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Abstract. In this paper local and non-local denoising methods are join-
tly employed in order to improve the visual quality of the final denoised
image. Based on the evidence that the output images of non local denois-
ing methods are not pointwise better everywhere than the outputs images
of local methods and than the noisy image itself, the cascade of two
improvement steps is applied to the output image of a non local denoising
method. The first step aims at correcting the output image by recovering
the lost information directly from the noisy one. The second step aims
at recovering those good estimations provided by a local regularization
method. A pointwise weighted average between the involved image pair
is used at each step. The weights are estimated from the noisy data using
adaptive and automatic procedures. Experimental results show that the
proposed approach allows us to greatly improve the results of patch based
non local denoising in terms of both peak signal to noise ratio (PSNR)
and structural similarity index (SSIM).
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1 Introduction

Denoising is a longstanding and investigated topic. Despite the huge number
of approaches proposed for its solution, it still remains a challenging and open
research problem. Linear and non linear filtering, bayesian methods, shrinkage
methods, variational models, local and non local filtering are only few examples
of the different approaches and ideas underlying the existing solutions — see [10]
for a complete and recent review. The most recent and performing denoisers are
based on non local patch regularization. This kind of regularization allows us to
reach high standard results, which are considerably better than those achieved by
traditional local denoisers. Noteworthy examples are Non Local Means (NLM)
[3] and Block Matching 3D (BM3D) [5], especially for the removal of additive
white Gaussian noise. They mainly consist of grouping similar patches in the
image and then removing noise by exploiting replicates of the same patch. NLM
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is based on a weighted mean of similar patches in the whole image; BM3D is
based on the concept of collaborative filtering. It mainly consists of a proper and
joint use of non local similarities search (through the block matching algorithm)
and standard transform-based denoising applied to 3D data, i.e. the stack of
similar blocks.

Despite the very high performance of such approaches, patch-based non local
denoising is not perfect. In fact, the average of non local but similar patches
leads to an unavoidable smoothing of different parts of the noisy image under
study, especially in case of patches misalignments due to the presence of noise
or due to the lack of point-wise correspondence between patches. In addition, in
order to reduce the prohibitive computational effort required by the search of
similarities in the whole image, this search is limited in a neighborhood of each
pixel; as a result not all image similarities contribute to the denoising process.
A lot of research effort has been devoted to make non local methods fast and
usable in real applications; in particular, methods for making faster the search
of similarities have been proposed as well as for improving the visual quality
of denoised images, see for example [2,4,6,7,9,11,12]. With regard to the last
point, a classical way for improving the denoising result is the residual method
[1]. It mainly consists of applying an edge preserving denoising filtering to the
residual image, i.e. the one which is obtaining by subtracting the denoised image
from the noisy one.

The aim of this paper is to show that there are several image pixels where
local, even traditional, denoising performs better than non local one. In partic-
ular, it is possible to show that there is a class of pixels where classical Wiener
filter performs better than the most performing non local denoiser, i.e. BM3D.
The interesting aspect is that pixels belonging to this class are not necessarily
located in correspondence to image edges. In fact, the performance of non local
denoising ‘locally’ depends on how many and how similar patches are within the
image. For a similar reason, somewhat more anti intuitive, it is possible to show
that there is also another class of pixels for which it is better to leave the noisy
image unchanged rather than performing a patch based denoising. Since it is very
hard to predict which are the pixels belonging to the two aforementioned classes,
in this paper a strategy based on two different convex combinations of local and
non local information is proposed. The main aim is to embed local information
into a non local denoising result. The first convex combination involves the out-
put image of BM3D and the noisy image itself. In cascade, the second convex
combination involves the output of the first step and the output image of a sim-
ple Wiener filter when applied to the noisy image. The parameters employed in
the convex combinations are properly estimated from the data using two differ-
ent approaches and they involve all image pixels, not only the ones belonging to
each specific class.

Experimental results achieved on various test images show that the proposed
approach is able to increase the visual quality of BM3D image of 1 db on average
at low levels of noise and of about .5 db at higher noise levels.
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2 The Proposed Model

In the denoising problem, the noisy image Y is modelled as follows

Y (i) = X(i) + N(i), i ∈ Ω (1)

where X is the original (clean) image, N is an i.i.d. Gaussian white noise with
zero mean and variance σ2 and Ω is the image domain. i stands for pixel location.
Denoising goal is to get an estimate X̂ of X from Y . The recent literature has
shown that non local patch-based denoisers, like BM3D (whose output image
will be denoted by X̂) are more effective in terms of SNR than traditional local
denoisers, like Wiener filtering (whose output will be denoted by X̄). However,
this global result is not pointwise satisfied: there are some pixels for which X̄ is
better than X̂ and others where Y is a better candidate than X̂. As a result, we
can define two distinct classes of pixels as follows

Ω1 = {i ∈ Ω : |Y (i) − X(i)| < |X̂(i) − X(i)|} (2)

Ω2 = {i ∈ Ω : |X̄(i) − X(i)| < |X̂(i) − X(i)|}. (3)

Fig. 1. 512 × 512 × 8 bits Lena image corrupted by a Gaussian noise N(0, 20). (Left)
Map of pixels belonging to Ω1 (percentage of white points 19%). (Right) Map of pixels
belonging to Ω2 (percentage of white points 38%).

An example of Ω1 and Ω2 is shown in Fig. 1. More in general, this means that
some image high frequencies have been lost in the patch based non local method
due to the regularization process; on the other hand, some low frequencies have
been lost since some artifacts are introduced due to misalignments or not good
similarities matching. That is why it is necessary to reintroduce in the image
both some high and low frequency content. To this aim, we should construct the
following sequence of images

Xn = Xn−1 + αn(Yn − Xn−1), n ≥ 1 (4)
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with X0 = X̂. αn is a parameter to be estimated; Yn is the sequence of images
having decreasing high frequency content from which recovering the lost informa-
tion in X0. Y1 = Y since it contains all image high frequencies, while Yn, n > 1,
is a more and more regularized version of the noisy image as n increases. αn quan-
tifies the amount of local frequency content that has to be recovered at each step.
Eq. (4) can be rewritten as follows

Xn = αnYn + (1 − αn)Xn−1, n ≥ 1. (5)

As a result, for αn ∈ [0, 1], Xn is a convex combination of two regularized versions
of the noisy image, i.e. two distinct estimations of the original one X. Based on
these considerations, since it is not trivial to find out Ω1 and Ω2 in Eqs. (2) and
(3), in this paper we propose to use just two iterations of the sequence in Eq. (5).
The first one involves the noisy image Y and the output image X̂ of a patch
based non local denoiser (BM3D), i.e.

X1 = α1Y + (1 − α1)X̂. (6)

The second one involves X1 and the output image of a local denoiser (Wiener
filter) X̄, i.e.

X2 = α2X̄ + (1 − α2)X1. (7)

α1 and α2 can be defined as the solution of a joint least squares minimiza-
tion problem, i.e. (α1, α2) = argminα1,α2∈[0,1]‖X − X2‖22, or as the solu-
tions of two separated minimization processes independently applied at each
step of the proposed procedure, i.e. α1 = argminα1∈[0,1]‖X − X1‖22, and
α2 = argminα2∈[0,1]‖X − X2‖22.

Unfortunately, as shown in the Appendix, these estimates depend on the
original image through terms that cannot be considered negligible. As a matter
of facts, in the estimation of α1, the independence of noise from the original
image allows us to get the following reliable estimate for α1:

α1 � 1 − σ2|Ω|
||Y − X̂||22

. (8)

On the contrary, it is not the case for α2, where the term
∑

Ω N(X−X1)

||Y −X̂||22
is not

negligible and its robust estimation is not trivial. In the following an estimation
method based on the Minimum Description Length (MDL) is proposed for α2.

2.1 MDL for α2 Estimation

MDL is based on the rationale that during a compression phase, the distortion
between the compressed signal and the original one should be kept low; at the
same time, the description of the compressed signal should use as few bits as
possible. Since these two objectives are conflicting, a suitable criterion for reach-
ing a compromise is needed, as for example Rissanen’s MDL principle [8]. Let
fix a class of models from which selecting the one which best represents the
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data. According to the MDL principle, given a sequence of observations, the
best model is the one that yields the shortest description length for describing
the data using the model — the description length can be interpreted as the
number of bits needed for encoding it. This description can be done through a
two-part code: the first one describes the model, the other describes the data
using the model. In our case, X1 represents the data (observations) and we wish
to find a model M(α2) that describes it according to Eq. (7). M(α2) minimizes
the following two-part code-length:

α2 = argminα2∈[0,1]L(X1,M(α2)) (9)

where L(X1,M(α2)) = L(X1|M(α2)) + λL(M(α2)), λ is a parameter that
should balance the two terms. Using PSNR as error measure, L(X1|M(α2)) =
10 log10

2552∑ ∑
(X1−X2,α2 )

2 , while X2,α2 is Eq. (7) for a given α2. L(M(α2)) gives
the bits necessary to encode X2, i.e. the bits necessary to code X1, α2X̄ and
the parameter α2. Note that the bits budget required by α2 is constant and can
be neglected in the minimization. In order to make automatic the minimization
process (choice of λ), PSNR is given with a 2 decimal digits precision; B is the
bits budget for X1 while just α2B bits are required for α2X̄. Hence, also for
L(M(α2)) two decimal digits have been considered. The parameter λ is then
set as the ratio between the maximum of L(X1|M(α2)) and the maximum for
L(M(α2)) with respect to α2 ∈ [0, 1].

3 Experimental Results and Concluding Remarks

The proposed model, namely WN-BM3D, has been tested on several images
corrupted by zero mean Gaussian noise with standard deviation ranging from 5
to 100. In this paper we will show the results on two 512×512×8 bits test images:
Lena and Fingerprint. Results have been evaluated in terms of Peak Signal to
Noise Ratio (PSNR) and Structural SIMilarity index (SSIM). Table 1 refers to
Lena image and shows the value of the parameters α1 and α2 when two distinct
oracle minimization procedures are performed. Oracle means that the original
image is known and each minimization reaches the minimum MSE. PSNR after
the first process (Eq. 6) and the second one (Eq. 7) as well as PSNR increase
with respect to BM3D are shown. As it can be observed, PSNR increase is up
1.38 db and it grows as noise standard deviation decreases. Table 1 also gives
α1 and α2 which have been estimated respectively using Eqs. (8) and (9). As it
can be observed, the proposed method allows us to reach PSNR values which
are very close to the oracle ones, confirming the robustness of the proposed
minimization procedures. It is worth observing that as noise standard deviation
increases, the second step is the one which contributes more to the refinement of
BM3D image. Table 2 compares WN-BM3D and BM3D in terms of PSNR and
SSIM for both Lena and Fingerprints images. WN-BM3D outperforms BM3D
for both images and for all σs. In particular, on more difficult images (where
edges density is higher) like Fingerprint, the increase in terms of PSNR provided
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by WN-BM3D is even higher. This may be explained considering that on such
images patch based non local denoiser is not able to find ’faithful’ patches for a
given point, as the image is very irregular and sharp. In this case, an injection
of local regularization can help to outperform the final result. Figure 2 allows
us to evaluate the visual quality of the final images. As it can be observed, the
proposed method provides images that show a reduced over-smoothing in flat
regions. Finally, it is worth outlining that each step of WN-BM3D has been
optimized with respect to PSNR. That is why SSIM may be worst than the
BM3D for higher levels of noise. However, as Table 2 shows, by selecting Wiener
filter iterated twice as local denoiser, the proposed method, namely 2WN-BM3D,
is able to provide better results even with respect to SSIM for higher level of
noise. The aim of future research will be twofold. On the one hand, the properties
of the local methods to use in the proposed iterative residual procedure will be
studied; on the other hand, starting from the empirical observation that the
pointwise solution of a non local method can be successfully substituted for the
one provided by a traditional local method or the noisy datum itself, methods
for the selection of the best pointwise solution will be investigated. The latter
goal will enable the proposed method to not only improve denoising results but
to also provide a considerable computational saving with respect to non local
methods.

4 Appendix

Joint Minimization. By putting Eq. (6) into Eq. (7) we get ‖(X2 − X)‖22 =
‖(X̂ + α1(1 − α2)(Y − X̂) + α2(X̄ − X̂) − X)‖22. By imposing ∂‖(X2−X)‖2

2
∂α1

= 0

and ∂‖(X2−X)‖2
2

∂α2
= 0 and denoting by < ∗, ∗ > the scalar product, using some

algebra we get

α1 = −<X̂−X+α2(X̄−X̂),X̄−X̂>

(1−α2)<Y −X̂,X̄−X̂>
and α2 =

<X̂−X,Y −X̂>

‖Y −X̂‖2
2

− <X̂−X),X̄−X̂>

<Y −X̂,X̄−X̂>

‖X̄−X̂‖2
2

<Y −X̂,X̄−X̂>
− <X̄−X̂,Y −X̂>

‖Y −X̂‖2
2

α1 estimation. By using Eq. (1) and setting X̂ = X +N0, where N0 = X̂ −X

is BM3D approximation error, we have d‖(X−X1)‖2
2

dα1
= 0 ⇔ α1 = <X−X̂,Y −X̂>

‖Y −X̂‖2
2

=
<Y −X̂−N,Y −X̂>

||Y −X̂||22
= 1 − ‖N‖2

2

||Y −X̂||22
+ <N,N0>

||Y −X̂||22
� 1 − σ2|Ω|

||Y −X̂||22
, where the term

∑
Ω NN0

||Y −X̂||22
has been neglected since it is close to zero, as N is independent of X

and nearly globally independent of X̂.

α2 estimation. d‖(X−X2)‖2
2

dα2
= 0 ⇔ α2 = <X−X1,X̄−X1>

‖X̄−X1‖2
2

= <Y −X1,X̄−X1>
‖X̄−X1‖2

2
−

<N,X̄−X1>
‖X̄−X1‖2

2
. Unfortunately, the last term is neither known nor negligible.
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Table 1. Lena image. (Top) Oracle values for α1 and α2 in Eqs. (6) and (7). From
left to right: noise standard deviation σ and PSNR of the noisy image; α1 value; α2

value; PSNR of the output image X1 of the first step; PSNR of the output image X2 of
the second step; PSNR increment (ΔP ) of WN-BM3D method with respect to BM3D.
(Bottom) Same results with α1 and α2 estimated using Eqs. (8) and (9). Values are
given with two decimal digits.

σ 5 10 20 30 40 50 60 70 80 90 100

PSNR 34.12 28.11 22.12 18.69 16.34 14.61 13.27 12.22 11.38 10.70 10.14

α1 0.26 0.14 0.08 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02

α2 0.10 0.18 0.14 0.12 0.10 0.08 0.07 0.06 0.07 0.07 0.07

PSNR 1st step 40.00 36.58 33.38 31.49 30.04 29.19 28.38 27.67 27.06 26.53 26.03

PSNR 2st step 40.07 36.82 33.60 31.70 30.24 29.35 28.52 27.78 27.22 26.68 26.18

ΔP 1.39 0.91 0.58 0.44 0.38 0.30 0.25 0.21 0.25 0.23 0.22

σ 5 10 20 30 40 50 60 70 80 90 100

PSNR 34.12 28.11 22.12 18.69 16.34 14.61 13.27 12.22 11.38 10.70 10.14

α1 0.26 0.15 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

α2 0.11 0.12 0.12 0.13 0.14 0.14 0.14 0.15 0.15 0.15 0.15

PSNR 1st step 40.00 36.58 33.38 31.44 29.86 29.05 28.27 27.57 26.97 26.45 25.95

PSNR 2st step 40.07 36.78 33.62 31.78 30.34 29.42 28.59 27.83 27.19 26.65 26.15

ΔP 1.38 0.88 0.57 0.50 0.48 0.37 0.32 0.26 0.23 0.20 0.19

Table 2. Lena and Fingerprints images. PSNR and SSIM comparison between WN-
BM3D and BM3D. Results of 2WN-BM3D for Lena image have also been included.

Lena

Noisy σ 5 10 20 30 40 50 60 70 80 90 100

PSNR 34.12 28.11 22.12 18.69 16.34 14.61 13.27 12.22 11.38 10.70 10.14

SSIM 0.96 0.87 0.68 0.54 0.44 0.37 0.31 0.27 0.24 0.22 0.19

BM3D PSNR 38.68 35.91 33.04 31.26 29.86 29.05 28.27 27.57 26.97 26.45 25.95

SSIM 0.98 0.97 0.94 0.91 0.88 0.87 0.84 0.83 0.80 0.79 0.77

WN-BM3D PSNR 40.07 36.78 33.61 31.76 30.34 29.42 28.59 27.83 27.19 26.65 26.15

SSIM 0.99 0.97 0.95 0.92 0.89 0.87 0.84 0.82 0.79 0.77 0.75

2WN-BM3D PSNR 39.98 36.72 33.63 31.81 30.36 29.50 28.70 28.00 27.38 26.85 26.35

SSIM 0.99 0.97 0.95 0.92 0.89 0.88 0.85 0.83 0.81 0.79 0.77

Fingerprints

Noisy σ 5 10 20 30 40 50 60 70 80 90 100

PSNR 34.13 28.12 22.15 18.75 16.42 14.69 13.36 12.31 11.46 10.77 10.20

SSIM 0.99 0.99 0.95 0.90 0.84 0.79 0.73 0.67 0.62 0.58 0.54

BM3D PSNR 36.49 32.45 28.80 26.82 25.30 24.52 23.75 23.12 22.56 22.06 21.61

SSIM 1.00 0.99 0.97 0.95 0.93 0.90 0.88 0.86 0.84 0.81 0.79

WN-BM3D PSNR 38.43 33.98 29.95 27.80 26.19 25.20 24.44 23.78 23.18 22.64 22.15

SSIM 1.00 0.99 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82
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Fig. 2. Zoom of Lena in two different regions. (From left to right) Noisy; original;
denoised using BM3D; denoised using WN-BM3D — noise standard deviation σ = 20.
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