
Fourth Order Nonlinear Diffusion Filters
for Multiplicative Noise Removal

Mahipal Jetta(B), Pradeep Nalluri, Preetham Dasari, and Sai Hitesh
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Abstract. The second order partial differential equations based multi-
plicative noise removal filters produce step edges (staircase artifacts) in
the filtered image. This paper proposes two fourth order nonlinear diffu-
sion filters, an isotropic filter and an anisotropic filter, which do not allow
these artifacts. Through numerical simulations it is shown that the pro-
posed isotropic filter produces the filtered image in a relatively shorter
time, with noticeable improvement in the quality, when compared to a
second order filter and the proposed anisotropic diffusion filter.
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1 Introduction

The coherent imaging introduces speckle noise in an image. The presence of this
noise hinders the performance of high level algorithms like image segmentation
and classification. Hence noise removal is an important step in better under-
standing the image.

The speckle noise present in an image is usually described with a multiplica-
tive model g = fn, where g is the observed image, f is the original image and
n is multiplicative noise. The aim of a noise removal algorithm is to obtain the
best approximation of the original image f . To achieve this goal, initially window
based filters were developed [1–3]. In these filters one estimates the noise free
image f̂ using local mean and local variance of the observed image and the noise
variance. A typical model in this direction is

f̂ = ḡ + κ(g − ḡ) (1)

where ḡ denotes the local mean of the observed image, and κ is a function of sec-
ond order moments of g and the noise variance σ2

n. According to Lee filter [1]

κ =
vf

vg − σ2
nvf

with vf =
vg − σ2

nḡ2

1 + σ2
n

, local spatial variance of f , vg being the

local variance of g, at the current pixel location, and noise variance is assumed to
be constant throughout the image. In case of Kuan filter [2] the estimated image
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is obtained using (1) with κ =
vf

vg
. The window based filters remove noise from

homogeneous regions effectively but will not remove noise present in the edges.
To better preserve edges and other striking features of the image,

while removing multiplicative noise, variational approaches [4,5], patch-based
approaches see for example [6,7], and speckle reducing partial differential equa-
tions based filters were proposed. In this paper we focus on the partial differential
equations based speckle removal filters. The first one among these filters is the
speckle reducing anisotropic diffusion filter (SRAD) [8]. This filter was developed
by comparing a window based filter with a discrete anisotropic diffusion model.
This filter has been discussed briefly in the next section. Many improvised mod-
els of SRAD are proposed in the literature, see for example, [9–11], to obtain
the best approximation of the underlying speckle free image. Note that these
filters are different from the additive noise removal PDE based filters [12,13] as
the latter estimates the edges based on gradient which will be biased in case
of speckle image and hence produces singal-dependent results, see [10] and the
references there in.

Most of these filters succeeded in achieving noise removal and better preser-
vation of edges to some extent. However it is well known, in case of additive
noise, that the second order filters produce undesired step edges in the filtered
image [14]. In this paper we have shown through numerical simulations that the
same conclusion holds for speckle reducing second order PDE filters. To address
this issue we propose two new fourth order nonlinear diffusion filters, motivated
by the additive noise removal fourth order filters [15], with a diffusivity func-
tion depending on the speckle statistics. The performance of these filters has
been studied in terms of stair-case artifacts, quality of edge preservation and
computation time.

The remainder of the paper is organized as follows. In Sect. 2 we briefly
present some of the standard speckle reducing diffusion filters. The two fourth
order models are presented in Sect. 3. In Sect. 4 we carry out the numerical
simulations. Section 5 constitutes the concluding remarks.

2 Detail Preserving Anisotropic Diffusion Filter

The general speckle reducing diffusion filter takes the following form

∂u

∂t
(x, t) = ∇.(D∇u(x, t)) (2)

with initial condition u0(x) = u(x, t = 0). Here u(x, 0) is a noisy image, and
D is a symmetric positive definite diffusion tensor which is a function of local
statistics of the image. The role of diffusion tensor D is to control the diffusion
process depending on the local structure of the image. In general, in both additive
and multiplicative noise cases, the quality of the filtered image depends on the
choice of diffusion coefficient D [8,12,13].

To remove speckle noise from an image Yu and Acton [8] developed a similar
diffusion filter by comparing the discrete form Perona-Malik filter [12] with the
Lee’s filter [1]. It is formulated as
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ut = ∇.(c(q)∇u) (3)

with homogeneous Neumann boundary condition and considered noisy image as
the initial condition.

Here
c(q) =

1

1 +
q2 − q20

q20(1 + q20)

, (4)

where q(x; t) = q(x, y; t) is the instantaneous coefficient of variation determined
by

q(x, y; t) =

√
(1/2)(|∇u|/u)2 − (1/16)(∇2u/u)2

[1 + (1/4)(∇2u/u)]2
, (5)

and q0(t) is coefficient of variation of noise. In homogenerous regions q ≈ q0
therefore (3) behaves as a linear diffusion equation which is known to smooth the
image. It has been realized that the estimation of q0(t) is crucial in obtaining the
quality image [9–11]. The better version of this PDE, called the detail preserving
anisotropid diffusion (DPAD) [9], can be obtained by considering

c(q) =
1 +

1
q2

1 +
1
q20

, (6)

in Eq. (3).
We can see that the traditional anisotropic speckle reducing filters are of

second order type. Hence they tend to generate stair-case artifacts in the filtered
image, see Fig. 1. To address this issue we propose two new fourth order diffusion
filters, incorporating the speckle statistics obtained using mode operator [9].

3 Proposed Filters

To remove noise from an image while preserving the edges and without generat-
ing the staircase artifacts, we propose two new filters.

3.1 Fourth Order Anisotropic Diffusion Filter

The first filter in achieving the desired goal is a fourth order anisotropic diffusion
filter, motivated by Hajiaboli [15] additive noise removal model, which is given
by

ut = −Δ(c(q)2uηη + c(q)uξξ), (7)

with the same initial and boundary conditions as in (3). Here Δ denotes the
Laplacian operator and the diffusion coefficient c(q) is as given in (6), and

uηη =
uxxu2

x + 2uxuyuxy + uyyu2
y

u2
x + u2

y

(8)
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and

uξξ =
uxxu2

y − 2uxuyuxy + uyyu2
x

u2
x + u2

y

. (9)

We will abbreviate this filter as prop1 in the rest of the paper. This is an
anisotropic filter as it allows varying diffusion strengths in the directions of gra-

dient
(
η =

[ux uy]√
u2

x + u2
y

)
and level set

(
ξ =

[−uy ux]√
u2

x + u2
y

)
. The presence of second

order directional derivatives in the directions of η and ξ, that is uηη and uξξ, in
the filter steers the diffusion process unevenly in two orthogonal directions η and
ξ. The diffusion is more in the level set direction than in the gradient direction
thereby the diffusion process removes noise without harming the edges. Moreover
the noise present in an edge will also be removed. To address the multiplicative
noise, we consider the diffusivity coefficients of uηη and uξξ in the filter as func-
tions of noise level which can be estimated through, for example, the techniques
provided in [9] or using principal component analysis (PCA) [16]. This filter
performs well in preserving the edges and avoids stair-case artifacts to a larger
extent than second order filter. However, the filtering of texture-rich images con-
sumes more time to remove noise from the image. Moreover, in case of high noise
level, it loses the sharpness of features of the image due to directional smooth-
ing, see Fig. 1. Apart from these drawbacks, it involves computation of several
partial derivatives which in turn increase the computational effort. Therefore
we propose an alternative fourth order diffusion filter which is described in the
following subsection.

3.2 Fourth Order Isotropic Diffusion Filter

To balance the trade-off between computational effort and positive attributes
of prop1 we propose a fourth order isotropic diffusion filter, herein after called
prop2 filter, which has a few partial derivatives. This filter is given by

ut = Δ(c(q)Δu) (10)

where c(q) is as mentioned in (6) and with homogeneous Neumann boundary
condition. This filter removes noise and preserves ramp edges as Δu is minimum
whenever we have planar approximation to the initial image. In homogeneous
regions c(q) ≈ 1 and hence becomes a biharmonic filter which is known to damp
the high frequencies in a short time and hence eliminates noise efficiently. The
performance of all the considered filters is demonstrated in the following section.

4 Numerical Experiments

In this section we demonstrate the performance of the proposed fourth order
filters, and compare the results with the detail preserving anisotropic diffusion
(DPAD), (3) along with (6). Here all the simulations were carried out on a
workstation (Intel Xeon(R) @ 2.20 GHz × 20) for a fair comparison.
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Fig. 1. Denoising results with various filters: (a) Lena image corrupted with a speckle
noise of variance 0.05, (b) using DPAD, (c) prop1 (d) prop2

The discrete versions of DPAD, prop1, and prop2 are obtained by employ-
ing central difference approximation for space derivatives and forward differ-
ence approximation for time derivative. This type of discretization produces the
explicit scheme for a given diffusion filter. It is well known that this scheme
demands a heavy restriction on time step size to obtain stable results. Hence
we have taken the time step sizes to be 0.15, 0.015 for DPAD and the proposed
filters respectively.

In Fig. 1, we considered Lena image (f) and added multiplicative noise (n) to
it, using the equation g = f + n ∗ f , where n is uniformly distributed random
noise with mean 0 and variance 0.05. Considering this as an initial condition and
evolving according to DPAD, we can see the piecewise constant approximation
of the image. The obtained filtered image does not look visually appealing as
it contains false edges and sudden change of intensity values in homogeneous
regions. Note that these artifacts cannot be seen in other two images which are
obtained using proposed fourth order filters. The same can be observed in Fig. 2.
We can also see that the edges are better preserved with prop1 filter than with
prop2 filter. This is due to fact that the prop1 filter allows the diffusion along the
level set (edge direction) and inhibits the smoothing across the edge. However,
in case of high noise level and texture-rich images, this filter takes longer time
to produce quality filtered image than the second order filter, see Table 1 and
Fig. 3. The prop2 filter provides noticeable improvement in the filtered image
in terms of reduction of step edges. Also the processed image is obtained in a
very short time when compared with the other two filters, see (3). To check the
performance of the proposed filters quantitatively we consider two well known
quality checking measures, namely SSIM and PSNR. The higher the values of
these measures means the better the quality. Table 1 shows that the prop2 filter
produces a better quality image in terms of PSNR, for different noise levels, when
compared DPAD. In all the simulations we have stopped the iteration process
whenever the filtered image attains the maximum PSNR. It is clear from these
figures that the prop2 filter is a better choice among all the three regarding
computational effort and quality of filtered image.
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Fig. 2. Denoising results with various filters: (a) Peppers image corrupted with speckle
noise of mean zero and variance 0.01, (b) using DPAD, (c) prop1 (d) prop2
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Fig. 3. Quantitative performance of diffusion filters using (a) PSNR (b) MSSIM

Table 1. Comparison of various filters

Image Method ssim (iterations) psnr (iterations) CPU time

Variance= 0.01

Lena dpad 0.8931 (1247) 33.14 (2069) 217

prop1 0.8841 (1334) 33.31 (1496) 157

prop2 0.8908 (665) 33.50 (908) 95

Peppers dpad 0.9254 (927) 31.62 (1444) 137

prop1 0.9221 (515) 31.97 (638) 66

prop2 0.9266 (425) 32.06 (573) 57

Variance= 0.05

Lena dpad 0.8401 (5437) 29.59 (7112) 873

prop1 0.8298 (8326) 29.95 (9981) 1086

prop2 0.8378 (3668) 30.01 (908) 433

Peppers dpad 0.8728 (3417) 27.75 (5120) 461

prop1 0.8728 (2784) 28.31 (5461) 432

prop2 0.8785 (1804) 28.28 (2322) 195
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5 Conclusion

This paper is an attempt to overcome the artifacts of a second order speckle
reducing anisotropic diffusion filter. The development of two new filters is
achieved by incorporating speckle statistics into the diffusion process. The first
one is an anisotropic diffusion filter which is shown to remove speckle noise effec-
tively and preserve important features present in the image without creating false
edges. But this filter requires high computational effort as it involves several par-
tial derivatives. Hence we proposed an alternative isotropic filter which is shown
to produce the speckle free image, without step edges, in a shorter time than
the detail preserving anisotropic diffusion filter and the fourth order anisotropic
diffusion filter. In future we wish to develop an efficient and reliable scheme for
the proposed isotropic filter.
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