
Business Objects - A New Business Process
Modeling Approach

Xiaohui Shi, Jia Lin, Gaojia Hu, and Yang Yu(&)

School of Data and Computer Science, Sun Yat-sen University,
Guangzhou, China

{shixhui,linj39,hugj3}@mail2.sysu.edu.cn,

yuy@mail.sysu.edu.cn

Abstract. The traditional process-centric modeling approach often focuses on
tasks with a fixed execution order. This modeling approach is difficult to
describe business processes in which the number of steps and cases is varied
depending on the case state and determined dynamically at run time. Motivated
by modeling requirements from complex collaborative business scenarios in the
internet, such as crowdsourcing, a concept of Business Object (BO) and
BO-oriented Process Modeling (BOOPM) approach are proposed. We introduce
the role element into standard Harel statechart to explicitly describe the life cycle
of a BO whose state changes as tasks processed by different business roles. We
also extend event communication mechanism into the statechart to support
collaboration among multiple BOs to achieve a business goal. Meanwhile, the
BO provides a suitable foundation to control the granularity of the process
model properly. After that, the ability of BOOWM for process specification is
evaluated based on a set of workflow patterns. Finally, we illustrate BOOPM
approach using a crowdsourcing example and realize a prototype system to
support the execution of a business process modeling by BOOPM approach.

Keywords: Business Object � Process modeling � Statechart � Crowdsourcing

1 Introduction

A workflow modeling approach allows for explicit and intuitive representation of
business processes. Traditional process-centric modeling approaches focus on the
control-flow of an entire process, i.e., which tasks need to be executed and in what
order, but ignore the data context. With regard to complex business processes that may
deal with different data entities in different states, the process-centric modeling
approach squeezes the control flows of different data entities into one process definition
and result in a large flattened process model with high complexity. Meanwhile, without
data context, the process-centric approach is different to capture dynamic business
processes since there exist tasks depend on data which is not known until runtime.

These problems were discussed in the literature for some time leading to many
proposals in which data context is the central focus (e.g. [10–13]). However, to a large
extent, these proposals are extensions of process-centric modeling approach such that a
process model is composed of control-flow and data-flow dependencies. We have never

© Springer International Publishing AG, part of Springer Nature 2018
H. Jin et al. (Eds.): ICWS 2018, LNCS 10966, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-94289-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94289-6_1&domain=pdf

seen a related research of data-centric modeling approach to model dynamic nonde-
terministic processes.

Crowdsourcing is a powerful mechanism to complete tasks on the Internet which is
widely applied in real world recently [1, 2]. Compared with typical micro-tasks on the
Amazon Mechanical Turk, tasks in life are very complex and take a lot of time to
complete. They need technicians from different fields to work collaboratively. To make
this happens, complex tasks need to be decomposed into sub tasks. The process of
decomposition is very complex such that when and how should it be decomposed is
fully decided and executed by crowd workers. The key features of this process are:
(1) it is a complex and dynamic recursive process which involves collaboration among
workers; (2) the number and execution order of tasks are not known until runtime. Any
attempt to model this process using existing modeling approaches is usually met with
resistance by these features.

Faced with these problems, we propose the concept of Business Object (BO) and
BO-oriented Process Modeling (BOOPM) approach inspired by the concept of com-
municating finite-state machines [3]. With the help of the BOOPM approach, these
dynamic collaborative business processes can be modeled flexibly and the granularity
of a process can be controlled properly.

The rest of this paper is organized as follows. Related works are discussed in
Sect. 2. Section 3 introduces the BOOPM framework. We then make an analysis of the
BOOPM approach in terms of workflow patterns in Sect. 4. In Sect. 5 an example of
crowdsourcing process is introduced to illustrate the improved expressive power and
flexibility of the BOOPM approach. The conclusion and future work are provided at
the end.

2 Related Work

Most existing notations and languages for business process modeling are based upon a
process-centric modeling approach (e.g., [4–7]). These process-centric modeling
approaches often focus on the control flow of the whole process to indicate the exe-
cution order of a set of activities, but ignore the data context [10]. Without data context,
it is difficult to describe dynamic nondeterministic processes in which the number of
tasks need to be executed depend on runtime factors.

Later, the object-centric approaches for modeling business processes have become
an area of growing interest to support flexible workflow. The object-centric modeling
approach decomposes a process into a hierarchy of modules. [8] proposes proclets for
workflow specification that can support complex processes. The proclet is kind of
sub-process based on Petri-net with no explicit emphasis on data flows. [9] proposes
Object Coordinate Net (OCoN) for workflow specification. The OCoN uses variants of
Petri-Nets to describe the different aspects of systems and interfaces in an
object-oriented style in order to provide a seamless integration with UML structure
diagrams. However, objects in these proposals are kind of sub process objects such that
the backbone of process models are still activities and their control flows.

Recently, the data-centric process modeling approaches are proposed. The case
handling modeling approach [10] addresses many problems of traditional workflow

4 X. Shi et al.

management systems especially the handling of process context. [11] introduces the
document-driven workflow system in which tasks are described using input and output
documents. However, the issue of proper granularity for a business process is not
actually addressed in these approaches.

Another popular data-centric process modeling approach is the artifact-centric
approach. [12] develops an artifact-centric formal modeling framework that integrates
both control flow and data flow. [13] presents nine operational patterns and develop a
computational model for operational models based on Petri Nets. [14] studies artifacts
with Guard-Stage-Milestone (GSM) lifecycles in which artifact interactions are based
on conditions and events. GSM lifecycles are more declarative than the finite state
machine. Business artifacts substantially store data information and state information
pertinent to a business entity. In contract, BOOPM provides a high-level encapsulation
for data entities that are involved in a business process based on object-oriented
technique, so that more complex and dynamic processes can be supported. Meanwhile,
BOOPM describes states and behaviors of a BO by means of standard Harel statechart,
which is more intuitive and easy to be understood.

Another thread of related work is use of state machine to workflow specifications in
the industry. Windows Workflow Foundation framework (Microsoft) and OSWorkflow
engine (Open source) support using state machine to establish workflow model of
event-driven business processes [15, 16]. However, they do not support communication
among multiple statecharts. BOOPM extends communication mechanism of statechart.

3 Business Object-Oriented Process Modeling

The key abstraction of the BOOPM framework is that of BOs which are abstracted at
the modeling level as BO types. BOs are business entities involved in the business
process. Each BO encapsulates business data, tasks and object life cycle. A task cor-
responds to a human or automated operation being executed upon one certain BO. The
object life cycle explicitly describes state changes of a BO as tasks processed by
different business roles. The object life cycle is described using a standard Harel
statechart [17] in which state transitions follow the Event-Condition-Action paradigm.
Thus, the evolution of object life cycles of all BOs in the process from the initial state
to the final state describes the processing of business.

3.1 Formal Model of BOOPM

In this section, formal definitions of BOOPM framework are introduced.

Definition 1 (BO type). A BO type abstracts a group of BOs with their business data,
tasks and object life cycle. A BO type T is a tuple (C, A, R, M) where,

– C is a unique BO type name;
– A = {a1, a2, …, ax}, ai 2 A is an attribute with a string or real number value or an

undefined value;
– R is a set of tasks that are associated with T;
– M is the object life cycle of T.

Business Objects - A New Business Process Modeling Approach 5

Definition 2 (Task). A task is tuple (n, t, q, m, E) where,

– n is the name of the task;
– t is the type of the task consisting of manual, automatic or semi-automatic type;
– q is the business role to execute the task;
– m is the application or the tool used by the role to execute the task;
– E = {e1, e2, …, ex}, ei 2 E is a tuple (e, p) where e is the event name and p is

parameters and ei may be generated according to the result of the task.

Definition 3 (Object Life Cycle). An object life cycle is a tuple (S, st, F, q, u, V,
E, C, A, L, T) where,

– S is a finite set of states, and st 2 S is the initial state, F 2 S is the final state;
– q: S ! 2S is the hierarchical relationship of states, q(s) represents all direct children

of composite s, and if s is a basic state, then q(s) = 0;
– u: S ! {XOR, AND} is the function to define types for each composite state, for

XOR-type, a composite state is made up of a set of mutually exclusive sub states,
for AND-type, a composite state is made up of a set of parallel sub states,

– V is a set of expressions. If p is a number, then p 2 V; Assume Vp � A is a set of
basic variables; if v 2 Vp, then v 2 V; if v1 2 Vp, v2 2 Vp, op 2 {+, −, *, /, %},
then v1 op v2 2 V;

– E = {e1, e2, …, ex}, ei 2 E is a tuple(e, p, m, t, s) where e is the event name, p is
parameters of ei, m is the propagation mode of ei with a string value selected in the
set {Broadcast, Multicast, Unicast}, t is the target BO type that ei is passed to and
s is the current state of the target BO type;

– C is a finite set of Boolean conditions. T(true) and F(false) 2 C. Assume Cp is a set
of basic conditions; If c 2 Cp, then c 2 C; If c1 2 Cp, c2 2 Cp, op 2 {^, _, *},
then c1 op c2 2 C; if c1 2 Vp, c2 2 Vp, op 2 {=, <, >, 6¼, � , � }, then c1 op
c2 2 C;

– A is a finite set of actions. An action is associated with state transition or entry
action of a state. An action may be invoking a task (see Definition 2), creating new
instance of a BO type, sending an event to other BOs;

– L � E * C * A is a set of labels associated with transitions and written as e[c]/a,
where e 2 E, c 2 C, a 2 A;

– T � 2S * l * 2S is a set of transitions. For t = (x, l, y), x is the source state and y is
the target state, l 2 L is the label associated with the transition from x to y. If the
event e is occurred when the source state is enabled, then the condition c is checked,
if c is true the transition will be triggered and the action a will be taken in response
to e.

3.2 Relationship Between BOs

Different from objects in the OO programming, there are three kinds of relationships
between BOs. They are creation relationship, association relationship and composition
relationship.

6 X. Shi et al.

For creation relationship, it means a BO type T1 creates an instance of a BO type
T2 and then they go on the processing of their own object life cycle respectively. In
general, the creation relationship is contained in other relationships, such as the
association relationship and the composition relationship.

For association relationship, it means a BO type T1 creates an instance of another
BO type T2 when the business is well beyond the scope of the processing ability of T1.
T1 transfers context and data to T2 and waits for the processing result of T2 in some
state. When T2 sends an event to T1 to indicate the processing result of T2, T1 triggers
some transition according to this event.

For composition relationship, it means a BO type T1 creates definite quantity
instances of a BO type T2. Each instance of T2 must send a finish event to T1 when its
object life cycle is completed. When the object life cycle of T1 is completed, all
instances of T2 must be completed too. The composition relationship is a special case
of the association relationship.

Hence the definition of BOO process model is given below.

Definition 4 (BO-Oriented Process Model or BOOP model). Let
Q

denote an
BOOP model, and it is tuple (N, k, b) where N is a set of BO types, k: N ! 2N is the
association relationship between BO types, where k(n) represents all BOs that n
associates with during the processing of its life cycle. b: N ! 2N is the composition
relationship between BO types, where b(n) represents all BOs that n composes during
the processing of its life cycle.

Example 3.1. We use a restaurant business process as an example to illustrate
BOOPM approach which is described as an artifact-centric process model in [18]. BOs
in this business include Guest Order (GO), Kitchen Order (KO) and Guest Check (GC).
Figure 1 shows object life cycles for these three BO types. GO and KO maintain a
one-to-many association relationship which means the customer can order several times
over a meal time. GO and GC maintain a one-to-one association relationship which
means one GO only owns one GC. Therefore Fig. 2 shows the business class diagram
for the process model of the restaurant business process.

We give the xml schema of the BOO process model based on the formal model of
BOOPM. The xml schema is the extension of W3C SCXML which is a generic
state-machine based execution environment based on CCXML and Harel State Tables
[19]. The xml schema in this paper extends the executable content of SCXML, namely
action in the ECA paradigm. The extension labels are <newbo>, <call> and <send>.
For detail, see https://github.com/rinkako/RenWFMS/tree/master/XML, the complete
description of the BOO process model for Fig. 1.

Meanwhile, we developed a prototype system which can support reading and
executing of the xml process model described using the xml schema [23]. The pro-
totype system is based on Apache Common SCXML engine which is a java imple-
mentation of W3C SCXML standard [20].

Business Objects - A New Business Process Modeling Approach 7

https://github.com/rinkako/RenWFMS/tree/master/XML

Guest Order

-orderID: String
-customerNumber: int
-startKOCount: int
-finishKOCount: int
-items: String
-deliverTime: String
-addItemTask(): items
-updateDeliTimeTask(KO.deliverTime): deliverTime

Kitchen Order

-orderID:String
-cookName:String
-dishes:String
-deliverTime:String
-finishTime:String
-prepareDishTask(dishes):void
-testQualityTask(dishes):void
-deliverTask(dishes):deliverTime
-archiveTask():void

Guest Check

-total:Number
-cash:Number
-change:Number
-items:String
-calculateTask(items):total
-paymentTask(cash, total):change
-archiveTask():void

1..11..*

-states: initial, dining(ordering, active), paying, final
-events: order, submit, KO.delivered, KO.finish, requestCheck, GC.finish
-actions:addItemTask, updateDeliTimeTask, new KO, new GC,...
...

-states: initial, preparing, testing, delivering, archiving, final
-events: prepared, notPass,allPassed, delivered, archived
-actions: deliverTask, sendtoParent(delivered)...
...

-states: initial, preparing, paying, archiving, final
-events: calculated, paid, archived
-actions:calculateTask, sendtoParent(delivered),...
...

Fig. 2. The business class diagram for the BOO process model of restaurant business process.

Dining

Initial

Ordering Active

KO.delivered/updateDeliTimeTask
KO.finish/finishKOCount++

Paying

Final

order/
addItemTask

submit/new KO;
startKOCount++

order/addItem

requestCheck
[finishKOCount==startKOCount]

/New GC

GC.finish

Preparing

Initial

/prepareDishTask
TestingPrepared/

testQualityTask

notPass/prepareDishTask

Delivering

allPassed/
deliverTask

Archiving delivered/
sendtoParent(delivered);

archiveTask
Final

archived/
sendtoParent(finish)

Initial

Preparing
/calculateTask

Payingcalculated/
paymentTask

Archiving

paid/archiveTask

Final

archived/
sendtoParent(finish)

Fig. 1. Object life cycles for BOs in the restaurant business process. (Color figure online)

8 X. Shi et al.

3.3 Communication of Business Objects

A BOOP model is made up of a set of connected BOs. Two BOs are connected if one is
associated with another. Such two BOs maintain a supervision relationship during the
processing of the business, which means the parent BO supervises the life cycle of the
sub BO. When the life cycle of a sub BO is finished, it must report to the parent BO
through a finish event.

The BO which is created at the beginning of the business process is the root BO.
New BOs are created during the processing of the root BO. BOs supervised by the root
BO and other BOs supervised by these supervised BOs in turn gradually form a BO
instance tree structure in runtime. Each node in the tree is an instance of a BO type.

BOs in the tree collaborate with each other by means of event communication to
achieve a business goal. The collaboration among BOs consists of synchronization
pattern and asynchronization pattern. In the synchronization pattern, the parent BO
must wait for finish events from all its sub BOs before taking the transition to the final
state. In the asynchronization pattern, it means that processing of BOs are indepen-
dently. The event between BOs is transmitted asynchronously, i.e., without waiting for
a reply.

We extend the event propagation mode of the <send> label of SCXML to support
event communication among multiple BOs. The core of collaboration is to determine
the destination of the communication event according to the position of the current BO
in the instance tree. Therefore the following extended attributes are necessary.

1. eventMode: the propagation mode of an event. Its value can be:
(a) Broadcast: The event will be sent to each BO in the tree;
(b) Multicast: The event is sent to a group of BOs according to the position of the

current BO in the instance tree, such as to an arbitrarily specified BOs set, or
directly to its offspring, children, siblings, ancestor;

(c) Unicast: The event is sent to a specified BO according to the identifier of the
target BO, or directly to its parent.

2. targetType: This attribute shows that an event should be passed to what BO type in
the tree.

3. targetState: Since state of the BO changes with time. This attribute indicates that an
event should be sent to a BO whose current state equals to the value of the tar-
getState attribute.

With the extensions above, the instance tree representing the relationship between
BOs can be constructed in runtime and these BOs can communicate with each other to
achieve a business goal.

Example 3.2. As shown in Fig. 1, the green dotted line means it is an asynchro-
nization pattern. The red line means it is an synchronization pattern. When the business
starts, the instance of GO is created firstly. When the transition from Ordering to Active
is triggered, an instance of KO is created and it begins its life cycle. When GO is in the
Dining state, the customer can order arbitrary times and thus corresponding number of
KO instances are created. When the life cycle of a KO instance comes to the end, it
must send a finish event to its parent. When the customer requests to pay the order, the

Business Objects - A New Business Process Modeling Approach 9

value of startKOCount and finishKOCount should be checked whether they are equal
or not. If they are equal, GO triggers the transition to the Paying state and an instance of
GC is created. When the instance of GC finishes its life cycle, it sends a finish event to
its parent and GO triggers the transition to the Final state. Thus the business goal is
achieved when all life cycles of BO instances come to the end.

4 Evaluation of BOOPM

This section provides evaluation of the expressiveness of BOOWM in terms of
workflow patterns [21]. We represent each pattern in BOOWM approach in [22]. While
for the limited space, only several common workflow patterns are discussed here.
Meanwhile, this section provides several process patterns that are supported specifi-
cally in the BOOPM approach.

4.1 Evaluation of a Single BO

WP1: Multi-Choice and Structured Synchronizing Merge
The Multi-Choice pattern allows one or more parallel branches to be selected based on
a selection mechanism. The Structured Synchronizing Merge pattern is used to merge
parallel branches selected in the Multi-Choice pattern. The modeling challenge is that
the number of parallel branches need to be merged is not known at the design time. It is
totally depend on the Multi-Choice pattern.

The BOOPM approach describes the Multi-Choice pattern and the Structured
Synchronizing Merge pattern as shown in Fig. 3. The Null state behind the initial
pseudo-state in each parallel branch means no task is executed. One or both of the
following transitions in parallel branches can be triggered depend on the evaluation of
the conditions associated with each of them. There are two variables need to pay
attention to. The variable sCount will be increased by one when one transition from
Null to the following state is triggered. The variable fCount will be increased by one
when one parallel branch is completed. Synchronization of parallel branches is exe-
cuted when values of two variables become equal. Then the transition from MC to
StateB is triggered. Thus, as shown in Fig. 3, any branches can be selected and
synchronized.

Multi-choice pattern and structured synchronizing merge pattern

MC

StateA

entry/TaskA

StaeB

entry/TaskB
[fCount == sCount]

Null S1

entry/Task1

S2

entry/Task2

e

Null

FinalInitial

[c1]/sCount++ done1/
fCount++

Initial Final

[c2]/sCount++ done2/
fCount++

Fig. 3. Multi-choice pattern and structured synchronizing merge pattern.

10 X. Shi et al.

WP2: Cancelling Discriminator
The Cancelling Discriminator pattern differs from the Structured Synchronization
pattern in that the subsequent process will continue once one parallel branch has been
completed. All remaining branches are cancelled as a result.

The BOOPM approach describes behaviors of the Cancelling Discriminator as
shown in Fig. 4. When entering CD, State1 and State2 will be entered simultaneously.
Task1 and Task2 are executed in any possible order. If Task1 is completed first, it will
generate an event done1. The first branch moves to the Final state with the variable
fCount equals to one. Then the transition from CD to StateB is triggered since the exit
condition of the concurrent state becomes true. The remaining task in State2 is
cancelled.

This series of patterns describe multiple instances of the same task are created in a
business process based on different situations, which are not included in [21].

WP3: Multiple Instances Without a Priori Run-Time Knowledge
This pattern differs from other multiple instance patterns in that the required number of
instances cannot be determined until the last instance of that task is completed. At any
time, whilst multiple instances are running, it is possible for additional instances of the
same task to be created.

The BOOPM approach utilizes the combination of external events and internal
transitions to implement this pattern. As shown in Fig. 5, when entering MI, temp-
Count instances of Task1 are created such that the value of tempCount is determined by
runtime factors. The BO stays in MI until the completions of these task instances.
While in MI, if more instances are needed, an event named newInstance will be sent to
the BO from external environment and an internal transition is triggered. The action of
this transition is creating and dispatching an additional instance of Task1 as well as
updating the value of the variable tempCount. Each time when a task instance is
completed, an event named done1 is generated and another internal transition is trig-
gered to increase the variable fCount by one. The guard condition associated with the
transition from MI to StateB will be true only when all created instances are completed
which means the value of fCount equals to tempCount.

 Cancelling discriminator pattern

CD

StateB

entry/TaskB
[fCount > 0]

StateA

entry/TaskA
S2

entry/Task2

Initial

Initial

Final

Final

S1

entry/Task1

done2/
fCount++

done1/
fCount++

Fig. 4. Cancelling discriminator pattern.

Business Objects - A New Business Process Modeling Approach 11

4.2 Evaluation of Communicating BOs

We discover four more specific patterns that BOOPM supports due to event commu-
nication mechanism among multiple BOs, including nested pattern, similar synchro-
nization pattern, simultaneous trigger pattern, and cyclic synchronization pattern. For
simplicity, the business data and tasks are omitted and the following patterns focus on
the event communication among BOs.

SP1: Nested Pattern
The Nested pattern describes a dependency relationship between two BOs. The parent
BO creates a sub BO during processing of its life cycle and waits for the completion of
that sub BO. As shown in Fig. 6, BO1 creates an instance of BO2 when triggering the
transition from State1 to State2. A new instance of BO2 with a unique identifier starts
its life cycle from the Initial state. BO1 must wait for the finish event sent from BO2
before exiting State1_2.

SP2: Similar Synchronization Pattern
The Similar Synchronization pattern describes a constraint relationship of a set of BOs
that each BO waits for an event sent from another BO in the set. As shown in Fig. 7,
there are three BOs run concurrently and each of them sends an event when triggering
the transition from State1 to State2. In State2, they all wait for the event sent from
another BO.

Fig. 5. Multiple instances without a priori run-time knowledge pattern.

Initial

State1_1 State1_2

Final

/new BO2 BO2.finish

Initial

State2_1 State2_2

Final

sendtoParent(finish)

State1_3

Fig. 6. Nested pattern.

12 X. Shi et al.

SP3: Simultaneous Trigger Pattern
The Simultaneous Trigger pattern describes a situation such that two or more BOs are
waiting for the same “wake-up” event from the same BO. If these BOs receive such a
“wake-up” event, the corresponding transition is triggered in each BO concurrently. As
shown in Fig. 8, BO2 and BO3 both wait for the event e1 sent from BO1.

SP4: Circular Synchronization Pattern
The Circular Synchronization pattern describes the circular dependency constraint
among multiple BOs. There must be an entrance to enter the cycle and an exit to leave
the cycle. As shown in Fig. 9, there is a Circular Synchronization pattern among BO1,
BO2 and BO3. The transition from State1_1 to State1_2 is the entrance of the cycle
such that BO1 sends e1 to BO2. The exit of the cycle is BO3 sends e3 to BO1 to trigger
the transition from State1_2 to State1_3 to exit the cycle.

Initial

State1

Final

/sendtoBO2(e1)

Initial

State1 State2

Final

/sendtoBO3(e2) e1

State2
e3

Initial

State1 State2

Final

/sendtoBO1(e3) e2

State3

State3

State3

Fig. 7. Similar synchronization pattern.

Initial

State1

Final

/send(e1)

Initial

State1 State2

Final

e1

State2

Initial

State1 State2

Final

e1

State3

State3

State3

Fig. 8. Simultaneous trigger pattern.

Business Objects - A New Business Process Modeling Approach 13

Overall, The BOOPM approach supports thirty six workflow patterns. Only a small
set of workflow patterns cannot be supported due to the inherent semantics of statechart
and the requirements of reasonability.

The semantic of the concurrent state is that it waits for the completion of all the
parallel branches before triggering the transition to the next state. If there are additional
guard conditions to force exiting the concurrent state, all the remaining uncompleted
parallel branches must be cancelled and exited. As a result, the Multi-Merge pattern is
not supported, in which the completion of each parallel branch will instantiate the tasks
in the subsequent branch one time. Also, there is no support for Structured Discrimi-
nator pattern, Blocking Discriminator pattern, Structured Partial Join pattern and
Blocking Partial Join pattern. Meanwhile, the life cycle of a BO must have a single
Final state indicating the end of the life cycle. Semantically any state must have one
path to that Final state. Hence a BOO process model allows no implicit termination
states which means there are no transitions leaving from that state. Therefore, the
General Synchronizing Merge pattern and Implicit Termination pattern are not
supported.

However, the introduction of flexible event communication mechanism indeed
enriches the expressiveness of BOOPM in the description of collaboration among
multiple BOs. Thus, in addition to those thirty six workflow patterns, the BOOPM also
supports four specific patterns. Other event-based models like BPMN, cannot support
concurrency and uncertain number of sub processes.

5 Case Study

The ability of BOOPM approach to model control flows is shown in the previous
section (see Fig. 1). In this section, we illustrate BOOPM approach using the crowd-
sourcing example to illustrate the ability of BOOPM approach to model dynamic
nondeterministic processes in which the number of steps and cases is determined
dynamically at run time.

Fig. 9. Cyclic synchronization pattern.

14 X. Shi et al.

Consider for example the crowdsourcing process of writing an introduction paper
about crowdsourcing research. The goal of this process is workers collaborate with
each other in the network to decompose the original complex task into multiple sub
tasks, and then decompose these subtasks individually. Finally when all subtasks are
simple tasks, solve these simple tasks and merge results from bottom up to obtain a
complete paper. This is a dynamic and recursive process that contains uncertain
number of recursive decomposition steps. Such unplanned situation is particularly
challenging to capture using existing process modeling approaches since the best
decomposition scheme of each task is determined by workers during runtime.

In the crowdsourcing process, the crowdsourcing task and its sub tasks are dis-
covered BOs. They own the same BO type. Assume the name of the BO type is
CrowdsourcingTask. CrowdsourcingTask stores business data related to the business
and contains a set of tasks act upon it to deal with business logic. The object life cycle
of CrowdsourcingTask specifies the possible ways an instance of this type might
progress through the business. As shown in Fig. 10, tasks are mapped to actions
associated with entry labels or transition labels. The internal transitions below entry
labels and external state transitions follow the event-condition-action paradigm such
that respond events from the environment.

When a requester posts a crowdsourcing task, an instance of CrowdsourcingTask
type is created, for example named BO_A. When the transition from the Decom-
poseVoting state to the Waiting state is triggered, sub BOs of BO_A are created
according to steps in the best decompose scheme such that the best decompose scheme
is obtained automatically according to the voting results of crowd workers, for example
what is crowdsourcing (named BO_B), the related work of crowdsourcing (named
BO_C), and the future work of crowdsourcing (named BO_D). BO_A stays in state
Waiting for the completion of these three sub BOs. Each of these sub BOs may be
judged to be complex and then decomposed into several sub BOs, or judged to be
simple and solved directly by workers. For example, for the second task, one possible
decompose scheme may be search related work in recent five years (named BO_E) and
search related work in first five years (named BO_F). Finally, the runtime BO instance
tree structure of the crowdsourcing process is generated as shown in Fig. 11. Note that
it is just one possible decomposition scheme of the crowdsourcing task.

Initial

Judging

judgeDone/count++

Decomposing

decDone/count++

Solving

solDone/count++

start/
judgeTask

[simpleCount<complexCount]/
decomposeTask

[simpleCount>complexCount]/
solveTask

DecomposeVoting

voteDone/count++
[count==votTaskNumber]/getBestDecScheme

SolveVoting

voteDone/count++
[count==votTaskNumber]/getBestSolution;

sendToSelf(solGet)

[count==decTaskNum]/
/decomposeVoteTask

[count==solTaskNum]/
/solveVoteTask

Final

solGet/sendToParent(finish)

Waiting

finish/count++

/For each step of
the best Scheme,

 new CrowdsourcingTask

Merging

[count==steps]/
mergeTask

mergeDone/
sendToParent(finish)

Fig. 10. The object life cycle of CrowdsourcingTask type.

Business Objects - A New Business Process Modeling Approach 15

All these BOs in the instance tree run individually. When a node (e.g. BO_E)
moves to the final state, which means this simple sub task gets the result, it sends a
finish event to its parent (e.g. BO_C), and then that parent BO checks whether all its
sub BOs (e.g. BO_E and BO_F) have sent the finish event to it. If so, BO_C moves to
the Merging state and executes mergeTask which is an automatic task to merge the
results of these sub BOs. When the mergeTask is completed, BO_C sends a finish
event up to its parent (BO_A) and moves to the Final state. As this process goes on, the
root BO (BO_A) moves to the Merging state when it receives all finish events from sub
BOs. After mergeTask of BO_A completes, it moves to the Final state which means the
crowdsoucing process completes and the requester gets the final result, an introduction
paper about crowdsourcing.

6 Conclusion and Future Work

In this paper, we present a BOOPM approach. The BOOPM approach not only has the
ability to model traditional control flows, but also has the ability to model dynamic
processes. Meanwhile, the BO provides a foundation to control the proper granularity
of a process model.

We have discovered three relations among BOs and they are enough for the current
research. While the join of human factors, new relations are worth to explore. We
expect our future work to discover more potential relations among BOs. Our future
work also includes extending the business operation to support processes. The process
is described in the process-centric modeling approach.

Acknowledgements. This work is Supported by the National Key Research and Development
Program of China under Grant No. 2017YFB0202200; the National Natural Science Foundation
of China under Grant No. 61572539; the Research Foundation of Science and Technology Major
Project in Guangdong Province under Grant Nos. 2015B010106007, 2016B010110003; the
Research Foundation of Science and Technology Plan Project in Guangdong Province under
Grant No. 2016B050502006; the Research Foundation of Science and Technology Plan Project
in Guangzhou City under Grant No. 2016201604030001.

BO_B

BO_A

BO_C BO_D

BO_E BO_F

Fig. 11. One possible BO instance tree structure of the crowdsourcing process.

16 X. Shi et al.

References

1. Yuen, M.C., King, I., Leung, K.S.: A survey of crowdsourcing systems. In: Privacy,
Security, Risk and Trust and 3th IEEE International Conference on Social Computing,
pp. 766–773. IEEE Press, Boston (2011)

2. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with
turkomatic. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, pp. 1003–1012. ACM Press, Seattle (2012)

3. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342
(1983)

4. Van der Aalst, W.M., Ter Hofstede, A.H.: YAWL: yet another workflow language. Inf. Syst.
30(4), 245–275 (2005)

5. Business Process Modelling Notation. http://www.bpmn.org. Accessed 12 May 2017
6. Nüttgens, M., Fold, T., Zimmermann, V.: Business process modeling with EPC and UML:

transformation or integration? In: Schader, M., Korthaus, A. (eds.) The Unified Modeling
Language—Technical Aspects and Applications, pp. 250–261. Physica-Verlag, Heidelberg
(1998)

7. Dumas, M., ter Hofstede, Arthur H.M.: UML activity diagrams as a workflow specification
language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 76–90.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45441-1_7

8. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow modeling using
proclets. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901, pp. 198–
209. Springer, Heidelberg (2000). https://doi.org/10.1007/10722620_20

9. Wirtz, G., Weske, M., Giese, H.: The OCoN approach to workflow modeling in
object-oriented systems. Inf. Syst. Frontiers 3(3), 357–376 (2001)

10. Van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm for
business process support. Data Knowl. Eng. 53(2), 129–162 (2005)

11. Wang, J., Kumar, A.: A framework for document-driven workflow systems. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649,
pp. 285–301. Springer, Heidelberg (2005). https://doi.org/10.1007/11538394_19

12. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of
artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75183-0_21

13. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling business contexture and behavior using
business artifacts. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007. LNCS, vol.
4495, pp. 324–339. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72988-
4_23

14. Hull, R., Damaggio, E., De Masellis, R., et al.: Business artifacts with guard-stage-milestone
lifecycles: managing artifact interactions with conditions and events. In: Proceedings of the
5th ACM International Conference on Distributed Event-Based System, pp. 51–62. ACM,
New York (2011)

15. State Machine Workflow in Windows Workflow Foundation. https://msdn.microsoft.com/
enus/library/ee264171(v=vs.110).aspx. Accessed 21 May 2017

16. OSworkflow. https://java.net/projects/osworkflow. Accessed 21 May 2016
17. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3),

231–274 (1987)
18. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM

Systems Journal 42(3), 428–445 (2003)

Business Objects - A New Business Process Modeling Approach 17

http://www.bpmn.org
http://dx.doi.org/10.1007/3-540-45441-1_7
http://dx.doi.org/10.1007/10722620_20
http://dx.doi.org/10.1007/11538394_19
http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1007/978-3-540-75183-0_21
http://dx.doi.org/10.1007/978-3-540-72988-4_23
http://dx.doi.org/10.1007/978-3-540-72988-4_23
https://msdn.microsoft.com/enus/library/ee264171(v%3dvs.110).aspx
https://msdn.microsoft.com/enus/library/ee264171(v%3dvs.110).aspx
https://java.net/projects/osworkflow

19. SCXML. https://www.w3.org/TR/scxml/. Accessed 21 Nov 2017
20. Apache Commons SCXML. http://commons.apache.org/proper/commons-scxml/. Accessed

20 Dec 2016
21. Workflow Patterns. http://www.workflowpatterns.com/patterns/control/. Accessed 21 Mar

2017
22. https://sysuworkflower.github.io/BOOWorkflow/. Accessed 11 Nov 2017
23. https://github.com/sysuworkflower/BOOWorkflow/releases. Accessed 28 Jan 2018

18 X. Shi et al.

https://www.w3.org/TR/scxml/
http://commons.apache.org/proper/commons-scxml/
http://www.workflowpatterns.com/patterns/control/
https://sysuworkflower.github.io/BOOWorkflow/
https://github.com/sysuworkflower/BOOWorkflow/releases

	Business Objects - A New Business Process Modeling Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Business Object-Oriented Process Modeling
	3.1 Formal Model of BOOPM
	3.2 Relationship Between BOs
	3.3 Communication of Business Objects

	4 Evaluation of BOOPM
	4.1 Evaluation of a Single BO
	4.2 Evaluation of Communicating BOs

	5 Case Study
	6 Conclusion and Future Work
	Acknowledgements
	References

