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Abstract. The maintenance of pipelines is essential for the safe and cost effective
transport of important fluids such as water, oil, and gas. The early detection of
pipeline faults is vital for avoiding material and economic losses, and more
importantly for ensuring the safety of both human life and the environment. This
paper proposes a methodology for early fault detection in pipelines using an
acoustic emission (AE) based technique. The proposed method incorporates
wavelet entropy analysis of the AE signals and ensemble deep neural networks
for the effective detection of different types of faults in a pipeline. The proposed
method is tested on an experimental testbed, and the results indicate that it can
detect various faults in the pipeline with an average accuracy of 96%.
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1 Introduction

The transport of fluids such as water, oil, and gas is primarily carried out through pipe‐
lines. The safe and reliable transport of these and many other fluids is central to many
aspects of modern civilization, i.e., air conditioning, water supply and sanitation to name
a few. Moreover, many industries such as construction, chemical and petroleum, process
huge amounts of fluids that are transported primarily through pipelines. Pipelines are
prone to many serious problems such as internal or external corrosion, the risk of cracks
due to increase in fluid pressure, and welding defects; all of which can cause leakages.
Leakages in pipes can have many detrimental effects including the disruption of an
industrial process, the pollution of the environment, health and safety risks to human
life, and economic losses. Moreover, they can lead to serious safety accidents that can
cause loss of human life [1].

To mitigate the detrimental effects of pipeline leakages, the development of a reliable
technique for the timely detection of leakage is essential. The common methods for the
detection of a leakage involve the analysis of fluid flow parameters such as flow rate and
pressure [2–4]. However, these methods detect the leakage after it has occurred. Ideally,
it is more desirable to prevent leakages by detecting the development of cracks that can
lead to leakages in pipes. In this paper, an attempt has been made to develop a technique
that can help in preventing pipeline leakages by detecting developing cracks in the walls
of a pipe. Developing cracks in a material manifest themselves by emitting high
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frequency surface waves or acoustic emissions (AE) [1]. Thus, AE based methods
involving the analysis of these acoustic emissions is a promising area for research into
the detection and prevention of leakages in pipelines. The development of good AE
sensors has made the collection of huge amounts of AE data for different pipeline
conditions very easy, thereby facilitating the application of machine learning techniques
for pipeline fault diagnosis. In recent years, many data-driven methods have been devel‐
oped for fault diagnosis in industrial piping networks based on machine learning tech‐
niques such as k-nearest neighbors [5], hidden Markov models [6], and Support Vector
Machine [7]. Although, these methods have demonstrated some potential, nevertheless,
there are many unresolved issues. The time and frequency properties of AE signals are
affected by many factors such as the fault size, the fault type, the operating conditions
of the pipes, and the position of the AE sensor. Thus, it is difficult to get signal spectra
that are truly representative of a leakage, a crack, or a non-leakage condition. Moreover,
the extraction of feature vectors from AE signals that can be used to distinguish between
different conditions of a pipe is also very challenging.

To address these problems, a new method is proposed that employs an improved
wavelet packet algorithm with wavelet entropy analysis and an ensemble deep neural
network (EDNN) to detect different types of faults in a pipeline. Since, in this work early
stage pipeline fault detection is investigated as a classification problem, an improved
wavelet packet transform with wavelet entropy analysis is proposed to extract features
from the recorded AE signals. Then an EDNN is constructed as a classifier to recognize
the different types of pipeline faults.

The remainder of this paper is organized as follows: In Sect. 2, the basics of AE
signal based pipeline fault detection are introduced. Section 3 describes the details of
the proposed data-driven algorithm for pipeline fault diagnosis. Section 4 presents the
experimental testbed and evaluates the performance of the proposed method through
data collected through the experimental testbed. Finally, Sect. 5 concludes this paper.

2 Diagnosis of Pipeline Faults Using AE Signals

The basic idea of AE based methods for the diagnosis of faults in pipelines is to measure
the response of the pipeline to the input over time. Afterwards, this response is compared
to the baseline measurements to determine the type of fault in the pipeline. For the
detection of leakage in a pipeline, the principle of this method is based on the observation
that when a leak happens in a pressurized pipeline, the flow of the fluid becomes turbulent
around the leakage point. Both the turbulence and the loss of fluid through the leakage
increase the stress on the pipeline wall around that region. This increasing stress on the
leakage point results in elastic waves in the pipeline material that propagate as acoustic
emissions originating from the leakage point. Acoustic emission sensors placed on the
outer surface of pipelines can be used to measure the energy of these emissions. Since
the AE wave propagates through the material, any unusual point (such as leak or crack)
in the signal propagation path affects the amplitude and speed of the wave. These effects
can be used to detect surface defects in the pipe. Another mechanism for producing the
AE signal is the initiation and propagation of fracture in a pipe. However, when a pipeline
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system operates longer than a certain amount of time, its characteristics can be measured
dynamically with the help of vibration testing [8, 9]. When a fluid is flowing under
pressure in a pipeline, the impact of fluid on the pipe walls causes vibration in the pipe‐
line, which stimulates metal to metal contact in a developing crack and expands the
plastic deformation due to local contact phenomenon at the surface of the fracture to
generate acoustic emissions. However, the time-frequency characteristics and the stat‐
istical properties of these AE signals are non-stationary and therefore require the use of
tools such as wavelet entropy analysis.

3 The Proposed Methodology for Pipeline Fault Diagnosis

3.1 Wavelet Entropy Analysis

Wavelet entropy (WE) measures the entropy of wavelet coefficients of an AE signal that
are obtained through wavelet packet decomposition [10]. It has the benefits of evaluating
the complexity of the non-stationary AE signals at multiple resolutions. In this work, it
is used for feature extraction to identify the patterns associated with leaks and cracks.
First, the AE signal is decomposed using the wavelet packet transform into multiple sub-
bands. The wavelet coefficients in the kth sub-band of the level jth with 0 ≤ k ≤ 2j − 1
are denoted by Cj,k(n). The wavelet energy at each level j is given by Ej = (Cj)

2. The
total energy can, therefore, be given as Etotal = (1∕N)

∑

j

Ej, where N is the number of
the wavelet coefficients. Then, the relative wavelet energy is defined as pj = Ej∕Etotal.
Thus, according to the definition of Shannon entropy, the wavelet entropy can be calcu‐
lated as follows:

WE = −
∑

j

pj log pj (1)

The entropy can be used to measure the amount of information or complexity of the
output signal. Pipeline leakage signals have properties of complexity, uncertainty, and
non-linearity from which entropy can be used as a measure of signal complexity. In fact,
a well-ordered process could be considered as a periodic signal with only one frequency.
The wavelet representation of such a signal will mostly be determined by a single
decomposition level, i.e., all relative wavelet energies will be nearly zero except for the
wavelet resolution level that includes the representative signal frequency. For this level,
the relative wavelet energy will be nearly one. And as a result, the total WE will be very
low. A signal generated by a stochastic process can be represented as a disarranged
response. Such a signal has a wavelet representation with significant contributions from
all frequency bands. Moreover, all the contributions may be of the same order. Conse‐
quently, the relative wavelet energy is equal for all levels and the WE will have a high
value. The WE is therefore used to evaluate different sub-bands of the AE signal and
select the ones with the most fault information. Once the sub-band with the most infor‐
mation is determined, it is reconstructed and then divided into multiple segments. For
each segment, two features, i.e., the root mean square value (RMS) and wavelet entropy
(WE), are calculated. The values of these features for all the segments of the
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reconstructed signal are merged into a feature vector, which is then used to train an
EDNN. The trained EDNN is then used for the diagnosis of pipeline faults in unknown
AE signals.

3.2 Ensemble Deep Neural Network with Optimized Model Using Genetic
Algorithm

As mentioned earlier, the feature vectors obtained from the optimal reconstructed
signals, i.e., sub-band with the most information, are used to train the ensemble deep
neural network (EDNN). Each feature vector contains 1000 elements, i.e., RMS and WE
values for each of the five hundred segments of the optimal reconstructed signal. These
feature vectors are used to train an EDNN with six layers. To identify the number of
units in each layer, this paper employs the genetic algorithm (GA) [11]. The configura‐
tion of the EDNN is thus represented by a chromosome consisting of multiple genes,
where each gene corresponds to the number of neurons in each layer. The number of
nodes for each layer are in a predefined range. To reduce the dimensions of the feature
vector before the last soft-max layer, these ranges are decreased after each layer. The
values of the number of neurons are arranged in arrays of the same length, which is
helpful in encoding with the same number of bits. The index of each value is encoded
by an n-bit encoder resulting in strings of bits, which are combined to construct chro‐
mosomes. In the same way, other chromosomes are randomly initialized from the
predefined ranges to create a population of chromosomes. The accuracy of the EDNN
training is used to evaluate the fitness of each chromosome or each candidate configu‐
ration of the EDNN. As the training of the EDNN is a stochastic process, therefore, for
each configuration the EDNN is trained five times, and the average accuracy is computed
as the fitness function. The selection of chromosomes is done through tournament selec‐
tion with a tournament size of three. A two-point crossover operator is used, and genes
are mutated by randomly flipping bits. The crossover and mutation rates are set to 0.5
and 0.2, respectively. The optimal individual from the GA is used to configure the
architecture of the EDNN. The EDNN uses the Rectified Linear Unit (ReLU) as an
activation function to avoid vanishing gradients, speed up the convergence of the
training and yield better solutions. The definition of ReLU is y = max(0, a), where
a = Wx + b. The constant gradient of ReLUs helps the EDNN in faster learning. Adam
optimization, i.e., the algorithm for first-order gradient-based optimization that is an
extension to the stochastic gradient descent, is used as the optimization mechanism to
reduce the training time by training the EDNN with a larger effective step size. The
output layer uses soft-max logistic regression. The normalization initiation is, therefore,
necessary when initializing EDNN because of the multiplicative effect across two layers,
and we suggest the following initialization strategy to sustain activation variances and
back-propagated gradients variance for the forward and backward flow. The jth weight
of the ith layer are initialized by normalized initialization with

Wij ∼ U

[

−

√
6

√
nj + nj+1

,
√

6
√

nj + nj+1

]

(2)
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where U[−a, a] is the uniform distribution with values in the interval (−a, a) and n is the
size of the front layer. The normalized initialization can be quite helpful, presumably
because the layer-to-layer transformations maintain magnitudes of activations and
gradients. Other hyper-parameters of the network are as follows. A dropout rate of 0.7
is used, whereas the batch size is 10. The learning rate is 1e-3. The total number of
epochs is fixed at 100. The net output is the classification of different AE signal to
different fault labels.

4 Experimental Setup and Results

4.1 Data Acquisition

The proposed method is tested on data collected through a pressurized water pipeline
network that is designed to mimic field transmission pipelines as shown in Fig. 1. A
pump is used to maintain a constant flow rate of water in the piping network. The pressure
is held constant at 3 bar. The AE signals are recorded using two AE sensors of RTS
WDI-AST type with an operating frequency range of 200–900 kHz. The two AE sensors
are placed at both sides of the test pipe section and the AE signals are recorded under
different conditions. A pre-amplifier with 96 dB gain is used to amplify the AE signals
for subsequent processing. The AE sensors are installed on the outer surface of the pipe,
and a data acquisition system with PCI-DAQ board is used to record the AE signals at
a sampling rate of 1 MHz. The AE signals are then decimated to 250 kHz. The duration
of each AE signal is one second. In this work, four types of pipeline conditions are
considered including a normal pipeline, a pipeline with a 5 mm crack, a pipeline with a
10 mm crack, and a pipeline with a 10 mm leak hole. The valves are used to simulate

Fig. 1. Test rig set up: (a) Pipeline test system (b) Normal pipe test section (c) 5 mm crack test
section (c) 10 mm hole test section (d) Sensor attachment
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the leaks. The normal case is also recorded as the normal baseline signal. The EDNN is
implemented using Google TensorFlow on a general computing platform with a Ge
Force GTX 1080 Ti GPU.

4.2 Experimental Results

To extract the features of AE signals that can be used to distinguish between different
conditions of the pipeline, i.e., normal and faulty, wavelet entropy spectral analysis is
performed on each AE signal. Figure 2 shows the wavelet entropy scalograms of AE
signals for pipelines of different health conditions. It can be observed in Fig. 2 that the
pattern of the wavelet entropy scalogram is different for different type of pipeline condi‐
tion. The scalograms show the shift in the frequency band of the entropy energy, which
is useful in discriminating different types of faults. Then the optimal sub-band is chosen
based upon the maximum wavelet entropy. The optimal sub-band is then used to recon‐
struct the AE signal, which is then divided into multiple segments. Figure 3 shows the
waveforms of a few segments of the optimal reconstructed signal for different pipeline
conditions. Features extracted from these segments are then used to train the EDNN
with the optimal configuration. Figure 4 shows the confusion matrices and the accuracy
of the EDNN during testing. The rows of the matrices in Fig. 4 represent the actual labels
of the classes, whereas the columns represent predicted states. The average classification
accuracy of the proposed method using EDNN is 96%. The method is also compared
with Support Vector Machine (SVM) and the Stacked Denoising Autoencoder (SDAE),
both of which are trained using the same data. The proposed method with an average
classification accuracy of 96%, outperforms both SVM and SDAE with accuracies of
93% and 82%, respectively. The results indicate that the proposed method using EDNN
renders better results in comparison to SVM and the SDAE. Moreover, most of the
misclassification occurs between the 10 mm crack and 10 mm hole classes, which is due
to the relatively greater similarity between the signals for the two conditions as shown
in Fig. 3.

Fig. 2. Wavelet entropy scalogram of difference fault signal type
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Fig. 3. Segments of optimal signal of (a) 5 mm crack (b) 10 mm crack (c) 10 mm hole (d) Normal

(a) Proposed method (b)SVM

(b)SDAE

Fig. 4. Confusion matrix result of (a) Proposed method (b) SVM (c) SDAE

298 B. P. Duong and J.-M. Kim



5 Conclusions

In this paper, a new method is proposed for early stage fault detection in pipelines. The
proposed methodology employs wavelet entropy analysis to determine the optimal sub-
band of the acoustic emission signals for the extraction of features to distinguish between
different pipeline faults. The optimal sub-band is then used to reconstruct a signal, which
is then divided into multiple segments. Features extracted from these segments are then
used to train an EDNN. The trained EDNN is then used to classify unknown AE signals.
Experiments on data obtained through an experimental testbed show that the proposed
method can diagnose different types of pipeline faults with 96% accuracy.
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