinear
component to incorporate the abundant side information.



248 S. Zhang et al.

Table 1. Notations and denotations

Notations | Descriptions

M, N Number of users and items
X, Xux Interaction matrix, and the u'" row
S5 Side information of item ¢ (or item content information)

A e RV*N | Sparse aggregation co-efficient matrix

W, b Weights and biases of neural networks
P € RM>** | User latent factor
k Dimension of the output of neural networks and latent

factor size

Yui Predicted ranking score of item 4 for user u

N, A, T, T Learning rate, regularization rate, scaling factor,
negative sample size

3.1 Coupled Linear and Deep Nonlinear Model

Sparse linear model has demonstrated to be effective for top-n recommenda-
tions [20]. However, this model does not consider any side information. In recent
years, deep learning has demonstrated to be very suitable for feature represen-
tation learning [1]. Therefore, we propose using deep neural networks to learn
low dimensional feature embeddings from raw features. Since both usage history
and item properties are critical for uncovering user’s real demands and interests,
here, we design a hybrid model which couples sparse linear model with deep
neural network for better service recommendation. The former (sparse linear
model) is used to learn user’s interaction patterns, while the latter (deep neural
network) aims to understand the content of items.

Formally, let A € RY*N denote a sparse aggregation co-efficient matrix. The
ranking score of the linear part is calculated by

Yuli = Xux - Asi (2)

where X,. is the u'" row the interaction matrix, and it is constructed from
training set, so there is no leakage of the test data. Equation (2) is very similar
to matrix factorization. We can view X, as the user latent factor and A,; as
the item latent factor. Nevertheless, X, is a known vector, and A is a sparse
co-efficient matrix needed to be optimized. Moreover, A is reminiscent of the
similarity matrix in item-based neighborhood collaborative filtering [15], but it
is determined by minimizing a predefined loss rather than being calculated with
Cosine or Jaccard similarities from the interaction matrix. Due to the sparse
nature of X, some constraints such as sparsity and non-negativity are put on
the co-efficient matrix A. More details will be introduced in the following text.

Another important component of our model is a deep neural network, which
is used to integrate side information of items to further enhance the recommen-
dation performance. Let s; denote the side information of item i. We first feed it
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Fig. 1. lllustration of the coupled linear and deep nonlinear method. It consists of two
components: a linear component used to learn patterns from historical interactions;
and a deep neural network used to capture the item features.

into a multi-layered neural network and get the high level dense representations.
Formally, the definition of the multi-layered neural network is as follows:

z1(si) = o1 (W1s; + b1)
22(8i) = 02(Waz1(si) + ba)

2r(si) = o (Wrzr—1(s;) + br)

where L denotes the number of layers, W, and b; denote the weight matrix
and bias vector of the [*" layer. o; is the activation function which could be
sigmoid, hyperbolic tangent (tanh) or Rectifier (ReLU). With this nonlinear
transformation, we manage to capture the complex and intricate data structure
of item side information. Let k denote the dimension of the output, so Z(s;) is a
k-dimensional vector. To integrate this neural network into the recommendation
model, we define a user latent factor P € RM** and then model the user and
item interactions with inner product:

Y =P, Z(s)) (3)

Finally, we simply add the former two scoring results and get the final pre-
dicted ranking score.
Vai = Vi + V1 (W

Figure 1 illustrates the structure of the proposed methodology. The left part
is the linear component and the right part is the deep neural network.

3.2 Pairwise Training Algorithm

To train the above model in a pointwise manner is computationally intensive.
To accelerate the training process, here, we propose learning this model with a
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pairwise algorithm. We adopt a logarithm function which has a scaling factor to
weight the difference between positive and negative samples. Formally, the loss
function of our model is defined as follows:

LO)= > log(l+exp(~TA))+ A2(0) (5)

(i)

where A is formulated as A = (Y,;+ — Y,;-), ¢+ is the Meetup group that user
u joined in and ¢~ is a negative item that the user has not interacted with.
T is a scaling factor to weight A. As indicated in Fig.2(a), 7 can impact the
convergence speed as it puts significant influence on the slope of the loss function.
0 is the model parameters including A, P, and neural network parameters W,
and b..

The regularization terms are critical for the model performance. To ensure the
sparse properties of co-efficient A, we put both #; and Frobenius norm constraints
on it. For other parameters, we find that Frobenius norm is sufficient. Thus, we
have:

20) =l Al + 1A+ PIZ+ | W (6)

In addition, we set the diagonal of A to zero and clip the value of A after each
iteration to ensure A > 0.

Procedure 1. Training Procedure of the Proposed Methodology

Input: X, s;, k, learning rate n, A, batch size, number of neurons for each layer
Output: A, P, W, b

1: procedure INITIALIZATION

2 Initialize A, P, W, b with random normal distribution
3: end procedure

4: procedure MODEL LEARNING

5: repeat
6.
7
8
9

for all pairs (u,?) in current batch do

Sample ¢ items from the negative candidates of user u

Calculate the ranking score with equation (4) with current parameters
Choose the highest ranked item from the sampled ¢ items as the negative

sample
10: Minimize equation (5) with Adam algorithm
11: Set the diagonal of A to zero and clip A to satisfy A > 0
12: end for
13: until convergence

14: end procedure

3.3 Dynamic Negative Sampling

We usually conduct random sampling to sample negative items for each <user,
positive item> pair. However, this sampling strategy will not lead to optimal
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Fig.2. (a): The influence of parameter 7 for the pairwise logarithm function; (b):
Example of NDCG differences by exchanging the positions of observed (yellow) and
unobserved (gray) items (Best viewed in color).

solutions. One reason is that it cannot guarantee to rank all negative items lower
than positive items, while higher ranked negative items will hurt the ranking
performance of the current model [31]. Figure2(b) illustrates this point with
an example (taken from [31]). We find that if we exchange the positions of the
sixth item (observed) with the first item (unobserved), we increase the NDCG
by 0.302. While the NDCG increase is only 0.035 if we exchange the sixth item
with the fourth item. Therefore, it is better to rank all unobserved items lower
than observed items.

This idea is initially designed for Bayesian personalized ranking model [21].
Here, we find that this assumption is also reasonable for our approach. There-
fore, we propose applying the dynamic negative sampling method to our model,
the sampling strategy is: in each epoch, we randomly sampled ¢ items from neg-
ative candidates for each <user, positive item> pair, and calculate their ranking
scores, and then treat the item with highest rank as the negative sample. Pro-
cedure 1 summarizes the training process of the proposed model.

4 Experiments

In this section, we conduct experiments on two Meetup datasets and compare
our approach with several state-of-the-art baselines.

4.1 Datasets Description

These two datasets are collected by Hsieh et al. [11]. We also crawled the Meetup
features from the Meetup websites. After removing Meetup groups without con-
tent information and users who interacted with less than 20 Meetup groups,
we get two subsets: Meetup San Francisco and Meetup New York city. Detail
statistics of the two datasets are summarized in Table 2. These two datasets con-
tain thousands of Meetup groups and regular users from San Francisco and New
York city. There are 33 categories of the Meetup groups which spread across



252 S. Zhang et al.

most aspects of daily life, including: career & business, education & learning,
outdoors & adventure, singles, new age & spirituality, support, games, hobbies
& crafts, socializing, paranormal, cars & motorcycles, language & ethnic identity,
parents & family, photography, music, sports & recreation, alternative lifestyle,
tech, fine arts & culture, LGBT, movements & politics, religion & beliefs, pets &
animals, fashion & beauty, fitness, food & drink, writing, sci-fi & fantasy, movies
& film, book clubs, health & wellbeing, community & environment, dancing. The
category distributions of two cities are shown in Fig. 3.

Table 2. Statistics of datasets meetup San Francisco and New York City.

Datasets Items # | Users # | Interactions # | Density (%)
Meetup San Francisco |3424 48369 1720017 1.039
Meetup New York City | 4753 35889 1055725 0.619
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Fig. 3. Statistics of Meetup category distribution for San Francisco and New York
City.

4.2 Evaluation Metrics

To evaluate the recommendation accuracy, we report the results in terms of five
evaluation metrics with two of which also consider the ranking qualities [22]. The
five evaluation metrics are: Precision@N, RecallG@N, Mean Average Precision
(MAP), Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative
Gain (NDCG).

In most cases, users only care about the topmost recommended items, we
employ these evaluations at a given cut-off n. The definition are as follows.

. # of items the user interacted in top n
Precision@Qn =

(7)
(®)

n
# of items the user interacted in top n

Recall@n =
total # of items the user interacted
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The former two evaluation metrics ignore the ranked position. MAP is used
to assess the average accuracy of the overall ranking lists. It is the mean of
all average precisions (AP) over all relevant users. 1,..(7) is an indicator which
equals to 1 if user v has interacted with item 4, and 0, otherwise.

Z;V:l precision@j X 1,.¢;(7)

AP(u) =
(u) # of relevant items

(9)

In practice, to make the items that interest target users rank higher will
enhance the quality of recommendation lists. Therefore, we also employ two
popular rank-aware evaluation metrics: MRR and NDCG. MRR cares about the
single highest-ranked relevant item and it calculates the reciprocal of the rank at
which the first item was put. NDCG evaluates the ranking quality of the overall
recommendation list. The definition of MRR and NDCG are as follows:

1 &
M = — 1
RR M 1; rank,, (10)

Here, rank, is the rank of the first correct item for user w.

rel
11
bean, Z logzz + 1 (11)

And NDCG,, = DCG,/IDCG, with IDCG,, denoting the DCG for perfect
ranked list.

4.3 Comparison Baselines

We compare our approach with the following seven traditional and recent
advanced baselines:

— Random. We randomly select Meetup groups from all possible candidates
and recommend them to users.

— MostPopular. It is a non-personalized method which generates recommen-
dations based on item popularity and recommends users with the most pop-
ular items.

— ItemKNN [2]. Item-based collaborative filtering method recommends items
which are similar to other items the user has liked. Here the similarity between
items is computed with cosine function.

-~ BPRMF [21], BPRMF is a competitive baseline for ranking prediction. It
also employs a pairwise ranking loss and is optimized with a Bayesian Per-
sonalized Ranking algorithm on implicit feedback.

— WRMTF [12], This algorithm is specified for one-class recommendation. It
minimizes the squared errors in a pointwise manner and adopts a weight
strategy to control the gradients for each user and item latent factors.
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— SLIM [20], SLIM is a top-n recommendation model. It uses a sparse linear
method to generate recommendation by aggregating user purchase and rat-
ing profiles. We optimize the objective function in a Bayesian personalized
ranking criterion due to efficiency consideration.

— CML [10], collaborative metric learning considers the distances between users
and items, and adopts the metric learning idea to learn user and item vec-
tors. Here, we train this model with hinge loss (without WARP) due to the
scalability issue of WARP loss [27].

For Random, mostPOP, ITEMKNN, BPR-MF, WRMF, SLIM, we use the imple-
mentation of Mymedialite [3]. We implemented our approach and CML with
Tensorflow?. Since SLIM and CML are proved to perform better than many
baselines such as [25], we do not further report them.

Table 3. Performance comparison in terms of precision@5, precision@10, recall@5,
recall@10 and MAP on Meetup San Francisco.

Method Precision@5 Precision@10 Recall@5 Recall@10 MAP

Random | 0.002 + 0.001 |0.002 £ 0.002 |0.001 + 0.001 |0.003 £ 0.001 |0.004 %+ 0.002
POP 0.041 + 0.001 | 0.034 £ 0.001 |0.030 £ 0.002 |0.049 £+ 0.001 |0.039 + 0.001
ItemKNN | 0.362 £+ 0.001 |0.247 £+ 0.002 | 0.312 + 0.002 | 0.410 £ 0.003 |0.346 £+ 0.003
BPR 0.205 + 0.002 | 0.162 £ 0.003 |0.177 £ 0.002 | 0.275 £+ 0.003 | 0.205 + 0.004
WRMF 0.254 + 0.001 |0.194 £ 0.002 |0.220 + 0.001 | 0.323 £ 0.003 | 0.248 + 0.002
CML 0.238 + 0.002 | 0.188 £+ 0.001 |0.208 £ 0.003 |0.321 £+ 0.002 |0.245 + 0.003
SLIM 0.506 + 0.002 | 0.340 £ 0.003 |0.459 £ 0.002 |0.579 £+ 0.002 |0.516 + 0.001
Ours 0.592 + 0.002 | 0.392 £ 0.001 | 0.523 + 0.002 | 0.642 + 0.003 | 0.611 + 0.001

4.4 Implementation Details

We implement our model with Tensorflow and test it on a Linux machine. All
learning parameters are initialized with random normal distribution and we use
Adam algorithm [14] to learn the optimal parameters. Hyper-parameters are
tuned based on grid search. For the deep neural components, we use two hid-
den layers with constant structure with 20 neurons for each layer. The output
dimension and k are set to 10. We use tanh as the nonlinear activations. The
inputs of the deep neural component are the categories of the meetup groups.
The learning rate is set to 0.001 and the regularization rate A is set to 0.001.
Batch size is set to 1024. The scaling factor 7 is set to 2. The dynamic negative
sampling size t is set to 5. We randomly split each dataset into a training set and
a testing set by the ratio of 5:1, and report the average results over five different
splits. Parameters of other baselines are also tuned carefully to achieve the best
performances.

2 https://www.tensorflow.org/.
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Fig. 4. MRR (a) and NDCG (b) comparison on Meetup San Francisco (We omit Ran-
dom as it performs poorly).

4.5 Results and Analysis

Tables 3, 4 and Figs. 4, 5 show the performance comparison on the two datasets.
We observe that our model outperforms all other baselines in terms of both
accuracy and ranking qualities. The overall improvements on Meetup San Fran-
cisco is about 12.53%, and that on Meetup New York city is about 5.08%. We
find that latent factor models such as BPR and WRMF do not work well on
both datasets, especially on Meetup San Francisco, which might be caused by
the extreme sparsity. The performances of CML are slightly worse than WRMF.
Similarity based model ItemKNN works well on Meetup New York city but it
is computational expensive at prediction stage. SLIM is a very strong baseline.
Our model is built upon SLIM, but our model outperforms SLIM by a large
margin. The main reason is that our model can capture the content of the items
and optimize the results with a more reasonable sampling strategy.

In addition, we also compare our model with SLIM in terms of convergence
speed. Figure6 shows the varying MAP, NDCG, Precision@10 and Recall@10

Table 4. Performance comparison in terms of precision@5, precision@10, recall@5,
recall@10 and MAP on Meetup New York City.

Method Precision@5 Precision@10 Recall@jb Recall@10 MAP

Random | 0.001 £ 0.001 0.001 + 0.002 0.002 £ 0.001 0.001 + 0.001 0.003 £ 0.002
POP 0.041 + 0.001 | 0.034 £ 0.001 |0.036 £ 0.000 |0.058 £+ 0.001 |0.040 + 0.001
ItemKNN | 0.134 £+ 0.001 |0.106 4+ 0.001 |0.124 + 0.000 |0.194 £ 0.001 |0.132 £ 0.001
BPR 0.129 + 0.000 |0.102 £ 0.001 |0.119 + 0.001 | 0.186 £ 0.003 |0.129 + 0.002
WRMF 0.157 + 0.000 | 0.122 £ 0.001 |0.147 £ 0.002 |0.223 £+ 0.001 |0.156 + 0.001
CML 0.154 + 0.002 | 0.120 £ 0.001 |0.143 £ 0.001 |0.219 £ 0.003 |0.153 &+ 0.001
SLIM 0.168 + 0.001 | 0.128 £ 0.003 |0.159 £ 0.003 |0.238 £+ 0.002 |0.167 %+ 0.001
Ours 0.178 £+ 0.002 | 0.136 + 0.001 | 0.168 + 0.001 | 0.249 + 0.002 | 0.178 £+ 0.002




256 S. Zhang et al.

of our model, SLIM and ItemKNN on dataset Meetup San Francisco with the
increase of training epochs. We find that our model converges much faster than
SLIM, and it only takes about 15 iterations to achieve the best performance.
This is mainly due to the dynamic negative sampling method we adopted as this
sampling strategy can help our model to find comparably informative negative
samples.

0.4
0.35
03+
v 0.25
©
= 02
0.15
0.1

0.05

Fig.5. MRR (a) and NDCG (b) comparison on Meetup New York City.

5 Related Work

In this section, we briefly review the related work of event recommendation and
deep learning based recommendation.

5.1 Deep Learning for Recommender System

In recent years, deep learning has been revolutionizing the recommender sys-
tems. The achievements of deep learning based recommender systems in both
industry and academia are inspiring and enlightening [28]. There are a various
of deep learning techniques [5], and most of them can be applied to recom-
mendation tasks somehow. For example, Convolutional Neural Network (CNN)
can be used to extract features from textual [13] and visual information [6] of
items and users. Recurrent Neural Network (RNN) is capable of modeling the
temporal dynamics and sequential patterns of historical interactions [9]. Autoen-
coder can learn salient feature representations from side information to enhance
recommendation quality [25,29,30]. We can even combine several deep learn-
ing technologies together to form a powerful composite recommendation model.
Deep learning algorithms can also be integrated into conventional recommenda-
tion methods such as matrix factorization, factorization machine and collabora-
tive metric learning [7,8,23]. There are two major motivations in applying deep
learning techniques to recommender systems. First, Deep learning is powerful
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Fig. 6. Convergence of our model and SLIM in terms of (a) MAP, (b) NDCG, (c)
Precision@10, (d) Recall@10. Overall, our model converges much faster than SLIM.

in representation learning [1], thus it also provides a desirable tool for feature
learning in recommender systems [24]. Second, with nonlinear activations, we can
add nonlinearity to recommendation models to capture intricate and complex

characteristics of real-world datasets.

5.2 Event Recommendation
Another related work is about event recommendation since Meetup meeting is
also a kind of event. Note that, in this work, we mainly focus on recommending
Meetup groups for users to join in rather than recommending Meetup meetings
(The organizer of Meetup groups can host Meetup meetings regularly, so Meetup
groups recommendation and Meetup meetings recommendation are two differ-
ent tasks for Meetup service recommendation.), nonetheless, it is an important
task that we want to solve in the future. [17] proposed an event recommendation
methodology based on graph random walking and history preference reranking.
They obtain the candidate events by executing random walking on a hybrid
graph consisting of different types of nodes to represent available entities in an
event-based social network. Then they extract user preferences from her attended
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events and compute the similarities between her interests and her candidate
events. Finally, recommended event lists are obtained by combining the two sim-
ilarity scores. [26] proposed a Social Information Augmented Recommender Sys-
tem (SIARS), which fully exploits the social influence of event hosts and group
members together with basic context information for event recommendation. [16]
formulated multiple interactions among users, events, groups and locations into
an unified framework and proposed a collective pairwise matrix factorization
(CPMF) model to estimate users’ pairwise preferences on events, groups and
locations. [18] proposed a successive event recommender system based on graph
entropy (SERGE) to deal with the new event cold start problem by exploiting
diverse relations as well as asynchronous feedback in EBSNs. [19] proposed a new
link prediction method for the Meetup social network, which recommends events
to users according to the events they participated in and their field of interests.
[4] proposed a Bayesian latent factor model (denoted as SogBmf) for event rec-
ommendation, based on the matrix factorization framework, to integrate social
group influence with individual preference.

6 Conclusion and Future Work

In this paper, we proposed a coupled linear and deep nonlinear model for Meetup
service recommendations. Our model can not only model the historical interac-
tion patterns but also learn the item features effectively. We explored a novel
logarithm loss for pairwise training of the proposed model. To further enhance
the accuracy, we adopted a dynamic negative sampling strategy to select infor-
mative negative samples, which can improve the performance and lead to faster
convergences. Experiments on two real-world large-scale Meetup datasets showed
that our model can achieve the best performances for Meetup service recommen-
dations.

In the further, we will explore integrate contextual information such as date,
location, social network and weather to better anticipate user’s intentions so
as to make more satisfying recommendations. We will also explore methods for
better Meetup meetings recommendation to enhance the Meetup service user
experience.
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