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Abstract. The question of eliminating the multiplicative noise has
attracted much interest in many research studies. In this work, we are
interested with the one that are follows the Gamma distribution. The
rationale of this paper is to shed light on a brief comparative study of
some local and nonlocal models, for denoising images contaminated with
the noise of this type. The improved method of Split Bregman is used to
implement those models. The totality of experiments indicates that the
proposed nonlocal method gives better results than some other methods.
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1 Introduction

The main goal of an image denoising algorithm is to gain access though both
noise suppression and the maintenance of important features such as contours
and textures. In many real world applications, images are not usually contam-
inated with additive noise. This can be expressed in a word the presence of a
noise called multiplicative, which appears in various image processing applica-
tions, for instance in Synthetic Aperture Radar (SAR) and Ultrasound imaging
[10,15]. For a mathematical description of such a problem we suppose that Ω is
a connected open subset of IR2. Let u : Ω −→ IR be the original image, from the
degraded mechanism of multiplicative noise, the observation image f is obtained
by

f = u ⊗ η, (1)

where η is multiplicative noise. In this work, we are interested on the multi-
plicative noise that follows the Gamma distribution. So far, a many variational
models have been considered to manipulate the image restoration problem with
the multiplicative noise, while a large amount of works on this subject are total
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variation (TV)-based. The first approach with the TV regularization devoted to
multiplicative noise removal (suited for Gaussian multiplicative noise) also have
proposed by Rudin et al. [11] (RLO-model). By using property of the Maximum
a Posteriori (MAP) estimator and TV as edge preserver, Aubert and Aujol [2]
have introduced a multiplicative denoising variational model (AA-model) based
on the Bayes rule and Gamma distribution, whose energy functional can be
written as follows

min
u

{∫
Ω

|∇u| + λ

∫
Ω

(log u +
f

u
)
}

, (2)

where the first term is the regularization term which imposes some prior con-
straints on the original image, and the second term is the fitting term which
measures the violation of relation between u and the observation image f . Obvi-
ously, because of the non-convexity of (2), it does not have the global optimal
solution. To make this problem treatable, many approaches [3,4,9,13,14] have
been proposed in the literature. Among those approaches, Huang et al. [9] con-
sidered an exponential-transformation u −→ exp(u) in the fitting term of (2) to
obtain the following strictly convex model

min
u

{
λ1

∫
Ω

|∇u| + λ2

∫
Ω

|u − z|2 +
∫

Ω

(z + f exp(−z))
}

, (3)

where λ1 and λ2 are positive regularization parameters, and z = log u is an
auxiliary variable. In a recent work, Huang et al. [8] proposed a significant
modification of the regular term in (2). In deed, they provided a non-convex
Bayesian type model for multiplicative noise removal, which includes TV and
the Weberized TV as regularizers [12]. This gives an effective improvement over
the previous models in terms of visual appearance. This model can be described
as follows

min
u

{
α1

∫
Ω

|∇u| + α2

∫
Ω

|∇u|
u

+
∫

Ω

(log u +
f

u
)
}

, (4)

where the first two terms are the regularization terms, while the third one is the
nonconvex data fitting term of (2). α1, α2 are regularization parameters. The
main idea of the second regular term in (4) is to discover the universal influence of
ambient intensity level u on human’s sensitivity to the local intensity increment
|∇u|, or so called Just Noticeable Difference (JND) [16], in the perception of
both sound and light. This local fluctuation can be formulated by

|∇u|
u

= Const, (5)

according to Weber’s law [12,16], when the mean intensity of the background
is increasing with a higher value, then the intensity increments |∇u| also has
higher value. In the other hand, Dong et al. [4] proposed to replace the classical
TV-norm in [9,13] with the discrete nonlocal norm one and they applied the
split Bregman iteration to solve this two nonlocal models, by introducing the
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two constraints z = log u and z0 = log f , this two models can be described as
follows

min
z

{∑
i

|∇NLz|i +
λ

2

∑
i

|zi − z0i |2
}

,

min
z

{∑
i

|∇NLz|i + λ
∑

i

(zi − exp(z0i − zi))}
}

.

(6)

Inspired by the idea of [8], we propose a nonlocal variational model for multi-
plicative noise removal

min
u

{
α1

∫
Ω

|∇NLu| + α2

∫
Ω

|∇NLu|
u

+
∫

Ω

(log u +
f

u
)
}

. (7)

The rest of this paper proceeds as follows. In Sect. 2, first we describe the neces-
sary definitions and tools of some nonlocal operators. After, we give a detailed
implementation of the efficient computational method for obtaining the numeri-
cal solution of (7) using an improved split Bregman algorithm. Numerical exper-
iments intended for the effectiveness of the proposed method are provided in
Sect. 3. Finally, conclusions are made in Sect. 4.

2 Our Proposed Model

2.1 Nonlocal Differential Operators

First, we give a brief overview of the definitions of some nonlocal functionalities
(for more details see [1,5,6]). Let Ω ∈ IR2, u : Ω −→ IR be a real function and
μ be a probability measure. Let K : Ω × Ω −→ IR a nonnegative symmetric
function represents the weights between the current pixel and the pixels in Ω.
Given a pair of points (x, y) ∈ Ω × Ω, then the nonlocal gradient is defined as

∇NLu(x, y) :=
√

K(x, y)(u(y) − u(x)). (8)

The inner product between two vectors q1, q2 : Ω × Ω −→ IR and the associated
norm of q1 at x ∈ Ω are defined as

< q1, q2 >:=
∫

Ω

q1(x, y)q2(x, y)dμ(y), |q1| =

√∫
Ω

q1(x, y)2dμ(y). (9)

Hence, the norm of ∇NLu at x ∈ Ω is referred to as

|∇NLu|(x) =

√∫
Ω

K(x, y)(u(y) − u(x))2dμ(y). (10)

The nonlocal divergence operator can be defined by the standard adjoint relation
with the nonlocal gradient, ∀u : Ω −→ IR, q : Ω × Ω −→ IR as follows

< ∇NLu, q >:= − < u,divNLq >, (11)
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which leads to the definition of nonlocal divergence of the vector q

divNLq(x) :=
∫

Ω

√
K(x, y)(q(x, y) − q(y, x))dμ(y). (12)

The general nonlocal p-Laplacian operator for 1 ≤ p < ∞, which is defined by

Δp
NLu(x) :=

1
2
divNL(|∇NLu|p−2∇NLu),

=
∫

Ω

K(x, y)
p
2 |u(y) − u(x)|p−2(u(y) − u(x))dμ(y).

(13)

2.2 The Proposed Model

In this subsection, we describe a method to solve our model (7). We first take
ψ(u) = α1 + α2/u, the minimization problem (7) can be rewritten as

min
u

{∫
Ω

ψ(u)|∇NLu|dμ(x) +
∫

Ω

(log(u) +
f

u
)dμ(x)

}
. (14)

Generally, the nonlocal TV norm in (14) is difficult to be computed straight-
forwardly. To avoid this drawback, we adopt the split Bregman iteration, which
was initially introduced by Goldstein and Osher [7]. This method is originally
designed for the L1 regularization +L2 minimization problem. Note that the
second term contains a log-term, which will not allow to apply directly this
method. To overtake this difficulty, we proceed as in [4] and introduce an auxil-
iary variable z, such that z = u and go on to solve the following unconstrained
optimization problem

min
u,z

{∫
Ω

ψ(u)|∇NLu|dμ(x) +
λ

2

∫
Ω

|u − z|2dμ(x) +
∫

Ω

(log z +
f

z
)dμ(x)

}
,

(15)
where λ > 0 should be large enough so that z is sufficiently close to u in the
sense of L2-norm. Subsequently, the minimization problem (14) can be iteratively
solved by minimizing the following two subproblems

min
u

=
∫

Ω

ψ(u)|∇NLu|dμ(x) +
λ

2

∫
Ω

|u − z|2dμ(x), (16)

min
z

=
λ

2

∫
Ω

|u − z|2dμ(x) +
∫

Ω

(log z +
f

z
)dμ(x). (17)

The first subproblem (16) is a L1 regularization +L2 minimization problem,
thus it can be efficiently solved by the classical split Bregman iteration. Let
d = ∇NLu, then (16) becomes

(uk+1, dk+1) = min
u,d

∫
Ω

ψ(u)|d|dμ(x) +
β

2

∫
Ω

|d − ∇NLu − bk|2dμ(x)

+
λ

2

∫
Ω

|u − z|2dμ(x),

bk+1 = bk + ∇NLuk+1 − dk+1,
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where β is a positive regularization parameter. To solve the problem (15) is
equivalent to solve the following system

uk+1 = min
u

∫
Ω

ψ(u)|dk|dμ(x) +
β

2

∫
Ω

|dk − ∇NLu − bk|2 +
λ

2

∫
Ω

|u − zk|2dμ(x),

dk+1 = min
d

∫
Ω

ψ(uk+1)|d|dμ(x) +
β

2

∫
Ω

|d − ∇NLuk+1 − bk|2dμ(x),

bk+1 = bk + ∇NLuk+1 − dk+1,

zk+1 = min
z

λ

2

∫
Ω

|uk+1 − z|2dμ(x) +
∫

Ω

(log z +
f

z
)dμ(x).

(18)
Taking in the system (18), μ =

∑
i∈ZZN δi then (18) can be written as

uk+1
i = min

ui

∑
i∈ZZN

ψ(ui)|dk
i,j | +

β

2
|dk

i,j − ∇NLui − bk
i,j |2 +

λ

2
|ui − zk

i |2,

dk+1
i,j = min

di,j

∑
i∈ZZN

ψ(uk+1
i )|di,j | +

β

2
|di,j − ∇NLuk+1

i − bk
i,j |2,

bk+1
i,j = bk

i,j + ∇NLuk+1
i − dk+1

i,j ,

zk+1
i = min

zi

∑
i∈ZZN

λ

2
|uk+1

i − zi|2 + (log zi +
f

zi
).

(19)

The minimizers of first and last subproblems from system (18) are characterized
by the optimality condition given by the Euler-Lagrange formulation. The second
subproblem from system (18) can be implemented via the generalized shrinkage
formula

shrink(t, γ) = sgn(t)max {|t| − γ, 0} . (20)

Which are outlined in the following system

0 = ψ
′
(u)|dk| + λ(u − zk) − βdivNL(dk − ∇NLu − bk),

dk+1 =
∇NLuk+1 + bk

|∇NLuk+1 + bk| max{|∇NLuk+1 + bk| − ψ(uk+1)
β

, 0},

0 = −λ(uk+1 − z) +
z − f

z2
.

(21)

Using the Gauss-Seidel iterative scheme, then the numerical algorithm summa-
rizes all of these elements
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Algorithm 1. Split-Bregman iteration for our model
Initialization : u0 = z0 = f , d0 = b0 = 0. Fixed λ, β;
for k=0,1,... do

for n=0,1,... do

uk+1,n+1
i = 1

λ+β
∑

j Ki,j
[β

∑
j Ki,ju

k+1,n
j − ψ

′
(uk+1,n

j )|dk+1,n| +

λzk
i − β

∑
j

√Ki,j(d
k+1,n
i,j − bk+1,n

i,j − dk+1,n
j,i + bk+1,n

j,i )];

end

dk+1
i,j =

√
Ki,j(u

k+1
j −uk+1

i )+bki,j
√∑

j Ki,j(u
k+1
j −uk+1

i )2+(bki,j)
2

max{
√∑

j Ki,j(u
k+1
j − uk+1

i )2 + (bk
i,j)

2−
α1uk+1

i +α2

βuk+1
i

, 0};

bk+1
i,j = bk

i,j +
√Ki,j(u

k+1
j − uk

i ) − dk+1
i,j ;

for l=0,1,... do

zk+1,l
i = uk

i + 1
λ
(

f−z
k,l
j

(z
k,l
j )2

);

end

end

Let ψ
′
(uk+1,n

j ) = − α2

(uk+1,n
j )2

, |dk+1,n| =
√∑

j(d
k+1,n
i,j )2 + (dk+1,n

j,i )2 and

dk+1,n=0 = dk, bk+1,n=0 = bk and zk+1,l=0 = zk. We choose the weight function
as

K(x, y) = exp
{

−d(x, y)
h2
0

}
, (22)

where d(x, y) =
∫

Ω
G�(s)|u(x+ s)−u(y + s)|2ds is the distance between patches

located at x and y, G� is a Gaussian kernel of standard deviation � and h0 is a
filtering parameter. In all experiments, we fixed the number of outer iterations
in the Split Bregman to be four (i.e., k = 4) and number of inner iterations to
be two (i.e., n = 2). We use patches of 5× 5 to compute the weight and a search
window of size 11 × 11.

3 Numerical Results

In this section, we present numerical results so as to illustrate the performance
of our proposed model. These results are compared to those obtained by the
AA-model proposed by Aubert et al. (2), the HNW-model proposed by Huang
et al. (3) and the HXW-model proposed by Huang et al. (4). Furthermore, we
compared our model with the second nonlocal DZK-model proposed by Dong et
al. (6). It’s worth anticipating that all the numerical simulations (exclude DZK-
model) are implemented by the approach described in the previous Sect. 2.2. In
all tests, each pixel of an original images (Figs. 1(a)–3(a)) are degraded by a noise
which follows a Gamma distribution. The noise level is controlled by the value
of σ in the experiments, the noisy images with different levels (σ = 0.08, 0.1, 0.2)
are shown in Figs. 1(b)–3(b). For measuring the quality of the restored image,
three tools are considered. The first one is the structural similarity index (SSIM),
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the second one is the peak signal to noise ratio (PSNR), and the last one is the
signal to noise ratio (SNR), thus these measures are given by

SSIM := (2ūū∗+C1)(2σuu∗+C2)

(ū2+ū∗2+C1)(σ2
u+σ2

u∗+C2)
,

PSNR := 10 log10
{

M×N
||u−u∗||22 × max{u}2

}
, SNR := 10 log10

||u−ū||22
||u−u∗||22 ,

where u∗, u, and M ×N are respectively the restored image, the true image and
the size of image. ū and ū∗ represent the mean values of u and u∗ in image domain
Ω. σu and σu∗ denote the variances of u and u∗. σuu∗ is the covariance of u and
u∗. C1 and C2 are two variables to stabilize the division with a low denominator.
Figures 1(c)–3(f) show the denoising results of the three noisy gray level images
by different methods. In these experiments, it is clear that the restoration results
obtained by the proposed method are visually better than those by the AA,
HNW and HXW-models. Table 1 summarize the PSNRs and SSIMs results by
different methods on the three noisy gray level images. From Table 1, we can see
that PSNRs and SSIMs values of restored images using our method are wider
than those restored by using the other three methods. In Table 2, we present the
PSNRs and SSIMs results obtained by some specific cases of general model (7)
on the three noisy gray level images. This can be included the models:

Fig. 1. (a) The original Barbara image (256 × 256); (b) the noisy image with level
σ = 0.08; (c) the result of the AA-model; (d) the result of the HNW-model; (e) the
result of the HXW-local-model [α1 = 50, α2 = 10−3]; (f) the result of our model
[α1 = 10−3, α2 = 10−4].
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Fig. 2. (a) The original Cameraman image (256 × 256); (b) the noisy image with level
σ = 0.1; (c) the result of the AA-model; (d) the result of the HNW-model; (e) the
result of the HXW-local-model [α1 = 10−3, α2 = 10−4]; (f) the result of our model
[α1 = 10−3, α2 = 10−4].

Fig. 3. (a) The original Lena image (256×256); (b) the noisy image with level σ = 0.2;
(c) the result of the AA-model; (d) the result of the HNW-model; (e) the result of the
HXW-local-model [α1 = 10−3, α2 = 10−4]; (f) the result of our model [α1 = 10−3, α2 =
10−4].
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Table 1. The PSNR and SSIM of noisy and restored images using fours methods

Experiments Noisy-image AA-model HNW-model HXW-model Our-model

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Figure 1 19.06 0.70 19.51 0.71 19.37 0.71 19.10 0.77 21.01 0.92

Figure 2 18.07 0.62 19.04 0.64 18.98 0.63 19.11 0.80 21.41 0.91

Figure 3 12.32 0.37 12.63 0.40 12.58 0.39 12.67 0.51 14.31 0.76

Table 2. Comparison results the different cases of general model (7) on the noisy gray
level Figs. 1 and 3

Experiments α1 = 0, α2 = 1 α1 = 1, α2 = 0 α1 = 10−3, α2 = 10−4

PSNR SSIM PSNR SSIM PSNR SSIM

σ = 0.08 20.82 0.89 20.55 0.84 21.01 0.92

σ = 0.1 20.18 0.87 20.25 0.87 21.41 0.91

σ = 0.2 14.18 0.75 14.35 0.76 14.31 0.76

– When α1 = 0, this reduces to the nonlocal version of the model in [12] with
the fitting term of (2).

– When α2 = 0, this reduces to the nonlocal version of the AA-model (2). We
choose these tests to show that each model could be the best one among
the three models. All the three nonlocal models obtain quite good results,
than the other local models. From Table 2, It turns out that the results of the
images restored, when noise level is small (σ = 0.08, 0.1) are better than those
of other cases. But, when we increase σ (σ = 0.2), we obtained almost the
same results. Table 3 shows the SNRs results of our model compared with the
nonlocal DZK-model on the two noisy gray level Barbara and Lena images
under noise level σ = 0.1. From Table 3, we can see that our method gives
better results than those obtained by DZK-model (6). The main reason for
getting better results is that the nonlocal combination of TV and Weber-
ized TV regularizers are dominated in our model. It can successfully remove
the multiplicative noise following Gamma distribution, while preserving fine
structures and textures as well.

Table 3. The SNR comparison of noisy and restored images using the nonlocal DZK-
model with our model (α1 = 10−3, α2 = 104) under noise level σ = 0.1

Experiments Noisy image SNR DZK-model SNR Our-model SNR

Barbara 10.02 11.22 14.10

Lena 9.01 10.74 13.36
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4 Conclusion

In this work, we have proposed a general nonlocal model for multiplicative noise
removal problem that following Gamma distribution under the combination of
two nonlocal regularizers the weberized TV and the TV operator. By combining
these two regularizers, our nonlocal model outperform the classical AA-, HNW-,
HXW- and DZK-models. It can both preserve more fine structures and remove
the noise of this type. We have tested all of those models under different noise
levels and their performances are evaluated and compared both visually and
quantitatively.
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