
Selection Optimization of Bloom
Filter-Based Index Services in Ubiquitous

Embedded Systems

Zhu Wang1(B), Chenxi Luo2, and Tiejian Luo3

1 Xingtang Telecommunications Technology Co., Ltd., Beijing, China
wangzhu09@mails.ucas.ac.cn

2 Institute of Software Chinese Academy of Sciences, Beijing, China
luochenxi@iscas.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China
tjluo@ucas.ac.cn

Abstract. In pervasive systems, data object is stored in distributed
storage nodes. High performance indexing service plays an import rule in
the efficient utilization of the data in ubiquitous computing. The embed-
ded systems on the ubiquitous nodes, however, have constraint memory
space and energy supply. How to design efficient index service with lim-
ited resource requirement on the embedded systems is a key technique
in pervasive computing. In this paper, we compare two types of Bloom
filter-based index services: Lightweight Bloom filter Array and Two-tier
Bloom filter Array. The lookup time and the energy consumption are
taken into consideration when measuring the performance of the two
index services. We analyse the characteristics of the two algorithms with
the analytical expressions. Further, experiments under the same condi-
tions are performed and the results are analyzed. Finally, this paper gives
the optimization suggestion for selecting one out of the two algorithms
under different usage circumstances.

1 Introduction

Pervasive and ubiquitous systems have been adopted in many applications such
as environment monitoring [1], sea depth measurement [2] and human behavior
study [3]. Pervasive nodes, which are based on embedded systems, are usually
short in memory and electricity supply. Therefore, the computation time and
space complexity of such systems have to be taken into serious consideration.
The ubiquitous system consists of a large volume of nodes. When user access
arrives, the first step is to locate resident node of the wanted resource or service.
Therefore, the indexing service, which is capable of representing the objects1

stored on the nodes and performing lookup process, is a key component in the
content management of the system. The performance of the embedded index
service affects the system response time, node lifetime and system scalability.
1 In this paper, we interchangeably use “object” and “item”.

c© Springer International Publishing AG, part of Springer Nature 2018
H. Jin et al. (Eds.): ICWS 2018, LNCS 10966, pp. 231–245, 2018.
https://doi.org/10.1007/978-3-319-94289-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_15&domain=pdf


232 Z. Wang et al.

Usually in the pervasive systems, the data objects are stored in the ubiquitous
nodes, while the index service is deployed on an index node. Take the wireless
sensor network [4] for example. Sensor nodes are responsible of collecting data
from the environment and storing the data. The sink node is responsible of
gathering data from the sensor nodes and building index. The ubiquitous nodes
are deployed in environment isolated from effective management. The embedded
systems on the nodes are limited in memory and energy supply. On the other
hand, the index node has much more energy supply (sometimes even unlimited)
than the ubiquitous nodes, and the hardware configuration is also better. Index
service on such ubiquitous embedded systems has to take those conditions into
consideration.

State-of-the-art indexing services include table-based index, hash-based app-
roach and Bloom filter-based approach. Table-based index costs too much space
in the index node, which can be unacceptable when storage node number is
very large. Hash-based approach can have low time complexity. However, it puts
limitation on item placement and system scalability. Bloom filter [5] is a space-
efficient probabilistic data structure for item representation and lookup in a set.
When indexing space is limited, i.e. in the memory, the data structure offers fast
item lookup with a low false positive rate. Many systems that emphasize time
efficiency are using Bloom filters as their indexing technique when a small false
positive rate is tolerable [6]. The low time complexity results in small energy con-
sumption in the index building and item lookup process, as well as fast response
rate. The space-efficiency characteristic enables the data structure to be deployed
in the embedded devices with limited on-chip resource. In our paper we try to
adopt the Bloom filter algorithm in the indexing of pervasive embedded systems.

In this paper, we show two Bloom filter based index algorithms. Both algo-
rithms fit the condition of limited space and energy on the embedded nodes. We
want to find under certain environment settings, which of the two algorithms
performs better. We use both theoretical analysis and experiments to find the
answer.

The rest of the paper is organized as follows. Section 2 describes the related
work of our research. In Sect. 3, we give the considerations when designing index
for ubiquitous embedded systems. Then, the algorithm and the theoretical anal-
ysis of LBA and 2TBA performance is shown in Sects. 4 and 5. Experimental
comparison of the two algorithms is presented in Sect. 6. Finally, we conclude
the paper in Sect. 7.

2 Related Work

Here we list the previous work of other researchers. Their contributions are also
the foundations of our work.

2.1 Bloom Filter

Bloom filter [5] works as an index which records all elements of a set. We may
assume that the set S = {x1, x2, ..., xn}, which consists of n elements. A Bloom



Selection Optimization of Bloom Filter-Based Index Services 233

Filter vector (BFV), which consists of m bits, is used to represent elements of set
S. All bits of the vector are set to zero initially. For each element, the algorithm
uses k hash functions {hi}i=1...k to map the element onto k positions of the
vector and sets the bit on the position to 1. The k functions, ranging from 1
to m, are independent from each other and can map elements of the set S to a
random place on the vector. During the insertion period, the algorithm maps all
elements of the set to load the BFV with all the information of the elements.

In lookup procedure which we want to check whether an element y belongs to
the set S, the algorithm uses the same hash functions to map y onto k locations
and check whether all hi(y) equal to 1. If the answer is no, we conclude that y
doesn’t belong to S, otherwise, we say y belongs to S. The time complexity of
Bloom filter lookup is O(C).

It needs to be mentioned that there is a probability that elements don’t
belong to S be judged as inside S by BF. That is to say, BF has a false positive
rate. Research [7] shows that the false positive rate can be represented as follows:

fFP = (1 − e− kn
m )k (1)

Study [7] also shows that fFP reaches minimal value when

k =
m

n
ln2 (2)

Then the false positive is minimized

fFP = 0.6185
m
n (3)

Due to its simple structure and smooth integration characteristic, the math-
ematical format allows considerable potential improvement for system designers
to develop new variations for their identical application requirements. Count-
ing Bloom filters [8–10] can be used to improve network router performance
[11]. Other variations are adopted in state machines [12], IP trace back [13],
Internet video [14], distributed storage system index [15] and publish/subscribe
networks [16].

In pervasive computing area, there are also Bloom filter applications.
Research [17] and [18] use Bloom filter to represent items or policies during
communication process. The algorithm can also serve as an efficient content
management component like [19–21]. The Bloom filters have very compact size,
which fit well in embedded systems with limited memory space. Also, the lookup
time complexity is O(C), and thus saves energy consumption, especially suitable
for pervasive embedded nodes with constraint energy supply.

2.2 Pure Bloom Filter Array for Data Storage Index

In this paper, we show variations of Bloom filter based algorithms. We first
introduce the Pure Bloom filter Array (PBA) [22] approach, which is also a
comparison of our work.



234 Z. Wang et al.

Fig. 1. Lookup procedure of PBA.

Many distributed systems use Pure Bloom filter Array to support item index
and lookup. The approach consists of a two-stage process: indexing building and
item locating.

Index Building. For each node of the system, the index node builds a Bloom
filter for representing all of its items. These Bloom filters are loaded with all the
items in the entire system and can act as an indexing system.

Item Locating. The object locating process is described below: when a query
for a certain item arrives on the index node, the node first uses the Bloom filters
to find the approximate membership relations: it calculates with the Bloom filter
of each node and collects the results. The negative result of a certain Bloom filter
means that the queried item doesn’t exist on the related node. The positive result
means that the queried item exists on the node with a probability of 1 − fFP .
Then the system queries the actual node whose Bloom filter check result is
positive to check whether the queried item exists in the node. In that way, the
false positive occurrence is finally eliminated. Since the Bloom filters have an
O(C) time complexity, the method can reduce lookup time remarkably. The item
locating algorithm is shown in Fig. 1.

3 Considerations for Item Indexing in Pervasive
Embedded Systems

The embedded devices are short in both computing resource and electricity.
So in the design of the index algorithm on the node, we need to take both
space efficiency and time complexity into consideration (longer time needed for
calculation leads to more energy cost).

We give our considerations when designing the index model of pervasive
embedded systems. To accelerate the lookup performance, each ubiquitous device
generates an index of the objects on its own. Because of the limited energy on
the embedded environment, the nodes transmit only a lightweight index of all
its items, instead of the entire item list. That reduces the transmission time
and hence saves energy. The lookup process, which needs intensive computing,
takes place on the index nodes. On finding several candidates that may contain
a wanted item, the index node notifies the ubiquitous device to check for the
item on the nodes.



Selection Optimization of Bloom Filter-Based Index Services 235

In the choosing of indexing algorithm, the candidates are listed in Sect. 2:
table-based approach, hash-based approach, Bloom filter and perfect hashing.
Table-based approach gives exact answer to queries on where the wanted item
is. However, the time complexity of the approach is very high. To make things
worse, the index of the table-based approach even exceeds the original data in
size, which will cause the transmission energy cost to be very high. Hashes can
locate the item by calculating the hash position. The method offers a fast way
for indexing objects. However, that high indexing performance is based on the
precondition that the candidate places of objects be determined by the hash cal-
culation. The item cannot be moved out of those places. Perfect hashing can only
deal with static sets. Those two algorithms do not fit in the ubiquitous environ-
ment. At last, we choose Bloom filter as an index of the system. The algorithm
has low space and time complexity. It can still achieve high performance when
calculation resource is limited.

In algorithms like Pure Bloom filter Array, the Bloom filter calculation takes
place on either the device or the index node. The time consumption is rather
low considering the O(C) time complexity of Bloom filters, and hence the energy
consumption is quite low. On the other hand, the index node usually has better
hardware configuration than the ubiquitous nodes, and also better electricity
supply. We do not have to take the energy consumption on the index node
into consideration. Therefore, the vast majority of time and energy cost comes
from the node lookup process, in which the index node communicates with the
ubiquitous device and the node checks for queried items in its disk. In the many
checks in nodes, only one of the checking procedures can find the needed item.
The rest nodes checking end without a match and waste a lot of time and
energy on the ubiquitous device. Those redundant (false) checking times are the
key factor that lowers system performance and increases node energy cost. The
occurrence that the system looks up a query in a wrong node and finds no result
is called the false checking in nodes. Interestingly, we find reducing the false
checking times in nodes is in accordance with decreasing lookup time cost (thus
improving system performance) and reducing energy consumption on ubiquitous
nodes (thus prolonging nodes’ life). That conclusion also holds in other Bloom
filter based index algorithm, like Lightweight Bloom filter Array (LBA) and
Two-tier Bloom filter Array (2TBA), which use the same mechanism for index
lookup and node lookup. In the following sections, we use the false checking
times as the key indicator of the performance of the algorithms.

4 Lightweight Bloom Filter Array (LBA)

Pure Bloom filter Array allocates the same index space for each item. However,
in the observation of the access frequency of the data objects in the Internet,
people find that in most applications, a small part of data objects attract the
majority of data access. That is to say, there are “hot” items and “cold” items on
the Internet. That phenomenon inspires people to be selective in item insertion
process when index space is limited.



236 Z. Wang et al.

The LBA index establishes an index data structure for each ubiquitous node.
Unlike the Pure Bloom filter Array algorithm, LBA does not insert all the ele-
ments of one ubiquitous node to its Bloom filter. On the contrary, it only inserts
the popular items. The corresponding Bloom filters are gathered by the index
node from the ubiquitous nodes to form an array, called the Lightweight Bloom
Filter Array (LBA), which are loaded with only the “hot” items. By reducing the
item number stored in the Bloom filters, the algorithm lowers the false positive
rate of the Bloom filter. For the popular items that attract the majority of data
access, the decrease in false positive rate can reduce the false checking times in
the ubiquitous nodes, and hence improve the system performance. “Cold” items
will not find a match in the index lookup procedure. Under that circumstance,
the index algorithm uses traditional lookup method to check each node one by
one, until finding a match or confirming that the wanted query does not exist in
the system. Since most queries for the items are popular items, the new mecha-
nism can still improve system performance. Once the algorithm finds the wanted
query in the ubiquitous nodes, it stops the lookup procedure immediately.

4.1 Algorithm Procedure

Like PBA, LBA has two steps: index building and item locating. The algorithm
is described in reference [23].

Index Building. The system sets a load factor β, which is the ratio of the
item number loaded by the Bloom filter. Each node orders the items by their
access time and inserts the items one by one until it reaches the load threshold.
For a system of totally N items, the Bloom filter arrays hold βN items.

Item Locating. When a query for a certain item arrives, the index node first
calculates with the Bloom filter of each node and collects the results. One possible
situation after the calculation is that there is at least one positive result, it means
that the queried item exists on the node with a probability of 1 − fFP . Then
the system first queries the actual node whose Bloom filter checking result is
positive to verify whether the queried item exists in the node. If it does exist
on one of the positive nodes, the lookup procedure stops immediately; otherwise
it continues to check on the remaining negative nodes until it finds the queried
item. The other possible situation after Bloom filter calculation is that there is
no positive match. Under that circumstance, the system checks each unsearched
node directly until it finds the item. The lookup procedure is shown in Fig. 2.

4.2 Performance Analysis

We first define the system environment and parameters. Let M be the total size
of the entire Bloom filters array. N is the total number of items. Those objects
are unique items and their distribution on the nodes is the uniform distribution,
so each node has approximately N/s items. s is the node number. The load factor
is β. Hr is the ratio of the access number the items indexed by the Bloom filters
can absorb to the total number of item access. It can be proved [23] that when



Selection Optimization of Bloom Filter-Based Index Services 237

Fig. 2. Lookup procedure of LBA.

the hash function number reaches the optimal value in Eq. (2), the false checking
times of LBA for each query is:

FLBA =
fP (s − 1) + (1 − Hr)(1 − fP )2(s − 1)

2
(4)

Here fP = 0.6185
M
Nβ .

Now we use the theoretical deduction to analyse the characteristics of LBA.
Literature [24,25] recorded the access frequency for resource on the Internet.

They pointed out that web access for objects follows Zipf’s distribution or Zipf-
like distribution (in the remainder of the paper, we call those two distributions
Zipf’s distribution collectively). In Zipf’s distribution, the parameter α indicates
the concentration of the object access, which ranges from 0 to 1. The larger α
is, the more concentrated the Internet access is to the popular items, and the
larger Hr is. On the contrary, the smaller α is, the less concentrated the Internet
access is to the popular items, and the smaller Hr is. Now we use theoretical
tools to examine the effect of M, α and β on system performance. First we look
at the influence of α and β. See Fig. 3.

In Fig. 3 we set N = 1000000, s = 100, M = 2000000. We can see from the
figure that when β increases, the false checking times first decreases, and then
increases. The algorithm performance has a minimal value in reference to β.
The false checking times decreases with the increase of α, which shows that the
more concentrated the object accesses are, the higher the system performance.
That is, the more Internet access are focused on “hot” items, the more efficient
LBA is.

Now we use theoretical deduction to find the relationship between the LBA
performance and the total size of Bloom filters array, M. The result is given in
Fig. 4.

In Fig. 4 we set N = 1000000, s = 100, α = 0.95, β = 0.5. From the figure
we can see that the false checking times decreases with the increase of M, which
indicates that the algorithm performs better when the total size of Bloom filters
array is larger.

In conclusion of the above two figures we can see that the proper choice of β
can optimize LBA performance. The false checking times of LBA decreases with
the increase of α and M.



238 Z. Wang et al.

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fa
ls

e 
C

he
ck

in
g 

Ti
m

es
 p

er
 Q

ue
ry

100

101

102 α=0.6
α=0.7
α=0.8
α=0.9
α=0.95
α=1

Fig. 3. The relationship between LBA
performance and α, β.

M ×106
2 3 4 5 6 7 8 9 10

Fa
ls

e 
C

he
ck

in
g 

Ti
m

es
 p

er
 Q

ue
ry

3

4

5

6

7

8

9

Fig. 4. The relationship between LBA
performance and M.

5 Two-Tier Bloom Filter Array (2TBA)

The way in which 2TBA treats pervasive computing index is a little bit different
from LBA: LBA uses a single Bloom filter to index “hot” items, while 2TBA
uses two Bloom filters - one “hot” Bloom filter to index popular items, and
one “cold” Bloom filter to index unpopular items. Now we present the 2TBA
algorithm.

5.1 Algorithm Procedure

2TBA also has the procedure of index building and item locating, as given in
reference [26].

Index Building. The system sets two global variables: a rank threshold β,
which defines how much percentage of the ranked items is “hot” items (the
other items are defined as “cold” items); a load factor γ which is the ratio of
the length of “hot” Bloom filter to the total size of the “hot” Bloom filter and
the “cold” Bloom filter. Each device orders its items by their access time. Then
it inserts the “hot” items one by one into the “hot” Bloom filter and the “cold”
ones into the “cold” Bloom filter. The two Bloom filters are transmitted to the
index node.

Item Locating. The index node collects all the Bloom filters of the devices
to form two Bloom filter arrays: a “hot” Bloom filter array and a “cold” Bloom
filter array. When a query for a certain item arrives, the index node first checks
each Bloom filter in the “hot” Bloom filter array. If there are some Bloom filters
that report a match, the index node notifies the matched devices to check if
the item really exists (recall that the Bloom filter may give positive response to
items it does not contain because of the false positive rate). If it does exist on
one of the positive nodes, the lookup procedure stops; otherwise the index node
continues to calculate with the “cold” Bloom filter array. Like the previous step,
it communicates with the ubiquitous device to check if the query does exist on
the positive nodes indicated by its “cold” Bloom filter. The lookup procedure is
shown in Fig. 5.



Selection Optimization of Bloom Filter-Based Index Services 239

Fig. 5. Lookup procedure of 2TBA.

We can see that the lookup of 2TBA has three steps: “hot” Bloom filter
lookup, “cold” Bloom filter lookup and node disk checking. Among the three,
the first two steps happen in the memory of the index node, which take little
time and cost little energy. The main factor that influence the system perfor-
mance happens in the third step - the false checking in nodes, which requires
communication between the index node and the ubiquitous nodes and takes up
much time and energy. Now we analyse the 2TBA performance.

5.2 Performance Analysis

We first define the system environment and parameters. Let M be the total size
of the entire Bloom filters array. N is the total number of items. Those objects
are unique items and their distribution on the nodes is the uniform distribution,
so each node has approximately N/s items. s is the node number. Hr is the ratio
of the number of access the items indexed by the Bloom filters can absorb to
the total number of item access. γ is the ratio of the size of “hot” Bloom filters
to the total size of all Bloom filters, M. We can prove [26] that when the hash
function number reaches the optimal value in Eq. (2), the false checking times
of 2TBA for each query is:

F2TBA = fP1(s − 1) + (1 − Hr)(1 − fP1)fP2(s − 1) (5)

Here fP1 = 0.6185
Mγ
Nβ , fP2 = 0.6185

M(1−γ)
N(1−β) .

Now we use theoretical deduction to analyse the characteristics of 2TBA.
We still assume that access for data objects follow Zipf’s distribution. We

find the relationship between the system performance and β, γ. The result is
shown in Fig. 6.

In Fig. 6 we set M = 8000000, N = 1000000, s = 100, α = 0.95. Each line
represents the influence of β on the performance with a same γ. For each γ, there
is an optimal β to minimize false checking times. We mark it a red point in the
figure. All optimal β corresponding to each γ are connected to form a line, as we
see in the figure, the optimal β line. We can find that the false checking times



240 Z. Wang et al.

β

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fa
ls

e 
C

he
ck

in
g 

Ti
m

es
 p

er
 Q

ue
ry

10-1

100

101

102

Optimal β

Fig. 6. The relationship between perfor-
mance and β, γ. (Color figure online)

M ×106
2 3 4 5 6 7 8 9 10

Fa
ls

e 
C

he
ck

in
g 

Ti
m

es
 p

er
 Q

ue
ry

0

5

10

15

20

25

30

35

40

α=0.6
α=0.7
α=0.8
α=0.9
α=0.95
α=1

Fig. 7. The relationship between
2TBA performance and M, α.

of 2TBA has an optimal value regarding β and γ. By adjusting β, γ properly,
we can optimize the system performance.

Now we want to find the impact of the total Bloom filter size M and the
Zipf’s distribution parameter α on the performance of 2TBA. See Fig. 7.

In the figure we set N = 1000000, s = 100, β = 0.1, γ = 0.2. We can see
that the false checking times decreases with the increase of M and α. That
indicates that the system performance increases with the size of Bloom filters.
Also, the more concentrated the access for popular objects are, the higher the
performance is.

From the analysis above we can see that we can choose proper β and γ to
optimize 2TBA performance. Similar to LBA, the false checking times of 2TBA
decreases with the increase of M and α.

6 Appropriate Application Scope of LBA and 2TBA

From the two sections above we can see that there are some similarities between
LBA and 2TBA algorithm. The performance of the two algorithms increases with
the concentration of object access and the increase of index space. Both algo-
rithms are variants based on Bloom filters, and are used to deal with situations
under which the index space and energy supply is limited.

In this section we want to give the answer to the question: what is the
appropriate application scope of the two algorithms? Under a certain circum-
stance, which of the two has better performance? We use experiments to find
the answer. In the experiment, we set N = 1000000, s = 100, M ranges from
2000000 10000000, α ranges 0.6, 0.7, 0.8, 0.9, 0.95, 1. For each group of LBA
experiments with fixed M and α, β reaches the optimal value found by actual
experiments, therefore we can get the optimal false checking times in that exper-
imental group. For each group of 2TBA experiments with fixed M and α, β and
γ reach the optimal value found by actual experiments, therefore we can also
get the optimal false checking times in that experimental group. Figures 8 and
9 are the results of the false checking times of the two.



Selection Optimization of Bloom Filter-Based Index Services 241

M ×106
2 3 4 5 6 7 8 9 10

Fa
ls

e 
ch

ec
ki

ng
 ti

m
es

0

5

10

15

20

25

30

35
Relationship between the false checking times of LBA and (M, α)

α=0.6
α=0.7
α=0.8
α=0.9
α=0.95
α=1

Fig. 8. LBA performance.

M ×106
2 3 4 5 6 7 8 9 10

Fa
ls

e 
ch

ec
ki

ng
 ti

m
es

0

5

10

15

20

25

30

35
Relationship between the false checking times of 2TBA and (M, α)

α=0.6
α=0.7
α=0.8
α=0.9
α=0.95
α=1

Fig. 9. 2TBA performance.

As expected, the performance of the two rises with the increase of index
space and the concentration of data access. The tendency of the two algorithms
is the same. In order to make a better comparison of the algorithms, we put
them together in one figure, as in Fig. 10.

In the nine figures M equals 2000000, 3000000, 4000000, 5000000, 6000000,
7000000, 8000000, 9000000 and 10000000 respectively. It indicates that we use
2, 3, 4, 5, 6, 7, 8, 9, 10 bits to index one item on average. The horizontal axis
is α. The vertical axis is the false checking times. The blue bar represents LBA,
and the red bar represents 2TBA. We can see that with the growth of M and α,
the false positive rate of 2TBA decreases faster than that of LBA.

To summarize the experiment results, we can see that LBA is more suit-
able when the index space is small and the access concentration is low. On the
contrary, 2TBA is more suitable when the index space is relatively large and
the object access is more concentrated. It is worth noting that those results are
obtained under the circumstance that the index space for one item is quite low:
when using 2 bits to index an object and α = 1, LBA will encounter 7.17 false
checkings before finding the right resident node, while 2TBA will execute 10.81
false checkings to find a query. When using 10 bits to index an item and α = 1,
LBA will do 0.67 false checkings before finding the right item, while 2TBA will
check the wrong nodes 0.25 times.

After seeing the false positive rate of the two algorithms, we want to evaluate
the energy consumption of the two. Since the index node can have abundant
power supply, we only look into the ubiquitous nodes. First we give the settings
of our ubiquitous embedded system. We make simulations on the active RFID
system. The ubiquitous system uses a RFIDImpulse [27] mechanism to wake up
the sleeping RFID nodes if there is need for the RFID reader to communicate
with the RFID tag. Otherwise, the tag sleeps to save energy. The target platform
of our simulation is the MicaZ from Crossbow, which has a CC2420 radio and
an ATMEL128 microprocessor. The parameters are given in Table 1.



242 Z. Wang et al.

Fig. 10. Performance comparison of LBA and 2TBA. (Color figure online)

Table 1. Parameters of active RFID tag.

Parameter Abbreviation Value Unit

Supply voltage V 3 V

Transmit mode current It 17.4 mA

Receive mode current Ir 19.7 mA

Sleep current Is 1 μA

Byte transmission time TB 32 μSec

Battery energy BE 200 mAh

Message length LM 20000 Byte

With these parameters, we can calculate the battery life of our system. We
assume that the query frequency is 1 query per second. When dealing with one
query, the energy that battery uses consists of three parts: receiving queries from
the RFID reader, sending response to the reader and sleeping during two queries.
Energy used to receive a message is

Er = LM × TB × Ir × V

Energy used to send a message is

Et = LM × TB × It × V

Energy used during the sleeping between two queries is

Es = tq × Is × V

Then we can calculate the battery life of different scenarios in the previous
experiment. The result is given in Fig. 11.



Selection Optimization of Bloom Filter-Based Index Services 243

Fig. 11. Battery life.

In the nine figures M equals 2000000, 3000000, 4000000, 5000000, 6000000,
7000000, 8000000, 9000000 and 10000000 respectively. The horizontal axis is α.
The vertical axis is the battery life measured by days. The blue bar represents
LBA, and the red bar represents 2TBA. We can see that the battery life follows
the same tendency with false checking times. It grows with the increase of α and
index space. LBA is more suitable when the index space is small and the access
concentration is low. 2TBA is more suitable when the index space is relatively
large and the object access is more concentrated.

7 Conclusion

In this paper we have introduced two Bloom filter based algorithms for index
service in pervasive embedded systems, the LBA approach and the 2TBA app-
roach. Both algorithms use the Internet access pattern to optimize the traditional
Bloom filter arrays. We have used theoretical approach to check the character-
istics of the algorithms. Further we performed experiments to find the suitable
application scope of the two services. Experiment results have shown that the
performance of LBA and 2TBA increase with the rise of average index space
and access concentration. When the index space is small and the data access is
less concentrated, it is better to choose LBA as the index; when the index space
is relatively larger and the data access is more concentrated, it is better to use
2TBA algorithm.



244 Z. Wang et al.

References

1. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: Proceedings of the Eighth Annual Interna-
tional Conference on Mobile Computing and Networking, pp. 88–97. ACM (2002)

2. Yang, Z., Li, M., Liu, Y.: Sea depth measurement with restricted floating sensors.
In: Proceedings of the 28th IEEE Real-Time Systems Symposium, pp. 469–478.
IEEE Computer Society (2007)

3. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas,
A.: Emotionsense: a mobile phones based adaptive platform for experimental social
psychology research. In: Proceedings of the 12th ACM International Conference
on Ubiquitous Computing, pp. 281–290. ACM (2010)

4. Liu, Y., He, Y., Li, M., Wang, J., Liu, K., Li, X.: Does wireless sensor network
scale? A measurement study on greenorbs. IEEE Trans. Parallel Distrib. Syst.
24(10), 1983–1993 (2013)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Commun. Surv. Tutorials 14(1), 131–155 (2012)

7. Mullin, J.K.: A second look at bloom filters. Commun. ACM 26(8), 570–571 (1983)
8. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area

web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)
9. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An

improved construction for counting bloom filters. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 684–695. Springer, Heidelberg (2006). https://doi.
org/10.1007/11841036 61

10. Ficara, D., Giordano, S., Procissi, G., Vitucci, F.: Multilayer compressed counting
bloom filters. In: Proceedings of the 27th Conference on Computer Communica-
tions (INFOCOM), pp. 311–315. IEEE (2008)

11. Song, H., Dharmapurikar, S., Turner, J., Lockwood, J.: Fast hash table lookup
using extended bloom filter: an aid to network processing. In: Proceedings of the
2005 Conference on Applications, Technologies, Architectures and Protocols for
Computer Communications (SIGCOMM), pp. 181–192. ACM (2005)

12. Bonomi, F., Mitzenmacher, M., Panigrah, R., Singh, S., Varghese, G.: Beyond
bloom filters: from approximate membership checks to approximate state machines.
In: Proceedings of the 2006 Conference on Applications, Technologies, Architec-
tures and Protocols for Computer Communications (SIGCOMM), pp. 315–326.
ACM (2006)

13. Sung, M., Xu, J., Li, J., Li, L.: Large-scale IP traceback in high-speed inter-
net: practical techniques and information-theoretic foundation. IEEE/ACM Trans.
Netw. 16(6), 1253–1266 (2008)

14. Wang, Z., Luo, T.: Intelligent video content routing in a direct access network. In:
Proceedings of the 3rd Symposium on Web Society, pp. 147–152. IEEE Computer
Society (2011)

15. Wang, Z., Luo, T., Xu, Y., Cheng, F., Zhang, X., Wang, X.: A fast indexing algo-
rithm optimization with user behavior pattern. In: Zu, Q., Hu, B., Elçi, A. (eds.)
ICPCA/SWS 2012. LNCS, vol. 7719, pp. 592–605. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37015-1 52

https://doi.org/10.1007/11841036_61
https://doi.org/10.1007/11841036_61
https://doi.org/10.1007/978-3-642-37015-1_52


Selection Optimization of Bloom Filter-Based Index Services 245

16. Jokela, P., Zahemszky, A., Rothenberg, C.E., Arianfar, S., Nikander, P.: LIPSIN:
line speed publish/subscribe inter-networking. In: Proceedings of the 2009 Con-
ference on Applications, Technologies, Architectures and Protocols for Computer
Communications (SIGCOMM), pp. 195–206. ACM (2009)

17. Chen, T., Guo, D., He, Y., Chen, H., Liu, X., Luo, X.: A bloom filters based
dissemination protocol in wireless sensor networks. Ad Hoc Netw. 11(4), 1359–
1371 (2013)

18. Takiguchi, T., Saruwatari, S., Morito, T., Ishida, S., Minami, M., Morikawa, H.:
A novel wireless wake-up mechanism for energy-efficient ubiquitous networks. In:
Proceedings of the 2009 IEEE International Conference on Communications Work-
shops, pp. 1–5. IEEE (2009)

19. Qwasmi, N., Liscano, R.: Bloom filter supporting distributed policy-based man-
agement in wireless sensor networks. In: Proceedings of the 4th International Con-
ference on Ambient Systems, Networks and Technologies, pp. 248–255. Elsevier
(2013)

20. Ghosh, M., Özer, E., Biles, S., Lee, H.-H.S.: Efficient system-on-chip energy man-
agement with a segmented bloom filter. In: Grass, W., Sick, B., Waldschmidt, K.
(eds.) ARCS 2006. LNCS, vol. 3894, pp. 283–297. Springer, Heidelberg (2006).
https://doi.org/10.1007/11682127 20

21. Jimeno, M.: Saving energy in network hosts with an application layer proxy: design
and evaluation of new methods that utilize improved bloom filters. Ph.D. thesis,
University of South Florida (2010)

22. Zhu, Y., Jiang, H., Wang, J., Xian, F.: HBA: distributed metadata management
for large cluster-based storage systems. IEEE Trans. Parallel Distrib. Syst. 19(6),
750–763 (2008)

23. Wang, Z., Luo, C., Luo, T., Chen, X., Hou, J.: A Bloom filter-based index for dis-
tributed storage systems. In: Omatu, S., Malluhi, Q.M., Gonzalez, S.R., Bocewicz,
G., Bucciarelli, E., Giulioni, G., Iqba, F. (eds.) Distributed Computing and Arti-
ficial Intelligence, 12th International Conference. AISC, vol. 373, pp. 293–301.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19638-1 34

24. Chierichetti, F., Kumar, R., Raghavan, P.: Compressed web indexes. In: Proceed-
ings of the 18th International Conference on World Wide Web, pp. 451–460. ACM
(2009)

25. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-
like distributions: evidence and implications. In: Proceedings of the Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), pp. 126–134. IEEE (1999)

26. Wang, Z., Luo, T., Yang, L.: An energy- and space-efficient object representation
model in pervasive computing systems. IEEE Syst. J. PP(99), 1–11 (2016)

27. Jurdak, R., Ruzzelli, A.G., O’Hare, G.M.P.: Multi-hop RFID wake-up radio:
design, evaluation and energy tradeoffs. In: Proceedings of the 17th Interna-
tional Conference on Computer Communications and Networks, pp. 641–648. IEEE
(2008)

https://doi.org/10.1007/11682127_20
https://doi.org/10.1007/978-3-319-19638-1_34

	Selection Optimization of Bloom Filter-Based Index Services in Ubiquitous Embedded Systems
	1 Introduction
	2 Related Work
	2.1 Bloom Filter
	2.2 Pure Bloom Filter Array for Data Storage Index

	3 Considerations for Item Indexing in Pervasive Embedded Systems
	4 Lightweight Bloom Filter Array (LBA)
	4.1 Algorithm Procedure
	4.2 Performance Analysis

	5 Two-Tier Bloom Filter Array (2TBA)
	5.1 Algorithm Procedure
	5.2 Performance Analysis

	6 Appropriate Application Scope of LBA and 2TBA
	7 Conclusion
	References




