
Supervised Web Service Composition
Integrating Multi-objective QoS

Optimization and Service Quantity
Minimization

Shi-Liang Fan1,2, Feng Ding2, Cheng-Hao Guo2, and Yu-Bin Yang1(B)

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

dyyslfan@smail.nju.edu.cn, yangyubin@nju.edu.cn
2 Science and Technology on Information System Engineering Laboratory,

Nanjing 210007, China

Abstract. The QoS of web service has been increasingly crucial due to
the escalating number of services with similar or identical functionality,
which leads to intensive researches on QoS-aware web service composi-
tion. Correspondingly, to optimize not only QoS but also service quantity
in a composition has also been increasingly challenging. Currently, there
are already many researches on service composition addressing the opti-
mization of multiple QoS attributes, but it is still rare to take service
quantity as an optimization objective as well. To address this issue, this
paper proposes a novel supervised web service composition mechanism
integrating multi-objective QoS optimization and the minimization of
service quantity. Firstly a memory-based search algorithm is proposed
to compute each single-objective optimal QoS, after which a knapsack-
variant algorithm is applied to minimize the number of services without
considering the QoS. Finally, a supervised multi-objective optimization
is performed based on the above single-objective optimization results.
Experimental results on both Web Service Challenge 2009’s datasets
and substantial datasets randomly generated show that the proposed
service composition method outperforms the state-of-the-arts by achiev-
ing a much better tradeoff among all the objectives.

Keywords: Web service composition · Multi-objective · Supervised

1 Introduction

QoS-aware web service composition problem has been widely studied in recent
years [1–4]. A survey shows that the majority of studies aim at optimizing a
single global QoS [5]. If there are more than two objectives, i.e., QoS attributes,
involved, it usually fails to achieve the satisfactory performance [6]. Moreover,
since the QoS attributes are usually in conflict to each other, it is often impossible

c© Springer International Publishing AG, part of Springer Nature 2018
H. Jin et al. (Eds.): ICWS 2018, LNCS 10966, pp. 215–230, 2018.
https://doi.org/10.1007/978-3-319-94289-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_14&domain=pdf

216 S.-L. Fan et al.

to find a solution that maximizes/minimizes all of them. Consequently, multi-
objective service composition starts to attract more attention in the research
community, the goal of which is to find the composition(s) capable of achieving
better tradeoffs among all QoS objectives.

For example, Zeng et al. simply transformed the multi-objective service com-
position into single-objective optimization by defining a special objective func-
tion [7], after which the traditional techniques were applied to solve it. At
the same time, there are also other approaches proposed based on Pareto set
model [8–11], which aimed at searching for a set of Pareto optimal compositions
rather than a single solution, which exhibited different tradeoffs among all QoS
objectives.

Besides QoS objectives, minimizing service quantity in the resulting compo-
sition has important benefits as well for brokers, customers and service providers
[12]. Therefore, it is necessary to set the number of services as one of the opti-
mization objectives when conducting service composition. However, the current
available approaches to multi-objective service composition are all based on the
same prerequisite that there is only one composition workflow with a fixed set of
abstract tasks, where each abstract task can be implemented by a concrete ser-
vice. Both the composition workflow and the candidate services for each abstract
task are predefined beforehand, which makes them impossible to generate com-
positions with variable sizes. Up to now, only a few studies on the problem
of multi-objective service composition started to take the service quantity into
consideration [13–16], by which the generated solutions were still far from satis-
factory.

Supposing that the optimal result of each single-objective has been solved,
there is hardly a perfect composition that integrates all the results of single-
objective optimization. Considering that, this paper aims to find a web service
composition in which all attributes (including service quantity) approximate to
the perfect composition as close as possible under the supervision of all single-
objective optimization results. In this regard, the finally generated composition
is able to perform satisfactorily in each attribute, which achieves an ideal tradeoff
among all objectives. Accordingly, a multi-objective service composition mech-
anism is proposed in this paper to effectively and efficiently find such a compo-
sition. The main contributions are as follows:

• A memory-based search algorithm is proposed, which efficiently generates
each single-objective optimal QoS.

• An efficient approach integrating greedy strategy and knapsack-variant algo-
rithm is proposed, which efficiently minimize service quantity in resulted com-
positions without consideration of QoS attributes.

• A supervised multi-objective optimization algorithm is proposed, which trans-
forms multi-objective service composition into single-objective optimization
based on the results of the above two algorithms.

Furthermore, to validate the proposed methods, extensive experiments have also
been carried out on both WSC-2009’s datasets and randomly generated datasets.

Supervised Web Service Composition 217

The rest of this paper is organized as follows. Section 2 describes the back-
ground and reviews some related work. Section 3 illustrates the motivation of this
research. Section 4 presents the proposed mechanism in detail. Section 5 shows
and analyzes the experimental results, and Sect. 6 provides final remarks.

2 Background and Related Work

2.1 Background

Web services are the foundation of this paper. The formal definition of a web
service is given as follows.

Definition 1. A Web Service (“service” for short) is defined as a tuple s =
{Ins, Outs, Qs}, where Ins = {in1

s, . . . , in
n
s } is the set of inputs required to

invoke the service s, and Outs = {out1s, . . . , outns } is the set of outputs gen-
erated by executing s. Each input and output is related to a semantic concept
from the set Con defined in an ontology, namely, Ins ⊆ Con and Outs ⊆ Con.
Qs = {q1s , . . . , q

n
s } is the set of nonfunctional attributes which are the measures

for how well the service s serves the user.

Obviously, services aren’t independent to each other. Relevant services can be
combined by connecting matched inputs and outputs to construct compositions.

Lemma 1. Given an output outs of a service s, and an input ins′ of another
service s′, if outs and ins′ are equivalent concepts or outs is a sub-concept of
ins′ , outs matches ins′ (i.e., ins′ is matched by outs).

Each individual service has its own QoS, which contributes to the global QoS
of a composition. The computation of the global QoS depends on the structure
of the composition. There are mainly two kinds of structures, namely sequential
structure and parallel structure. The services organized as a sequential structure
are invoked in order, while those in parallel structure are invoked synchronously.

Definition 2. A Composition containing the set of services S = {s1, . . . , sn}
is represented as Ω. If the services are chained in sequence, the composition is
expressed as Ω→ = s1 → . . . → sn; if in parallel, Ω‖ = s1 ‖ . . . ‖ sn. The set
of services involved in Ω is defined as Servs(Ω) = S. Moreover, the length of a
composition Ω is defined as Len(Ω) = |S|, namely the number of services in Ω.
Taking the response time as an example, the global QoS of Ω is computed as:

RT (Ω→) =
n∑

i=1

RT (si), si ∈ S

RT (Ω‖) = max
1≤i≤n

RT (si), si ∈ S

⎫
⎪⎪⎬

⎪⎪⎭
. (1)

218 S.-L. Fan et al.

where RT (Ω) represents the global response time of the composition Ω, and
RT (s) represents the response time of the service s. Similarly, the global through-
put TP (Ω) of the composition lies on the throughput TP (s) of each service s ∈ S.

TP (Ω→) = min
1≤i≤n

TP (si), si ∈ S

TP (Ω‖) = min
1≤i≤n

TP (si), si ∈ S

⎫
⎬

⎭ . (2)

Based on the above concepts, the precise definition of the multi-objective web
service composition in this paper is provided as follows.

Definition 3. Multi-Objective Web Service Composition is defined as, for a
given composition request R = {InR, OutR}, to seek for a composition Ω that
achieves an ideal tradeoff among Len(Ω), RT (Ω), TP (Ω) and etc.

2.2 Related Work

Multi-objective service composition is a fundamental research topic in the field
of service computing, which has been approached from many perspectives.

To deal with multiple QoS attributes, a mechanism based on Simple Addi-
tive Weighting (SAW) was proposed in [7]. Firstly, the multiple objectives were
aggregated to a single one via a linear weight sum. Then, an objective function
was defined as the optimization formula that can be solved by traditional tech-
niques. The optimal composition was the one with the best function value. The
method is easy to apply, however, it is based on the assumption that there is
a predefined composition workflow with a fixed set of abstract tasks which can
be implemented by concrete services. Therefore, the mechanism fails to take the
number of services into consideration.

Pareto set model is widely used in multi-objective optimization and multi-
criteria decision making. Many composition methods based on Pareto set model
have been investigated recently. Yu and Bouguettaya [10] presented a Bottom-Up
algorithm to compute the Pareto optimal compositions representing the tradeoffs
related to different QoS attributes. Moustafa and Zhang used multi-objective
reinforcement learning to enable web service composition considering multiple
QoS objectives [11]. Similar to the approach in [7], these methods depend on
predefined composition workflow, which makes the number of services in the
final compositions invariable.

Xia and Yang addressed the issue of service quantity in web service compo-
sition by proposing a novel composition algorithm integrating both QoS opti-
mization and redundancy removal [15]. Only two objectives were involved in the
algorithm, which failed to guarantee the satisfactory performance on other QoS
attributes.

A redundant service removal mechanism was presented by Chen and Yan [14].
This method firstly modeled the composition problem as an integer program-
ming problem (IP), and then obtained a composition with an optimal global QoS
by solving it. The next step was to remove redundant services in the composi-
tion while keeping the optimal QoS. During the process of redundancy removal,

Supervised Web Service Composition 219

another QoS attribute was to some extent optimized simultaneously. Though
three objectives, including the number of services, are considered when conduct-
ing compositions, the mechanism took very long time to generate solutions.

Chattopadhyay et al. presented an approximate mechanism to obtain the
solutions against time [16]. The authors proposed an on-the-fly strategy to con-
struct only a path of the auxiliary graph instead of the complete graph. Then,
the path selection algorithm considering multiple objectives was discussed, after
which a greedy strategy was adopted to transform multi-objective service com-
position into single-objective one. The method has a superior execution time
compared to the others, whereas there is still much room for improvement in the
solutions generated by it.

3 Motivation

Graph is a natural and intuitive way to express the complex interaction rela-
tions between entities. As shown in Fig. 1, a service composition problem whose
request is R = {{in1, in2}, {out1, out2}} is described as a layered directed graph.
Each rectangle in the graph represents a web service (associated to a response
time and a throughput), while each circle is an input or output of a service. In
addition, the edges connecting circles represents the matching relations among
services.

Fig. 1. An example of service dependency graph. The ideal composition is highlighted.

As can be seen from the graph, there are quantities of feasible compositions
satisfying R with different QoS and different number of services. The composition
Ω = so → (B ‖ C) → F → ((H → J) ‖ (I → K)) → sk is the one with
the optimal global response time of 95 ms. Meanwhile, the throughput of Ω is
TP (Ω) = 140 inv/s and the length (including the so and the sk) is Len(Ω) = 9.
Moreover, the highlighted composition Ω′ = so → ((A → E → J) ‖ (D → G →
L)) → sk has the response time of 105 ms, the throughput of 260 inv/s, and

220 S.-L. Fan et al.

the length of 8. Both Ω and Ω′ are Pareto optimal solutions, but we prefer the
latter because RT (Ω′) changes little from RT (Ω), while the throughput of Ω′

has been greatly improved (260 versus 140). Moreover, Len(Ω′) is also smaller
than Len(Ω).

Given a request of composition like R, the paper aims at generating a digraph
similar to the one shown in Fig. 1 and finding the composition with an ideal
tradeoff among all objectives, just like the highlighted Ω′.

4 Composition Mechanism

In this section, an efficient mechanism is proposed for the multi-objective service
composition. Given a request R = {InR, OutR} and a service repository Sall, a
service dependency graph is firstly constructed with the relevant services for the
request. Then, a memory-based search algorithm is proposed to compute each
single-objective optimal QoS, and a knapsack-variant algorithm is applied to
minimize the number of services without considering the QoS. Finally, a super-
vised algorithm is proposed to transform the problem into single-objective one
on the basis of the pre-computed single-objective optimization results.

4.1 Generation of the Service Dependency Graph

For the given user request R = {InR, OutR}, a service dependency graph similar
to the one shown in Fig. 1 is constructed to show the input-output dependency
among services. There is only a dummy service so = {∅, InR, {0 ms,+∞ inv/s}}
in the first layer, and another dummy service sk = {OutR, ∅, {0 ms,+∞ inv/s}}
is also the only one contained in the last layer. The specific services in the other
layers are selected from an external repository Sall and each layer contains the
services whose inputs are all matched by the outputs generated by previous
layers. After constructing the service dependency graph G, we have:

Definition 4. The set of precursors of a service s ∈ Gi is defined as Pre(s) =
{s′ | s′ ∈ Gj(∀j < i) ∧ Ins ∩ Outs′
= ∅}. In particular, Pre(so) = ∅.

Hereafter, the precursors of a service s is expressed as Pre(s) which will be used
frequently in the following algorithms.

4.2 Computation of the Optimal QoS

Based on the service dependency graph G, a memory-based search algorithm is
proposed to efficiently compute each single-objective optimal QoS. The algorithm
is applicable to diverse QoS, and here the response time and the throughput are
selected as the representatives of all QoS. For each service s ∈ G, there are many
possible compositions that starts from the service so and ends with the service
s, among which the one with the optimal response time is expressed as ΩR

s and
the one with the optimal throughput is represented as ΩT

s . Therefore, for each

Supervised Web Service Composition 221

Algorithm 1. Memory-Based Search Algorithm for Response Time
Input: G
Output: OptR

1 OptR ← {so : 0}
2 for i = 1; i < |G|; i + + do
3 for service s ∈ Gi do
4 tmpR ← 0
5 for concept c ∈ Ins do
6 Rin[c] ← +∞
7 for concept c ∈ Ins do
8 for service s′ ∈ Pre(s) do
9 if c ∈ Outs′ and OptR[s′] < Rin[c] then

10 Rin[c] ← OptR[s′]

11 tmpR ← max(tmpR, Rin[c])

12 OptR[s] ← tmpR + RT (s)

13 return OptR

s ∈ G, the memory-based search algorithm is used to compute the RT (ΩR
s) and

TP (ΩT
s).

For each input ins ∈ Ins, let Rin[ins] represent the shortest response time
to obtain ins. Then, the decision-making process of RT (ΩR

s) is

RT (ΩR
s) = max

ins∈Ins

{Rin[ins]} + RT (s).

where Rin[ins] = min
s′∈Pre(s) ∧ ins∈Outs′

RT (ΩR
s′).

(3)

Similarly, let Tin[ins] represent the highest throughput to obtain ins. Then,

TP (ΩT
s) = min { min

ins∈Ins

{Tin[ins]}, TP (s)}.

where Tin[ins] = max
s′∈Pre(s) ∧ ins∈Outs′

TP (ΩT
s′).

(4)

Taking the computation of each RT (ΩR
s) as an instance, the memory-based

search algorithm is shown in Algorithm 1. As can be seen from (3), the compu-
tation of the service s depends on the computation results of the precursors of s,
hence the computation processes over the graph G are performed layer by layer.
All the results are cached in the returned OptR where OptR[s] = RT (ΩR

s).
In the same way, the computation results of the optimal throughput can be

obtained as OptT where OptT [s] = TP (ΩT
s) on the ground of the model in (4).

4.3 Computation of the Minimal Number of Services

For each service s in the dependency graph G, there are many possible compo-
sitions starting from service so and ending with service s, among which the one

222 S.-L. Fan et al.

with the minimal number of services is expressed as ΩL
s in this paper. Seeing

that the memory-based search algorithm isn’t applicable to compute Len(ΩL
s)

for each s, an efficient mechanism integrating greedy strategy and knapsack-
variant algorithm is proposed to solve the problem [17].

Fig. 2. Search step on the graph. Fig. 3. Dynamic knapsack problem.

Firstly, the search step of ΩL
s is defined as determining the optimal precursors

of the service s according to a greedy strategy. As shown in Fig. 2, supposing that
{ΩL

A, ΩL
B , ΩL

C} have been determined in advance, the search step of ΩL
F is defined

as selecting the optimal subset of {ΩL
A, ΩL

B , ΩL
C} to compose ΩL

F , which is in fact
a greedy strategy. Therefore, search steps on the graph should be executed layer
by layer because each search step depends on the optimization results of the
search steps in previous layers.

Then, for each service s, the search step of ΩL
s can be transformed into a

dynamic knapsack problem. As can be seen in Fig. 3, the service s is abstracted
into a knapsack with a capacity, and each precursors of s is spontaneously
regarded as an item with a volume and a cost. The objective is to minimize
the sum of the cost of the items in the knapsack so that the sum of the vol-
ume is equal to the knapsack’s capacity. The capacity of the knapsack s is Ins

(the set of inputs of service s), while the volume of an item s′ ∈ Pre(s) is rel-
evant to Outs′ (the set of outputs of the service s′) and the cost is measured
with Servs(ΩL

s′) (the set of services involved in the composition ΩL
s′). Set opera-

tions are too inconvenient to be applied to the following composition algorithm.
Therefore, an approach is presented to quantify the capacity of the knapsack, as
well as the volume and cost of each item.

All the subsets of Ins is obtained by Algorithm2 in a certain order. According
to the returned Subs whose indices start at 0, the quantization approach can be
described as follows.

◦ The capacity of knapsack s is quantified as Vcap = |Subs| − 1.
◦ Assuming that service s′ provides the set of outputs Out ⊆ Outs′ for service

s, the volume of s′ is quantified as the value of the index that satisfies the
condition that Subs[index] = Out.

◦ Assuming that Ser represents the set of services that belong to Servs(ΩL
s′)

and have not yet been selected, the volume of the item s′ is quantified as the
size of the Ser ∪ {s′}.

Supervised Web Service Composition 223

Algorithm 2. Generation of Subsets
Input: Ins

Output: Subs
1 Subs ← {∅}, upper bound ← 2|Ins|

2 for index = 0; index < upper bound; index + + do
3 i ← 0, tmp ← index, subset ← {}
4 while tmp > 0 do
5 if (tmp mod 2) > 0 then
6 subset ← subset ∪ {Ins[i]}
7 tmp ← tmp div 2, i ← i + 1

8 Subs[index] ← subset

9 return Subs

Owning to the fact that Out and Ser are uncertain before decision-making, both
the volume and the cost of s′ cannot be determined in advance, which leads to
the inapplicability of the 0-1 knapsack algorithm. A knapsack-variant algorithm
is proposed to solve the problem by determining the volume and cost of each
item dynamically.

Given a knapsack s, the capacity of which is Vcap, and a set of items Pre(s) =
{s1, s2, . . . , sN} where N = |Pre(s)| represents the number of items, each with
an uncertain volume volumei and an uncertain cost costi, let C[i][v] represent
the minimal cost of selecting items from {s1, s2, . . . , si} (1 ≤ i ≤ N) to fill
a temporary knapsack, the capacity of which is v (1 ≤ v ≤ Vcap), and I[i][v]
represents the set of items selected to minimize C[i][v]. Then,

C[i][v] = min {C[i − 1][v], C[i − 1][v − volumei] + costi}
where volumei = DV(si, Ins, Subs, v),

costi = DC(si, I, i, v, volumei).
(5)

The function DV in Algorithm 3 is used to dynamically calculate the volume
of an item. For the given temporary knapsack with capacity v, the outputs
provided by service si for the knapsack are determined as Outsi ∩Subs[v]. Thus,
the volume of item si can be quantified by the approach proposed above.

Moreover, the function DC shown in Algorithm4 is applied to determine the
cost of an item si drawing support from I.

According to the optimization model in (5), by systematically increasing the
values of i (from 1 to N) and v (from 1 to Vcap), composition ΩL

s with the
minimal number of services will be finally obtained when i = N and v = Vcap:

OptL[s] = Len(ΩL
s) = C[N][Vcap] + 1. (6)

4.4 Supervised Multi-objective Service Composition

We have obtained the composition ΩR
sk

with the shortest response time, the
composition ΩT

sk
with the highest throughput, and the composition ΩL

sk
with the

224 S.-L. Fan et al.

Algorithm 3. Determination of Volume of Items
Input: si, Ins, Subs, v
Output: DV (si, Ins, Subs, v)

1 map ← {}, volume ← 0, Out ← Outsi ∩ Subs[v]
2 for index = 0; index < |Ins|; index + + do
3 c ← Ins[index], map[c] ← index

4 for concept c ∈ Out do

5 index ← map[c], volume ← volume + 2index

6 return volume

Algorithm 4. Determination of Cost of Items
Input: si, I, i, v, volumei
Output: DC(si, I, i, v, volumei)

1 Union ← {}
2 for service s ∈ I[i − 1][v − volumei] do
3 Union ← Union ∪ Servs(Ωs)

4 Inter ← Servs(Ωsi) ∩ Union, Ser ← Servs(Ωsi) − Inter
5 return |Ser| + 1

minimal number of services. However, in most cases, these compositions are not
the same one. For instance, ΩR

sk
may hold a low throughput or a long length.

To reach a compromise among all these attributes, a supervised algorithm is
applied to aggregate multiple objectives to a single one drawing support from
the pre-computed optimization results, i.e., OptR, OptT , and OptL.

Assuming that Ωs represents a composition which starts from so and ends
with the service s, to measure the overall quality of Ωs, the loss is defined as

Loss(Ωs) =
RT (Ωs) − RT (ΩR

s)
RT (ΩR

s)
+

TP (ΩT
s) − TP (Ωs)
TP (ΩT

s)
+

Len(Ωs) − Len(ΩL
s)

Len(ΩL
s)

.

(7)
Note that, the division operations in (7) are used to eliminate the effects

brought by the different dimensions of different attributes, which plays the role
of normalization. For a composition Ωs, Loss(Ωs) can be explained as the degree
of deviation from the perfect composition of current search step. A composition
that performs poorly in certain attribute brings a great loss, while a composition
whose attributes are all approximate to the pre-computed optimization results
brings a minor loss. Therefore, to achieve an ideal compromise among all the
objectives, we aim at searching a composition Ωs with the minimal Loss(Ωs).
There are many possible compositions starting from the service so and ending
with the service s, among which the one with the minimal loss is expressed as
ΩM

s . Then, for each service s ∈ G, the search step of ΩM
s is to find a composition

Ωs with the objective of min Loss(Ωs).

Supervised Web Service Composition 225

Assuming that the precursors of the service s is Pre(s) = {s1, s2, . . . , sN}
where N = |Pre(s)| and the set of compositions {ΩM

s′ | s′ ∈ Pre(s)} has been
determined in advance, inspired by the methods in Sect. 4.3, the decision-making
process of ΩM

s is regarded as an approximate knapsack problem. Given Ins, the
Subs can be obtained according to Algorithm2. Then, the service s is abstracted
into a knapsack whose capacity is Vcap = |Subs| − 1, and each si (1 ≤ i ≤ N) is
regarded as an item with a volume of volumei. A composition Ωs is generated
when the knapsack s is filled with items. Therefore, the loss of the filled knapsack
s is defined as the value of Loss(Ωs). The problem is to select items from Pre(s)
to fill the knapsack s with the objective of minimizing the loss of the knapsack.
Since the optimal substructure can’t be guaranteed, an approximate algorithm
is proposed to solve the problem against time.

Algorithm 5. Determination of Temporary Loss
Input: s, si, I[i − 1][v − volumei], OptR, OptT , OptL
Output: DL(s, si, I[i − 1][v − volumei], OptR, OptT, OptL)

1 RTtmp ← RT (ΩM
si), TPtmp ← TP (ΩM

si), Union ← Servs(ΩM
si)

2 for service s′ ∈ I[i − 1][v − volumei] do
3 RTtmp ← max(RTtmp, RT (ΩM

s′)), TPtmp ← min(TPtmp, TP (ΩM
s′))

4 Union ← Union ∪ Servs(ΩM
s′)

5 RTtmp ← RTtmp +RT (s), TPtmp ← min(TPtmp, TP (s)), Lentmp ← |Union|+1

6 loss ← RTtmp−OptR[s]

OptR[s]
+

OptT [s]−TPtmp

OptT [s]
+

Lentmp−OptL[s]

OptL[s]

7 return loss

Let L[i][v] represent the minimal loss of selecting items from {s1, s2, . . . , si}
(1 ≤ i ≤ N) to fill a temporary knapsack whose capacity is v (1 ≤ v ≤ Vcap),
and I[i][v] represents the set of items selected to minimize L[i][v]. Then,

L[i][v] = min {L[i − 1][v], lossi}
where lossi = DL(s, si, I[i − 1][v − volumei], OptR,OptT,OptL),

volumei = DV(si, Ins, Subs, v).
(8)

The function DV is used to dynamically calculate the volume of an item,
which is shown in Algorithm 3. Moreover, the function DL shown in Algorithm5
is applied to compute the loss of a temporary knapsack. The items which lead
to the reduction of the loss will be selected to put into the knapsack.

By systematically increasing the values of i (from 1 to N) and v (from 1 to
Vcap), the composition ΩM

s will be finally obtained when i = N and v = Vcap.
Each search step is performed in this way layer by layer, and when the last search
step is completed, the final composition ΩM

sk
which reaches an ideal tradeoff

among multiple objectives is obtained.

226 S.-L. Fan et al.

Table 1. The characteristics of datasets

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

#Services 572 4129 8138 8301 15211 1000 3000 5000 7000 9000

5 Experimental Results

Extensive experiments have been carried out to evaluate the performance of
the proposed method. To make the conclusion more convincing, experimental
evaluations are carried out on two different groups of datasets, the datasets of
the Web Service Challenge (WSC) 2009 and the datasets generated randomly.

5.1 Datasets

As shown in Table 1, the group of datasets of the WSC 2009 ranges from 572
to 15211 services. Considering that all the 5 datasets are generated by the same
model, another group of random datasets ranging from 1000 to 9000 services are
used to further evaluate the performance of our algorithm, which are available
at https://wiki.citius.usc.es/inv:downloadable results:ws-random-qos.

5.2 Validation of the Pre-computation Algorithms

The pre-computation algorithms are the foundation of our composition mecha-
nism. Only by obtaining the optimization results of each single objective can we
adopt the supervised algorithm to accomplish the multi-objective composition.
Table 2 shows the optimization results of each single objective. MS is short for
the memory-based search algorithm which is applied to generate compositions
with the optimal global response time or throughput. Row RT.sgl shows the
shortest response time for each dataset and TP.sgl the highest throughput. KV
is short for the knapsack-variant algorithm that is proposed for compositions
with the minimal number of services, and the row Len.sgl shows the results of
KV. Moreover, the rows Time represent the execution times of every algorithm.
For each dataset, the total time spent by the pre-computation is no more than
300 ms, which indicates the efficiency of the proposed MS and KV.

Table 2. The optimization results of single objectives

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

MS RT.sgl (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

Time (ms) 0.6 1.2 0.9 1.9 1.4 0.5 0.9 2.1 1.9 2.9

TP.sgl (inv/s) 15000 6000 4000 4000 4000 1000 2500 1500 2000 2500

Time (ms) 0.4 0.9 0.7 1.6 1.5 0.3 0.7 1.6 1.9 2.8

KV Len.sgl 5 20 10 40 30 7 15 12 14 16

Time (ms) 102.1 57.4 20.2 81.1 53.3 19.6 121.3 204.7 256.9 297.1

https://wiki.citius.usc.es/inv:downloadable_results:ws-random-qos

Supervised Web Service Composition 227

5.3 Validation of the Supervised Algorithm

To validate our supervised algorithm, we compare it with three different state-
of-the-arts in the same experimental setting. Table 3 shows the comparisons.

Table 3. Detailed comparisons with other methods

Datasets D-01 D-02 D-03 D-04 D-05 R-01 R-02 R-03 R-04 R-05

Method in [15] RT.mult (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

TP.mult (inv/s) 3000 3000 2000 2000 1000 1000 1000 500 1000 500

Len.mult 10 20 10 42 33 8 19 18 21 19

Loss.comp 1.80 0.50 0.50 0.55 0.85 0.14 0.87 1.17 1.00 0.99

RT.mult (ms) 840 2200 2450 4150 4990 1430 1305 1520 2095 1975

TP.mult (inv/s) 15000 6000 4000 2000 4000 1000 2500 1500 2000 2500

Len.mult 5 20 10 44 32 13 18 20 30 19

Loss.comp 0.68 0.30 2.22 2.42 0.29 0.86 0.54 1.55 1.85 0.58

Time.comp (ms) 11.2 18.3 11.8 41.9 16.1 6.7 23.1 51.7 87.6 76.5

Method in [14] RT.mult (ms) 500 1690 760 1470 4070 1430 975 805 1225 1420

TP.mult (inv/s) 3000 3000 2000 2000 1000 1000 2000 500 1000 1000

Len.mult 8 21 10 42 33 9 18 15 20 18

Loss.comp 1.40 0.55 0.50 0.55 0.85 0.29 0.40 0.92 0.93 0.73

RT.mult (ms) 760 2270 1950 4080 4990 1430 1305 1520 1785 2165

TP.mult (inv/s) 15000 6000 4000 2000 4000 1000 2500 1500 2000 2500

Len.mult 5 20 21 40 30 11 18 15 23 17

Loss.comp 0.52 0.34 2.67 2.28 0.23 0.57 0.54 1.09 1.10 0.59

Time.comp (ms) 33.5 1491.3 1465.2 54351.7 936.9 45.6 493.7 767.1 941.6 375.3

Method in [16] RT.mult (ms) 760 2270 1300 2140 5340 1580 1815 1640 1840 2300

TP.mult (inv/s) 10000 6000 3000 1000 4000 1000 2000 1000 2000 1500

Len.mult 6 21 12 47 36 9 18 17 19 20

Loss.comp 1.05 0.39 1.16 1.38 0.51 0.39 1.26 1.73 0.86 1.27

Time.comp (ms) 1.1 1.6 1.6 15.4 2.6 0.7 3.9 5.6 7.8 9.9

Our method RT.mult (ms) 680 1800 760 1600 4260 1430 975 1090 1225 1605

TP.mult (inv/s) 14000 6000 4000 3500 4000 1000 2000 1500 2000 2500

Len.mult 5 20 10 43 33 8 16 15 17 18

Loss.comp 0.43 0.07 0.00 0.29 0.15 0.14 0.27 0.60 0.21 0.26

Time.comp (ms) 121.2 69.3 20.1 81.9 59.0 21.4 115.5 211.7 328.8 386.1

For each dataset, we mainly show solicitude for the global QoS of the gener-
ated composition (RT.mult for response time and TR.mult for throughput), the
number of services in the composition (Len.mult), the loss of the composition
(Loss.comp), and the execution time to extract the composition (Time.comp).
Note that, for each dataset, both [14,15] can generate two different solutions
(one with the optimal response time and another with the optimal throughput).

As can be seen in Table 3, the methods in [14,15] can generate compositions
with the optimal response time (throughput) and the near-optimal length, how-
ever, the throughput (response time) of the compositions generated by these
two methods are both exceedingly low (long) in contrast with the pre-computed
TP.sgl (RT.sgl), which leads to an unsatisfactory loss. In [16], the optimization
objective is to minimize the value of (RT-TP+Len), therefore the generated
compositions achieve a degree of tradeoff among the three attributes, but there

228 S.-L. Fan et al.

is still much room for improvement. Moreover, for each dataset, all the three
attributes generated by our method change little from the optimal ones shown
in Table 2. Therefore, our method outperforms the other methods by generating
compositions with smaller loss, and it makes a better tradeoff among all the
attributes. Even better, the solution on D-03 owns the shortest response time,
the highest throughput and the minimal number of services simultaneously.

To measure the performance of each method in terms of the response time,
throughput, and length, we define Ability(RT) = RT.sgl

RT.mult , Ability(TP) =
TP.mult
TP.sgl , and Ability(Len) = Len.sgl

Len.mult respectively. In addition, we have Abil-
ity(RT,TP) = Ability(RT) + Ability(TP). By analogy, Ability(TP,Len), Abil-
ity(Len,RT), and Ability(RT,TP,Len) are defined in the same manner to evaluate
the performance of each method on several attributes simultaneously.

The greater the value of the measurements defined above, the better the
performance of a method. On the basis of this, a series of radar charts shown
in Fig. 4 are plotted to make the comparisons more intuitive. Note that, to
differentiate the two solutions generated by the same method ([14] or [15]), the
one with the optimal response time is drawn by a solid line while another with
the optimal throughput is drawn by a dashed line. As can be seen from the
figures, for each dataset, our method achieves a better tradeoff among the three
objectives than the others owing to the fact that it has the greater value of
Ability(RT,TP,Len) and it covers the lager area of each radar chart.

We further compare the efficiency of those methods. As shown in Fig. 5, our
method isn’t as efficient as the methods in [15,16], however it is, on average, over
40 times faster than [14]. For each dataset, the composition time of our method

(a) On D-01 (b) On D-02 (c) On D-03

(d) On R-03 (e) On R-04 (f) On R-05

Fig. 4. Radar charts to compare the performance of four methods on several datasets.

Supervised Web Service Composition 229

is no more than 400 ms, which proves that the supervised method can generate
solutions within a reasonable execution time.

Fig. 5. Further comparisons in terms of the execution time.

6 Conclusions

In this paper, we propose an effective and efficient mechanism to solve the prob-
lem of multi-objective service composition taking service quantity into account.
The mechanism combines a memory-based search algorithm and a knapsack-
variant algorithm to optimize each single objective, after which a supervised
algorithm is applied to solve the multi-objective composition on the basis of
the pre-computed optimization results. A large number of experiments on two
different groups of datasets show that our mechanism performs better than the
state-of-the-arts, as it can generate compositions that reach an ideal compromise
among multiple objectives including the number of services with high efficiency.

Acknowledgment. This work is funded by the Natural Science Foundation of
China (No. 61673204), National Key R&D Program of China (No. 2018YFB1003800),
State Grid Corporation of Science and Technology Projects (Funded No.
SGLNXT00DKJS1700166), and the Program for Distinguished Talents of Jiangsu
Province, China (No. 2013-XXRJ-018).

References

1. Wagner, F., Ishikawa, F., Honiden, S.: QoS-aware automatic service composition
by applying functional clustering. In: 2011 IEEE International Conference on Web
Services (ICWS), pp. 89–96. IEEE (2011)

2. Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: QSynth: a tool for QoS-
aware automatic service composition. In: 2010 IEEE International Conference on
Web Services (ICWS), pp. 42–49. IEEE (2010)

3. Rodriguez-Mier, P., Mucientes, M., Lama, M.: A dynamic QoS-aware semantic web
service composition algorithm. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
ICSOC 2012. LNCS, vol. 7636, pp. 623–630. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34321-6 48

https://doi.org/10.1007/978-3-642-34321-6_48
https://doi.org/10.1007/978-3-642-34321-6_48

230 S.-L. Fan et al.

4. Zou, G., Lu, Q., Chen, Y., Huang, R., Xu, Y., Xiang, Y.: QoS-aware dynamic
composition of web services using numerical temporal planning. IEEE Trans. Serv.
Comput. 7(1), 18–31 (2014)

5. Strunk, A.: QoS-aware service composition: a survey. In: 2010 IEEE 8th European
Conference on Web Services (ECOWS), pp. 67–74. IEEE (2010)

6. de Campos Jr., A., Pozo, A.T., Vergilio, S.R., Savegnago, T.: Many-objective evo-
lutionary algorithms in the composition of web services. In: 2010 Eleventh Brazilian
Symposium on Neural Networks (SBRN), pp. 152–157. IEEE (2010)

7. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

8. Zhang, F., Hwang, K., Khan, S.U., Malluhi, Q.M.: Skyline discovery and com-
position of multi-cloud mashup services. IEEE Trans. Serv. Comput. 9(1), 72–83
(2016)

9. Niu, S., Zou, G., Gan, Y., Xiang, Y., Zhang, B.: Towards uncertain QoS-aware
service composition via multi-objective optimization. In: 2017 IEEE International
Conference on Web Services (ICWS), pp. 894–897. IEEE (2017)

10. Yu, Q., Bouguettaya, A.: Efficient service skyline computation for composite service
selection. IEEE Trans. Knowl. Data Eng. 25(4), 776–789 (2013)

11. Moustafa, A., Zhang, M.: Multi-objective service composition using reinforcement
learning. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS,
vol. 8274, pp. 298–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45005-1 21

12. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Hybrid optimization algorithm for
large-scale QoS-aware service composition. IEEE Trans. Serv. Comput. 10(4), 547–
559 (2017)

13. Rodriguez-Mier, P., Mucientes, M., Lama, M.: A hybrid local-global optimization
strategy for QoS-aware service composition. In: 2015 IEEE International Confer-
ence on Web Services (ICWS), pp. 735–738. IEEE (2015)

14. Chen, M., Yan, Y.: Redundant service removal in QoS-aware service composition.
In: 2012 IEEE 19th International Conference on Web Services (ICWS), pp. 431–
439. IEEE (2012)

15. Xia, Y.M., Yang, Y.B.: Web service composition integrating QoS optimization and
redundancy removal. In: 2013 IEEE 20th International Conference on Web Services
(ICWS), pp. 203–210. IEEE (2013)

16. Chattopadhyay, S., Banerjee, A., Banerjee, N.: A scalable and approximate mecha-
nism for web service composition. In: 2015 IEEE International Conference on Web
Services (ICWS), pp. 9–16. IEEE (2015)

17. Fan, S., Yang, Y.: Efficient web service composition via knapsack-variant algorithm.
arXiv preprint arXiv:1801.09102 (2018)

https://doi.org/10.1007/978-3-642-45005-1_21
https://doi.org/10.1007/978-3-642-45005-1_21
http://arxiv.org/abs/1801.09102

	Supervised Web Service Composition Integrating Multi-objective QoS Optimization and Service Quantity Minimization
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Motivation
	4 Composition Mechanism
	4.1 Generation of the Service Dependency Graph
	4.2 Computation of the Optimal QoS
	4.3 Computation of the Minimal Number of Services
	4.4 Supervised Multi-objective Service Composition

	5 Experimental Results
	5.1 Datasets
	5.2 Validation of the Pre-computation Algorithms
	5.3 Validation of the Supervised Algorithm

	6 Conclusions
	References

