
Automatic Video Editing: Original
Tracking Method Applied to Basketball

Players in Video Sequences

Colin Le Nost1, Florent Lefevre2,3(B), Vincent Bombardier2,
Patrick Charpentier2, Nicolas Krommenacker2, and Bertrand Petat3

1 Ecole Nationale Supérieure des Mines de Nancy, Campus Artem - CS 14 234,
54042 Nancy, France

2 Université de Lorraine, CNRS, CRAN,
54000 Nancy, France

florent.lefevre@univ-lorraine.fr
3 CitizenCam, 132 rue André Bisiaux, 54320 Maxéville, France

Abstract. The main task here is to track several basketball players dur-
ing a game and to be able to retrieve their whole trajectories at the end.
The final application is to get some statistics about each players and
to identify some special events like free throw or to determine when a
counterattack is going to happen. The originality of the solution states
in the way the tracking is performed: instead of studying the close envi-
ronment of each player, all the players are detected on each frame then
we are using specific informations like background, speed vector, color or
distance between players to link player’s positions and create the whole
trajectories. We will compare our results with a benchmark of algorithms
to see that our solution is quite efficient in term of tracking and speed.

Keywords: Automatic editing · Tracking · Sports analysis

1 Introduction

Automatic video editing allows small events to be available to a much larger
audience. Indeed, many events cannot be broadcast because of the fixed cost
of production (crew and equipment). By automatic video editing, i.e. automatic
selection of the best viewing angle in a multi-camera system, the live video stream
where the action takes place can be provided to the spectator. CitizenCam1, a
French company which offers multi-camera automatic recording solutions, wants
to retransmit on the web every type of event to the greatest number of people.
To achieve this goal, CitizenCam choose to reduce costs by automating recording
and broadcasting while using IP cameras. The gathering of statistical knowledge
on the scene is required to understand the action and perform camera selection.
The specific context of this study is the case of indoor sport broadcast, especially
1 This work results from a collaboration between CitizenCam and CRAN.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Mansouri et al. (Eds.): ICISP 2018, LNCS 10884, pp. 117–126, 2018.
https://doi.org/10.1007/978-3-319-94211-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94211-7_14&domain=pdf

118 C. Le Nost et al.

Basketball games. For this article we are interested in tracking players in order to
determine key events such as free throws or counter-attacks, and also to obtain
statistics on each player. The dataset is available in [1] and includes different
views of a game of basketball; from the side and above. While watching this
footage, we can detect two types of challenges which influence the precision of
the tracking.

First, some of them are due to the nature of basketball:

– Occlusion: During tracking, players can be hidden during a certain time and
it can be hard to recover from it. Two sub-cases can be identified: first, if
two players are crossing each other. Second, when a player is hiding another
during a static phase.

– Rotation: It implies that appearance models are complex to use because the
looks of the players are changing function of how they rotate and where they
are located; seing a player from a side is not the same than above.

– Acceleration: Some tracking algorithms use difference between two frames to
determine the next position, but if there is a brutal and unexpected change
of direction, it can be difficult to perform a good tracking.

– Groups: Based on the structure of basketball, most of uncertain situations
imply just two players, excepting some categories: beginning, injury, celebra-
tion of a goal and ending. Then a lot a similar players stand next to each
other and it is hard to follow them.

Second, some issues are directly related to the video caption. The footage
is actually recorded with different fish-eye cameras (wide-angle). If we focus on
the view from above that we are using, which is recorded with a 180◦ security
camera, we can observe two issues in our analysis.

– Cropped Image: Some correction has ever been applied to make the video
watchable but it cropped the image, so we need to determine when a player
is going out of the window and when he is back.

– Distortion: The distortion is not completely corrected so it implies that the
size of a player is changing function of his position. For instance a player in
the center is way bigger than in a corner, so we need to correct this.

After having exposed this different challenges, it appears clear that a lot of
information is contained into the nature of the game. Because of this major
constraints, it makes sense to develop a specific solution instead of using generic
algorithms in order to make the tracking smarter, i.e. better and faster.

2 Available Techniques

In order to evaluate the results of our solution, it is necessary to compare it to
different algorithms. Because we are working with OpenCV, we can observe that
some tracking algorithms are ever implemented. The algorithms available are
Boosting, KCF, MedianFlow, Multiple Instance Learning and Tracking-learning-
detection trackers. Since MedianFlow tracker [5] and MIL tracker [6] are not

Automatic Video Editing: Original Tracking Method 119

adapted to our application (random displacement, quick rotation), we will focus
on the other trackers. For a more exhaustive comparison, please see the work of
Janku et al. [8].

– Boosting Tracker: based on the AdaBoost algorithm, which uses the sur-
rounding background as negative examples to find the most discriminative
features of the tracked object. Because it is based on the appearance, changes
of the player like rotations or light changes are normally well handled [2].

– Kernelized Correlation Filter (KCF) Tracker: The main goal of a tracker is
to distinguish the target from the environment. This algorithm translates and
scales different patches in order to find the best one. To improve computation
power, some improvements have been done by seeing that the studying matrix
is circulant [3] and that a correlation filter can be applied [4].

– Tracking-learning-detection (TLD) Tracker: The main approach here is to
detect an object at one frame, then detect if the object is there in the following
frames. Function of that, the tracker is updated differently [7]. This algorithm
is supposed to be able to handle rapid motions and partial occlusions.

After this review, we can say that KCF, Boosting and TLD are suitable for our
study. We will compare the results of our solution to these algorithms.

3 Implementation

Our solution is implemented in Python and includes few steps of processing.
On each frame, we are performing several actions:

1. A background subtraction model is used to remove the background. Because
the camera is fixed, it is pretty efficient.

2. The subtraction is cleaned with closing and opening transformations in order
to remove blur and to retrieve clean players.

3. The Suzuki algorithm [9] is used to find the different players.

Then, the different objects are linked on each frame based on criteria like surface,
center distance, speed vector direction and main color. But in order to get good
results, the distortion should be first corrected (at least limited), otherwise the
algorithm would need to link two players way to different between the center
and a corner of the image.

3.1 Distortion

The proprietary software associated with the camera has ever been used to
retrieve the actual view. Using the raw footage is not an option because the
camera uses a panamorphic lens; the distortion is not radial and there is no easy
way to correct it without having access to the main characteristics of the camera.
Then we need to work on the corrected image. The first try was to estimate the
distortion model while asserting this one was radial: after solving the equations,

120 C. Le Nost et al.

we can get a good result at the center of the picture, but the borders areas were
completely deformed (Fig. 1a) and unusable.

Because of the bad results of the previous approach and because undistorting
the video was slowing too much the algorithm, we decided to use a pixel/mm
ratio created manually which is changing across the frame function of the posi-
tion. The main advantage to have this correction is that it becomes possible
to set parameters in millimeters and no more in pixels. The projection of the
function we found can be seen in the Fig. 1b.

(a) Radial Correction (b) Estimation of the distortion

Fig. 1. Distortion

3.2 Background Subtraction and Contours Extraction

To be able to detect players, a background subtraction [14] is used. Because the
camera is fixed, the history used to calculate this subtraction needs to be the
longest. When applying it, some blur can still been seen (see Fig. 2a), particularly
the lines of the field. Moreover, some players are divided in chunks, so some
cleaning is necessary. Three morphological transformations are applied to the
image: first, a small opening (2 × 2 pixels, see Fig. 2c) to remove the blur, then a
closing to unify the chunks (9 × 9 pixels, see Fig. 2d) then a final opening to clean
the contours of the objects (3 × 3, see Fig. 2e). The final result can be seen in
Fig. 2b. The last step of processing is detecting players. Based on the subtraction,
a contour detection algorithm is used. We took the Suzuki Algorithm [9], which
follows the contours in order to determine the whole shape of the tracked object.
Then the bounding boxes of the contours are filtered to avoid the nested one.
Finally the too small players (based on a surface parameter) are removed.

3.3 Score Estimation

To sum up the previous steps, now are available on each frame different boxes
which are normally players. The main challenge here is to link the different
boxes across the frames in order to retrieve the whole trajectories. Terminology:
the target names the player tracked at the previous frame, the players are all
the detected boxes on the current frame. On each frame, we are calculating an
association score between the target and the players. Under certain conditions,
the player with the best score is associated with the target. The whole decision
tree can be found in Fig. 3.

Automatic Video Editing: Original Tracking Method 121

(a) Raw Substraction (b) Final Result

(c) First Opening (d) Closing (e) Last Opening

Fig. 2. Succeeding steps of the subtraction

Distance Evaluation. The distance is here critical because there is no way
that the target can move faster than a certain limit. Based on the information
available, we can create for each player a distance score to the target defined in
formula 1, where distance is the euclidean distance between the player and the
target, and max is the maximum value to link a player with a target. This value
has been set at 3 meters for experimentations and we keep only the players 1.2
meters (score > 0.6) apart for the association of the players to the targets

score =

⎧
⎨

⎩

1 if distance > min,
0 if distance <= max,

max−distance
max−min else

(1)

Speed Vector Projection. Based on the previous data, occlusion can be solved
under some conditions. For instance, the speed vector can help to determine when
two players are crossing each other, but this information is relevant only if the
two vectors are not co-linear and if at least one of the modules of the speed
vectors is not too low. Currently the score is calculated function of the angle
between the two vectors (see Fig. 4).

Color Comparison. When two players are too close, it is not possible to deter-
mine exactly where they stand, but determining their positions when they are
separating from each other is possible. To increase our accuracy, and because

122 C. Le Nost et al.

Fig. 3. Structure of the score

x

y

�v1
�v2

θ

θdegrees =
∣
∣
∣arctan �v1·�x

�v1·�y − arctan �v2·�x
�v2·�y

∣
∣
∣ ∗ 180

π

Fig. 4. Projection of the speed vectors

there is two teams with different wearings, the color gives us precious informa-
tion. The first guess was to use conditional statements on the RGB (Red Green
Blue) color space, but the main issue here is that this space is not linear and
pretty dependent of the luminary exposition. That is why we change the color
space. The LAB color space seems pretty efficient: L states for lightness, a for
green-red scale and b for blue-yellow [10]. Because one team is wearing red, it
is fine to calculate a ratio between red pixels (=a higher than a certain limit
which depends of the LAB implementation) and the total amount of pixels. To
determine who is who, we are comparing the ratios before losing the players with

Automatic Video Editing: Original Tracking Method 123

the ratios after the separation. One issue with this implementation is that it is
asking a lot of resources to compute the color information; indeed the moment
we will need this information is unknown. In order to make the program faster,
calculating it only during few frames is enough.

4 Results

For all the considered algorithms, if the tracking fails, there is no recovery sys-
tem. Because all of them fail at some point, it was not efficient to use a metric to
show how efficient they were. It makes more sense to determine if they are able
to solve different issues as exposed in the first part of this article. We manually
annotated the position of each player in different footages corresponding to spe-
cific situations (between 5 and 10 extracts for each case, see Fig. 5). Thanks to
the ground truth, we calculated an accuracy score [15] based on the amount of
situation solved. The results can be found in the Table 1. The processing time
per image (P. T. I.) expresses the average time (in milliseconds) needed to detect
and track a player in an image.

−→v1

−→v2
(a) Parallelism

−→v1
−→v2

(b) Crossing

−→v1 −→v2

(c) Static

Fig. 5. Problematic situations

To sum up the results, we can see that two algorithms are well performing
in our study: the KCF tracker and proposed method. Both of them are able to
follow most of the time the players, excepting in the corners where the distortion
is too important. Concerning the algorithms that are not performing well, bad
results of Boosting can be explained by seeing that the tracker is often blocked
on lines; because this descriptive feature is not moving too much, it is possible
to suppose that the algorithm get fooled. Concerning TLD, the main issue we
observe is that the player is sometimes lost during few frames and the focus is
placed on another player randomly chosen in the image, but it often goes back
to the tracked player after few frames. Smoothing the trajectory to remove this
jumps could improve the tracking. Anyway, these two algorithms are way slower
than KCF.

The results begins to be interesting when we are speaking about scalability.
The main issue with the KCF tracker is that we need to set a tracking object for
each player we want to follow, so it slows down the speed of the process. On the
contrary, most of the processing time of our solution is taken by the background
subtraction. It means that tracking new players just asks new resources to link
boxes, which is fast. So our solution is more suitable for tracking several players.
Finally we can observe the result window of the algorithm in Fig. 6.

124 C. Le Nost et al.

Table 1. Accuracy of the different algorithms

Situation Criteria KCF Boosting TLD∗ Proposed method

Unique player Regular tracking ++ ++ − ++

Acceleration ++ + + ++

Low speed ++ ++ + ++

Different players Static ++ − − ++

Crossing ++ + + ++

Parallel + − − − +

Same team (red) Static − − − − −
Crossing + − − ++

Parallel + − − − − −
Same team (white) Static − − − + − −

Crossing + − − ++

Parallel − − − − −
Processing time per image (PTI) 0.017 0.049 0.157 0.012

++ : acc ≥ 75%,+ : acc ≥ 50,− : acc ≤ 50%,−− : acc ≤ 25%
*Some errors can cause the algorithm to jump on other players during few frames

Fig. 6. Detection process

5 Conclusion and Perspectives

During this study we expose challenges caused by automatic video editing
applied to basketball. We see that most of this issues fool the generic algo-
rithms but they can be solved using specific informations like color, positions
or speed of the players. Implementing a dedicated solution makes the algorithm
way better in term of accuracy but mainly in term of speed. If a long time of cal-
ibration of the algorithm is needed, we can explain it by different factors: quality
of the video, same color of the wearing and the background or diffraction. This
promising results let us expect that improving the model while implementing the

Automatic Video Editing: Original Tracking Method 125

multi-camera system or modifying the subtraction step will makes the solution
still better. With the final trajectories of all the players, it should be easier to
determine specific actions like counterattacks and free throws to finally perform
the automatic video edition.

Even if we see promising results, the implemented algorithm is still facing
some issues, like the other algorithms. Most of them are related to the similarity
between the background color and the outfit of one team. For instance, if two
players of the same color are crossing each other at low speed, the player can be
lost. To solve this problems, we thought to few improvement that can be done
to improve the accuracy.

Player 1

Player 2

(a) Crossing (b) Elliptic

Fig. 7. General issues

First the tracking is one-target only. It means that it is not possible to use
informations of previous tracking. For instance, we can see in Fig. 7a the tra-
jectories of 2 players. If we try to follow the player 2, and that the color can’t
help us, the algorithm will face issues to find the relevant player when they will
cross each other because |−→v2 | is too low to give information (the player can go
backward). But if at the same time, you are tracking the player 1, because |−→v1 | is
significant, you will be able to him. Combining these informations with a system
of rules could help to solve this issue. Moreover a criteria on the distance can
lower the multi-tracking task complexity.

The algorithm can be fooled if the players are in the configuration of Fig. 7b.
Speed is big enough to consider the angle of speed vector and the tracking
will probably fail. One answer to that could be to improve the background
subtraction step as shown in [11].

As seen in the dataset, more videos than just the above view are available.
A multi-camera model as implemented in [12] or in [13] could help to fix most
of the issues listed above.

References

1. Games recorded in 2016 from BCMess, a Luxembourg Basketball club. https://
www.citizencam.tv/v/ywWDBMZXHg

2. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In:
BMVC, vol. 6 (2006)

3. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant struc-
ture of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona,
P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9 50

https://www.citizencam.tv/v/ywWDBMZXHg
https://www.citizencam.tv/v/ywWDBMZXHg
https://doi.org/10.1007/978-3-642-33765-9_50

126 C. Le Nost et al.

4. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with
kernelized correlation filters. TPAMI 37(3), 583–596 (2015)

5. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection
of tracking failures. In: 2010 20th International Conference on Pattern Recognition
(ICPR), pp. 2756–2759. IEEE (2010)

6. Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple
instance learning. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2009, pp. 983–990 (2009)

7. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Pattern
Anal. Mach. Intell. 34(7), 1409–1422 (2012)

8. Janku, P., Koplik, K., Dulik, T., Szabo, I.: Comparison of tracking algorithms
implemented in OpenCV. In: MATEC Web of Conferences, vol. 76, p. 04031 (2016)

9. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by
border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

10. ISO 11664–4: 1976 L* A* B* Colour Space. Joint ISO/CIE Standard, ISO. ISO
11664–4 (2008)

11. Zeng, Z., Jia, J., Yu, D., Chen, Y., Zhu, Z.: Pixel modeling using histograms based
on fuzzy partitions for dynamic background subtraction. IEEE Trans. Fuzzy Syst.
25, 584–593 (2017)

12. Hayet, J.B., Mathes, T., Czyz, J., Piater, J., Verly, J., Macq, B.: A modular multi-
camera framework for team sports tracking. In: IEEE Conference on Advanced
Video and Signal Based Surveillance (2005)

13. Du, W., Hayet, J.B., Piater, J., Verly, J.: Collaborative multi-camera tracking of
athletes in team sports. In: Workshop on Computer Vision Based Analysis in Sport,
Environments, pp. 2–13 (2006)

14. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture
model for real-time tracking with shadow detection. In: Remagnino, P., Jones,
G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp.
135–144. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0913-4 11

15. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: 23rd International Conference on Machine Learning, vol. 6, pp. 233–240 (2006)

https://doi.org/10.1007/978-1-4615-0913-4_11

	Automatic Video Editing: Original Tracking Method Applied to Basketball Players in Video Sequences
	1 Introduction
	2 Available Techniques
	3 Implementation
	3.1 Distortion
	3.2 Background Subtraction and Contours Extraction
	3.3 Score Estimation

	4 Results
	5 Conclusion and Perspectives
	References

