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Abstract. In this paper, we focus on constructing new flexible and pow-
erful parametric framework for visual data modeling and reconstruction.
In particular, we propose a Bayesian density estimation method based
upon mixtures of scaled Dirichlet distributions. The consideration of
Bayesian learning is interesting in several respects. It allows simulta-
neous parameters estimation and model selection, it permits also tak-
ing uncertainty into account by introducing prior information about the
parameters and it allows overcoming learning problems related to over-
or under-fitting. In this work, three key issues related to the Bayesian
mixture learning are addressed which are the choice of prior distribu-
tions, the estimation of the parameters, and the selection of the number
of components. Moreover, a principled Metropolis-within-Gibbs sampler
algorithm for scaled Dirichlet mixtures is developed. Finally, the pro-
posed Bayesian framework is tested on a challenging real-life application
namely visual scene reconstruction.
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1 Introduction

A recent convergence of computer graphics and computer vision has produced
a set of techniques known as “data-based modeling and rendering” (DBMR).
This thematic refers to methods that use pre-existing data (image and video) in
order to generate new scenes and therefore gain in productivity and in realism
[15]. Reconstruction of scenes has been the topic of extensive research [19,23].
It has been motivated by the exponentially growing number of available photo
collections that can be used to automatically reconstruct 3D geometry and scene
models; and by many potential applications such as security (e.g. crime scene
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reconstruction) and broadcast production (e.g. movies). In the past, image syn-
thesis was limited by the fact that all generated images did not use real data
or real images to be computed. Recent studies have shown that it is possible to
reconstruct the full geometry and photometry of a scene using real world digi-
tal images captured with a camera [15,16]. Some works have been proposed to
generate visual scenes by analyzing and modeling captured images and video.
For example, in [22], authors extended the paradigm of image-based rendering
into video-based rendering, generating novel animations from video. Instead of
using the image as a whole, they can also record an object and separate it from
the background using background-substraction. They called this special type of
video texture a video sprite. This approach has been extended in [12] where the
authors introduced several learning techniques mainly to perform accurate visual
data representation and then generation. In [15], authors proposed a method for
synthesizing a given image that would be seen from a new viewpoint. Despite
the great effort and potential done in the past decade, several challenges still
need to be overcome. To deal with such problem, statistical learning approaches
have been used in this context to estimate a most likely pixel value from dif-
ferent input views of the same scene. For instance, a two-component Gaussian
mixture model has been proposed in [16] for scenes reconstruction from multi-
ple views. To achieve acceptable quality for the reconstructed image, the design
of such statistical approach normally needs a quite important number of input
images. Our research here is inspired by the successful application of machine
learning techniques in this area of research. Its main goal is to use image-domain
features to develop new probabilistic models and to generate from these mod-
els new visual scenes from different viewpoints. To this end, there have existed
many techniques to tackle this problem. Among them, finite mixture models
have received a lot of attention in several domains such as pattern recognition,
computer vision, data mining, and machine learning [18]. In this paper, we focus
on this very topic and our main purpose is to take into account the complexity of
input real data by modeling them with non-Gaussian distributions given that the
Gaussian assumption is not appropriate in several applications where the data
partitions are non-Gaussian. Thus, we propose to develop a new flexible mixture
model based on the so-called scaled Dirichlet distribution (SDMM) [21] which
is proposed as a powerful alternative to the well-known Dirichlet mixture model
[5,14] and could provide better results [21]. An important problem when using
mixture models is the learning of the parameters [1,7,18,20]. The parameters are
usually obtained by the method of maximum likelihood (ML) performed within
the expectation-maximization algorithm as done in [8,9,21]. Unfortunately this
learning approach has several drawbacks such as dependency on initialization
and convergence to saddle points. Bayesian learning has been proposed to over-
come problems related to frequentist approaches in general and ML techniques
in particular. Having appropriate prior distributions, Bayesian estimation is fea-
sible now thanks to the development of simulation-based numerical integration
techniques such as Markov chain Monte Carlo (MCMC) [4,17]. MCMC meth-
ods simulate parameters estimates by running appropriate Markov Chains using
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specific algorithms such as Gibbs sampler and the Metropolis algorithm [11,17].
They allow to estimate the posterior distribution of the model without needing
to know the normalizing constant in Bayes’ theorem. In this paper we aim to
propose a Bayesian learning approach to scaled Dirichlet mixture models. To
the best of our knowledge the learning of finite scaled Dirichlet mixture mod-
els have never been tackled using Bayesian inference. We propose in this work
to apply our complete learning algorithm to synthesise new images from some
input views. The paper is organized as follows. The next section describes the
mixture model and the Bayesian approach in details. The complete estimation
algorithm is given, too. Section 3 is devoted to experimental results. We end the
paper with some concluding remarks.

2 Scaled Dirichlet-Based Bayesian Learning Framework

Mixture model is a well established approach to unsupervised learning for com-
plex applications involving data defined in high-dimensional heterogenous (non
homogenous) spaces. In this section, we introduce our Bayesian approach for
visual data modeling.

2.1 The Finite Scaled Dirichlet Mixture Model

Let X = {X 1,X 2, . . . ,XN}, a set of proportional vectors which are independent
identically distributed, be a realization from a K-component mixture distribu-
tion. The corresponding likelihood is:

p(X|Θ) =
N∏

n=1

K∑

k=1

pkp(X n|θk) (1)

where {pk}’s are the mixing parameters that are positive and sum to one, Θ =
(p, θ), p = (p1, . . . , pK), and the θ = {θk}’s are component-specific parameter
vectors. Each X n is supposed to arise from one of the K components, but the
cluster memberships are unknown and must be estimated. In our mixture model,
p(X n|θk) is a scaled Dirichlet distribution denoted by

p(X n|θk) =
Γ (αk+)

∏D
d=1 Γ (αkd)

∏D
d=1 βαkd

kd Xαkd−1
nd

(
∑D

d=1 βkdXnd)αk+
(2)

where Γ denotes the Gamma function, αk+ =
∑D

d=1 αkd and θk = (αk,βk) is
our model parameter. αk = (αk1, . . . , αkD) is the shape parameter that describes
the form of the SDMM which is important in finding patterns inherent in a
dataset, and βk = (βk1, . . . , βkD) is the scale parameter that simply controls
how the density plot is spread out.

The estimation of the parameters Θ and the selection of the appropriate
number of components are determined through the learning of our finite mix-
ture model SDMM. It is noteworthy that a frequentist approach based on ML
estimation was developed previously in [21] and in this paper, we go a step fur-
ther and we investigate both learning issues from a purely Bayesian perspective.
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2.2 MCMC-Based Scaled Dirichlet Mixture Learning

The goal of Bayesian inference is to infer the model’s parameters. To this end,
we need to set the prior distribution on the mixture parameters and then to
compute the posterior distribution from the data and selected prior. The prior
can be viewed as our prior belief about the parameter before looking at the
data and the posterior distribution describes our belief about the parameters
after we have observed and analyzed the data. The choice of an appropriate
prior distribution p(Θ) is very important for Bayesian analysis. In this case,
the posterior distribution is expressed as: p(Θ|X ) ∝ p(X|Θ)p(Θ). In Bayesian
inference, The introduction of the Zn = (Zn1, . . . , ZnK) membership vectors
simplifies the Bayesian analysis, where Znk = 1 if X i belongs to class k, and
Znk = 0 otherwise. This is done by associating with each observation X n a
missing multinomial variable Zn ∼ M(1; Ẑn1, . . . , ẐnK), where

Ẑnk =
pkp(X n|θk)

∑K
k =1 pkp(X n|θk)

(3)

Let’s p(p|Z) a distribution which is given by: p(p|Z) ∝ p(p)p(Z|p). We need
then to determine p(p) and p(Z|p). It is known that the vector p is propor-
tional, thus a natural choice, as a prior, for this vector would be the Dirichlet
distribution [17]

p(p) =
Γ (

∑K
k =1 ηk)

∏K
k =1 Γ (η1)

K∏

k =1

pηk−1
k (4)

where η = (η1, . . . , ηM ) is the parameter vector of the Dirichlet distribution.
Moreover, we have

p(Z|p) =
N∏

n=1

p(Zn|p) =
K∏

k =1

pnk

k .

Hence

p(p|Z) ∝ p(p)p(Z|p) =
Γ (

∑K
k =1 ηk)

∏K
k =1 Γ (ηk)

K∏

k =1

pk
ηk+nk−1

∝ D(η1 + n1, . . . , ηK + nK) (5)

where D is a Dirichlet distribution with parameters (η1 + n1, . . . , ηK + nK).
We also need to place prior distributions over parameters αk and βk. Formal
conjugate priors do not exist for both parameters. Thus, Gamma distributions
G(.) are adopted here with the assumption that these parameters are statistically
independent:

p(αkd) = G(αkd|ukd, vkd) (6)

p(βkd) = G(βkd|gkd, hkd) (7)
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Having these priors, the posterior distributions are given by

p(αk|Z,X ) ∝ p(αk)
∏

Zik =1

p(X i|αk) (8)

p(βk|Z,X ) ∝ p(βk)
∏

Zik =1

p(Xi|βk) (9)

Having all these posterior probabilities in hand, the steps of the Gibbs sam-
pler are as follows

1. Initialization
2. Step t: For t = 1,. . .

(a) Generate Z
(t)
i ∼ M(1; Ẑ(t−1)

i1 , . . . , Ẑ
(t−1)
iK )

(b) Compute n
(t)
k =

∑N
i=1 IZ

(t)
ik = j

(c) Generate p(t) from Eq. (5)
(d) Generate α

(t)
k and β

(t)
k (k = 1, . . . ,K) and from Eqs. 8 and 9, respec-

tively, using random-walk Metropolis-Hastings (M-H) algorithm [10].

3 Experiments: Scenes Reconstruction

In this section, we validate our method using a challenging application namely
scene reconstruction. The hyperparameters of the model ηk are fixed at 1 which
is a classical and a reasonable choice. Based on our experiments, an optimal
choice of the initial values of the hyperparameters ukd, gkd, vkd, hkd is to set
them as 1, 0.01, 1, and 0.01, respectively. The goal of this section is to apply
the reconstruction approach proposed in [16] by deploying our scaled Dirichlet
mixture model. Scene reconstruction application has typically three steps: First,
features are extracted from input images and then these features are matched
between input images and finally, the resulting correspondences are deployed to
estimate the final 3D geometry. Using this approach, the synthesized pixels are
given as Bayesian generated estimates from the mixture model given a set of
different images representing different views of the same object. In this experi-
ment, we limited ourselves to a qualitative assessment of results. Unfortunately,
we were not able to compare the obtained results with previous studies because
of the lack of published works with a complete quantitative results on the same
images. We are mainly motivated here in investigating the ability of the proposed
Bayesian framework to synthesized pixels and to reconstruct new images from a
few views (we used only 8 views for each case) of the same object. Future work
will be devoted to quantitative evaluation. Figures 1, 2, 3 and 4 show examples
of some objects views that we have used to validate the reconstruction approach
and also the obtained reconstructed results when using the framework based
on the scaled Dirichlet model. The results show some ghost effect, yet are very
encouraging taking into account the limited number of views used and the diffi-
culty of the problem. Future works could be devoted to the improvement of the
reconstruction approach and to the handling of more complex scenes.
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Fig. 1. Example 1: Representative objects views used for reconstruction (left side) and
the obtained reconstructed image using the proposed framework (right side)

Fig. 2. Example 2: Representative objects views used for reconstruction (left side) and
the obtained reconstructed image using the proposed framework (right side)

Fig. 3. Example 3: Representative objects views used for reconstruction (left side) and
the obtained reconstructed image using the proposed framework (right side)

Fig. 4. Example 4: Representative objects views used for reconstruction (left side) and
the obtained reconstructed image using the proposed framework (right side)
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4 Conclusion

In this paper we have introduced a new statistical framework based on the
scaled Dirichlet mixture model. The proposed framework has been learned via
Bayesian inference by developing a principled MCMC-based algorithm. Experi-
mental results have involved a challenging application namely scenes reconstruc-
tion. The obtained results are promising taking into account the complexity of
such application. Future works could be devoted to the improvement of obtained
results by introducing other post-processing steps. Another promising future
work concerns the automatic selection of relevant features when dealing with
online data modeling via the proposed framework which can be performed, for
instance,, using an approach similar to the one developed in [2,3,6,13].
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