
Preprocessing Parallelization
for the ALT-Algorithm

Genaro Peque Jr.(✉), Junji Urata, and Takamasa Iryo

Department of Civil Engineering, Kobe University, Kobe, Japan
gpequejr@panda.kobe-u.ac.jp, urata@person.kobe-u.ac.jp,

iryo@kobe-u.ac.jp

Abstract. In this paper, we improve the preprocessing phase of the ALT algo‐
rithm through parallelization. ALT is a preprocessing-based, goal-directed speed-
up technique that uses A* (A star), Landmarks and Triangle inequality which
allows fast computations of shortest paths (SP) in large-scale networks. Although
faster techniques such as arc-flags, SHARC, Contraction Hierarchies and
Highway Hierarchies already exist, ALT is usually combined with these faster
algorithms to take advantage of its goal-directed search to further reduce the SP
search computation time and its search space. However, ALT relies on landmarks
and optimally choosing these landmarks is NP-hard, hence, no effective solution
exists. Since landmark selection relies on constructive heuristics and the current
SP search speed-up is inversely proportional to landmark generation time, we
propose a parallelization technique which reduces the landmark generation time
significantly while increasing its effectiveness.

Keywords: ALT algorithm · Shortest path search
Large-scale traffic simulation

1 Introduction

1.1 Background

The computation of shortest paths (SP) on graphs is a problem with many real world
applications. One prominent example is the computation of the shortest path between a
given origin and destination called a single-source, single-target problem. This problem
is usually encountered in route planning in traffic simulations and is easily solved in
polynomial time using Dijkstra’s algorithm [1] (assuming that the graph has non-nega‐
tive edge weights). Indeed, road networks can easily be represented as graphs and traffic
simulations usually use edge (road) distances or travel times as edge weights which are
always assumed positive.

In large-scale traffic simulations where edge weights are time-dependent, one is
normally interested in computing shortest paths in a matter of a few milliseconds.
Specifically, the shortest path search is one of the most computationally intensive parts
of a traffic simulation due to the repeated shortest path calculation of each driver
departing at a specific time. This is necessary because a driver needs to consider the

© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 89–101, 2018.
https://doi.org/10.1007/978-3-319-93713-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_7&domain=pdf

effects of the other drivers who departed earlier in his/her route’s travel time. However,
faster queries are not possible using only Dijkstra or A* (A star) search algorithms. Even
the most efficient implementation of Dijkstra or A* isn’t sufficient to significantly reduce
a simulation’s calculation time. Thus, speed-up techniques that preprocess input data [2]
have become a necessity. A speed-up technique splits a shortest path search algorithm
into two phases, a preprocessing phase and a query phase. A preprocessing phase
converts useful information on the input data, done before the start of the simulation, to
accelerate the query phase that computes the actual shortest paths. There are many
preprocessing based variants of Dijkstra’s algorithm such as the ALT algorithm [3],
Arc-Flags [4], Contraction Hierarchies [5], Highway Hierarchies [6] and SHARC [7]
among others. These variants are normally a combination of different algorithms that
can easily be decomposed into the four basic ingredients that efficient speed-up techni‐
ques belong to [8], namely, Dijkstra’s algorithm, landmarks [3, 9], arc-flags [10, 11] and
contraction [6]. The combination is usually with a goal-directed search algorithm such
as the ALT algorithm that provides an estimated distance or travel time from any point
in the network to a destination at the cost of additional preprocessing time and space. A
few examples are the (i) L-SHARC [8], a combination of landmarks, contraction and
arc-flags. L-SHARC increases performance of the approximate arc-flags algorithm by
incorporating the goal-directed search, (ii) Core-ALT [12], a combination of contraction
and ALT algorithm. Core-ALT reduces the landmarks’ space consumption while
increasing query speed by limiting landmarks in a specific “core” level of a contracted
network, and the (iii) Highway Hierarchies Star (HH*) [13], a combination of Highway
Hierarchies (HH) and landmarks which introduces a goal-directed search to HH for
faster queries at the cost of additional space.

The ALT algorithm is a goal-directed search proposed by Golberg and Harrelson [3]
that uses the A* search algorithm and distance estimates to define node potentials that
direct the search towards the target. The A* search algorithm is a generalization of
Dijkstra’s algorithm that uses node coordinates as an input to a potential function to
estimate the distance between any two nodes in the graph. A good potential function
can be used to reduce the search space of an SP query, effectively. In the ALT algorithm,
a potential function is defined through the use of the triangle inequality on a carefully
selected subset of nodes called landmark nodes. The distance estimate between two
nodes is calculated using the landmark nodes’ precomputed shortest path distances to
each node using triangle inequality. The maximum lower bound produced by one of the
landmarks is then used for the SP query. Hence, ALT stands for A*, Landmarks and
Triangle inequality. However, a major challenge for the ALT algorithm is the landmark
selection. Many strategies have been proposed such as random, planar, Avoid, weight‐
edAvoid, advancedAvoid, maxCover [3, 9, 13, 14] and as an integer linear program (ILP)
[15]. In terms of the landmark generation times of these proposed strategies, random is
the fastest while ILP is the slowest, respectively. For query times using the landmarks
produced by these strategies, random is the slowest while ILP is the fastest, respectively.
The trend of producing better landmarks at the expense of additional computation times
have always been true. Moreover, the aforementioned landmark selection strategies
weren’t designed to run in parallel. The question is whether a parallel implementation

90 G. Peque Jr. et al.

of a landmark selection algorithm can increase landmark efficiency while only slightly
increasing its computation cost.

Our aim is to use the ALT algorithm in the repeated calculation of drivers’ shortest
paths in a large-scale traffic simulation. The traffic simulator is implemented in parallel
using a distributed memory architecture. By reducing the preprocessing phase through
parallelization, we are able to take advantage of the parallelized implementation of the
traffic simulator and the architecture’s distributed memory. Additionally, if we can
decrease the landmark generation time, it would be possible to update the landmark
lower bounds dynamically while some central processing units (CPUs) are waiting for
the other CPUs to finish.

1.2 Contribution of This Paper

Since the ALT algorithm is commonly combined with other faster preprocessing tech‐
niques for additional speed-up (i.e. goal-directed search), we are motivated in studying
and improving its preprocessing phase. Our results show that the parallelization signif‐
icantly decreased the landmark generation time and SP query times.

1.3 Outline of This Paper

The paper is structured as follows. In the following section, the required notation is
introduced. Additionally, three shortest path search algorithms, namely, Dijkstra, A*
search and the ALT algorithm, are presented. Section 3 is dedicated to the description
of the landmark preprocessing techniques, our proposed landmark generation algorithm
and its parallel implementation. In Sect. 4, the computational results are shown where
our conclusions, presented in Sect. 5, are drawn from.

2 Preliminaries

A graph is an ordered pair G = (V , E) which consists of a set of vertices, V , and a set of
edges, E ⊂ V × V . Sometimes, (u, v) ∈ E, will be written as e ∈ E to represent a link.
Additionally, vertices and edges will be used interchangeably with the terms nodes and
links, respectively. Links can either be composed of an unordered or ordered pairs. When
a graph is composed of the former, it is called an undirected graph. If it composed of
the latter, it is called a directed graph. Throughout this paper, only directed graphs are
studied. For a directed graph, an edge e = (u, v) leaves node u and enters node v. Node
u is called the tail while the node v is called the head of the link and its weight is given
by the cost function c: E → ℝ

+. The number of nodes, |V|, and the number of links, |E|,
are denoted as n and m, respectively.

A path from node s to node t is a sequence,
(
v0, v1,… , vk−1, vk

)
, of nodes such that

s = v0, t = vk and there exists an edge
(
vi−1, vi

)
∈ E for every i ∈ {1,… , k}. A path from

s to t is called simple if no nodes are repeated on the path. A path’s cost is defined as,

Preprocessing Parallelization for the ALT-Algorithm 91

dist(s, t) :=
∑k

i=1
c(vi−1 ,vi). (1)

A path of minimum cost between nodes s and t is called the (s, t)− shortest path with its
cost denoted by dist∗(s, t). If no path exists between nodes s and t in G, dist(s, t) := ∞.
In general, c(u, v) ≠ c(v, u), ∀(u, v) ∈ E so that dist(s, t) ≠ dist(t, s). One of the most well-
known algorithms used to find the path and distance between two given nodes is the
Dijkstra’s algorithm.

2.1 Dijkstra’s Algorithm

In Dijkstra’s algorithm, given a graph with non-negative edge weights, a source (origin)
and a target (destination), the shortest path search is conducted in such a way that a
“Dijkstra ball” slowly grows around the source until the target node is found.

More specifically, Dijkstra’s algorithm is as follows: during initialization, all node
costs (denoted by g) from the source, s, to all the other nodes are set to infinity (i.e.
g(w) = ∞,∀w ∈ V∖{s}). Note that g(s) = 0. These costs are used as keys and are inserted
into a minimum-based priority queue, PQ, which decides the order of each node to be
processed. Take w = argminu∈PQg(u) from the priority queue. For each node v ∈ PQ

subject to (w, v) ∈ E, if g(v) > g(w) + c(w, v), set g(v) = g(w) + c(w, v). Repeat this
process until either the target node is found or PQ is empty. This means that the algorithm
checks all adjacent nodes of each processed node, starting from the source node, which
is the reason for the circular search space or “Dijkstra ball”.

Although Dijkstra’s algorithm can calculate the shortest path from s to t, its search
speed can still be improved by using other network input data such as node coordinates.
This is the technique used by the A* algorithm described in the next subsection.

2.2 A* (A Star) Search Algorithm

The A* search algorithm is a generalization of Dijkstra’s algorithm. A* search algorithm
uses a potential function, 𝜋t:V → ℝ

+, which is an estimated distance from an arbitrary
node to a target node.

Consider the shortest path problem from a source node to a target node in the graph
and suppose that there is a potential function, 𝜋t, such that 𝜋t(u) provides an estimate of
the cost from node u to a given target node, t. Given a function g:V → ℝ

+ and a priority
function, PQ, defined by PQ(u) = g(u) + 𝜋t(u), let g∗(u) and 𝜋∗

t
(u) represent the length

of the (s, u) − shortest path and (u, t) − shortest path, respectively. Note that
g∗(u) = dist∗(s, u) and 𝜋∗

t
(u) = dist∗(u, t), so that PQ∗(u) = g∗(u) + 𝜋∗

t
(u) = dist∗(s, t).

This means that the next node that will be taken out of PQ belongs to the (s, t) − shortest
path. If this holds true for the succeeding nodes until the target node is reached, its search
space starting at node u will only consist of the shortest path nodes. However, if
PQ(u) = g∗(u) + 𝜋t(u) = dist(s, t) for some u, then its search space will increase
depending on how bad the estimates for each node is, 𝜋t(u).

In the A* search algorithm, the value used for the potential function is the Euclidean
or Manhattan distance based on the nodes’ coordinates. Given 𝜋t, the reduced link cost

92 G. Peque Jr. et al.

is defined as ce,𝜋t
= c(u, v) − 𝜋t(u) + 𝜋t(v). We say that 𝜋t is feasible if ce,𝜋t

≥ 0 for all
e ∈ E. The feasibility of 𝜋t is necessary for the algorithm to produce a correct solution.
A potential function, 𝜋, is called valid for a given network if the A* search algorithm
outputs an (s, t)− shortest path for any pair of nodes.

The potential function can take other values coming from the network input data.
The algorithm described in the next subsection takes preprocessed shortest path
distances to speed-up the SP search.

2.3 ALT Algorithm

The ALT algorithm is a variant of the A* search algorithm where landmarks and the
triangle inequality are used to compute for a feasible potential function. Given a
graph, the algorithm first preprocesses a set of landmarks, L ⊂ V and precomputes
distances from and to these landmarks for every node w ∈ V . Let L =

{
l1,… , l|L|

}
,

based on the triangle inequality, |x + y| ≤ |x| + |y|, two inequalities can be derived,
dist∗(u, v) ≥ dist∗(l, v) − dist∗(l, u) (see Fig. 1) and dist∗(u, v) ≥ dist∗(u, l) − dist∗(v, l)

for any u, v, l ∈ V . Therefore, potential functions denoted as,

𝜋
+
t
(v) = dist∗(v, l) − dist∗(t, l), (2)

𝜋
−
t
(v) = dist∗(l, t) − dist∗(l, v), (3)

can be defined as feasible potential functions.

Fig. 1. A triangle inequality formed by a landmark l and two arbitrary nodes u and v

To get good lower bounds for each node, the ALT algorithm can use the maximum
potential function from the set of landmarks, i.e.,

𝜋t(v) = maxl∈L

{
𝜋
+
t
(v),𝜋−

t
(v)

}
(4)

A major advantage of the ALT algorithm over the A* search algorithm in a traffic
simulation is its potential function’s input flexibility. While the A* search algorithm can
only use node coordinates to estimate distances, the ALT algorithm accepts either travel
time or travel distance as a potential function input which makes it more robust with

Preprocessing Parallelization for the ALT-Algorithm 93

respect to different metrics [12]. This is significant because traffic simulations usually
use travel times as edge weights where a case of a short link length with a very high
travel time and a long link length with a shorter travel time can occur. Moreover, the
ALT algorithm has been successfully applied to social networks [16, 17] where most
hierarchal, road network oriented methods would fail.

One disadvantage of the ALT algorithm is the additional computation time and space
required for the landmark generation and storage, respectively.

3 Preprocessing Landmarks

Landmark selection is an important part of the ALT algorithm since good landmarks
produce good distance estimates to the target. As a result, many landmark selection
strategies have been developed to produce good landmark sets. However, as the land‐
mark selection strategies improved, the preprocessing time also increased. Furthermore,
this increase in preprocessing time exceeds the preprocessing times of faster shortest
path search algorithms to which the ALT algorithm is usually combined with [13]. Thus,
decreasing the landmark selection strategy’s preprocessing time is important.

3.1 Landmark Selection Strategies

Finding a set, k, of good landmarks is critical for the overall performance of the shortest
path search. The simplest and most naïve algorithm would be to select a landmark,
uniformly at random, from the set of nodes in the graph. However, one can do better by
using some criteria for landmark selection. An example would be to randomly select a
vertex, v̂1, and find a vertex, v1, that is farthest away from it. Repeat this process k times
where for each new randomly selected vertex, v̂i, the algorithm would select a the vertex,
vi, farthest away from all the previously selected vertices,

{
v1,… , vi−1

}
. This landmark

generation technique is called farthest proposed by Goldberg and Harrelson [3].
In this paper, a landmark selection strategy called Avoid, proposed by Goldberg and

Werneck [9], is improved and its preprocessing phase is parallelized. In the Avoid
method, a shortest path tree, Tr, rooted at node r, selected uniformly at random from the
set of nodes, is computed. Then, for each node, v ∈ V , the difference between dist∗(r, v)

and its lower bound for a given L is computed (e.g. dist∗(r, v) − dist∗(l, v) + dist∗(l, r)).
This is the node’s weight which is a measure of how bad the current cost estimates are.
Then, for each node v, the size is calculated. The size, size(v), depends on Tv, a subtree
of Tr rooted at v. If Tv contains a landmark, size(v) is set to 0, otherwise, the size(v) is
calculated as the sum of the weights of all the nodes in Tv. Let w be the node of maximum
size, traverse Tw starting from w and always follow the child node with the largest size
until a leaf node is reached. Make this leaf a new landmark (see Fig. 2). This process is
repeated until a set with k landmarks is generated.

94 G. Peque Jr. et al.

Fig. 2. The Avoid method. (a) A sample network with 7 nodes is shown. In (b), node 5 is randomly
selected and a shortest path tree, T5, is computed. Then, the distance estimate is subtracted by the
shortest path cost for each node. These are the nodes’ weights (shown in red). In (c), node sizes
are computed. Since node 7 is a landmark and the subtree, T6, has a landmark, both sizes are set
to 0. Starting from the node with the maximum size (node 4), traverse the tree deterministically
until a leaf is reached (node 1) and make this a landmark (Color figure online)

A variant of Avoid called the advancedAvoid was proposed to try to compensate for
the main disadvantage of Avoid by probabilistically exchanging the initial landmarks
with newly generated landmarks using Avoid [13]. It had the advantage of producing
better landmarks at the expense of an additional computation cost. Another variant called
maxCover uses Avoid to generate a set of 4k landmarks and uses a scoring criterion to
select the best k landmarks in the set through a local search for ⌊log2 k + 1⌋ iterations.
This produced the best landmarks at the expense of an additional computation cost
greater than the additional computation cost incurred by advancedAvoid.

We improve Avoid by changing the criteria of the shortest path tree to traverse deter‐
ministically. Rather than just consider the tree with the maximum size, Tw, the criteria
is changed to select the tree with the largest value when size is multiplied by the number
of nodes in the tree, i.e. size(v) × ||Tv

||, where ||Tv
|| denotes the number of nodes in the tree

Tv [15]. This method prioritizes landmarks that can cover a larger region without sacri‐
ficing much quality. Additionally, following the advancedAvoid algorithm, after k land‐
marks are generated, a subset k̂ ⊂ k is removed uniformly at random and the algorithm
then continues to select landmarks until k landmarks are found.

To increase landmark selection efficiency without drastically increasing the compu‐
tation time, the algorithm, which we call parallelAvoid, is implemented in parallel using
the C++ Message Passing Interface (MPI) standard. In parallelAvoid, each CPU, pj,
generates a set of k landmarks using the method outlined in the previous paragraph.
These landmark sets are then evaluated using a scoring criterion that determines the
effectiveness of the landmark set. The score determined by each CPU is sent to a
randomly selected CPU, pk, which then determines the CPU with the maximum score,
p̂j. The CPU pk sends a message informing p̂j to broadcast its landmark set to all the
other CPUs including pk (see Fig. 3).

Preprocessing Parallelization for the ALT-Algorithm 95

Fig. 3. The parallelAvoid landmark strategy algorithm. (a) The CPUs, pj, generates landmarks
using the parallelAvoid algorithm. (b) The score for each landmark set is sent to CPU pk where
the maximum score is determined. (c) The CPU pk then informs the CPU with the maximum score,
p̂j, to send its landmark data to all the other CPUs. (d) The CPU, p̂j, sends its landmark data to all
the other CPUs

Hence, in terms of the query phase calculation time, the hierarchy of the landmark
generation algorithms introduced above are as follows,

(5)

There can be a case where parallelAvoid produces better landmarks, thus better query
times, than maxCover. This case happens when the CPUs used to generate landmarks
significantly exceed the ⌊log2 k + 1⌋ iterations used by the maxCover algorithm.

For the landmark preprocessing phase calculation time, the hierarchy of the same
landmark generation algorithms are as follows,

(6)

3.2 Landmark Set Scoring Function

In order to measure the quality of the landmarks generated by the different landmark
generation algorithms, a modified version of the maximum coverage problem [14] is
solved and its result is used as the criterion to score the effectiveness of a landmark set.

The maximum coverage problem is defined as follows: Given a set of elements,{
a1,… , ar

}
, a collection, S =

{
S1,… , Sp

}
, of sets where Si ⊂

{
a1,… , ar

}
 and an integer

k, the problem is to find a subset S∗ ⊂ S with |S∗| ≤ k so that a maximum number of
elements ai covered is maximal, i.e., max

⋂
Si∈S∗ Si. Such a set S∗ is called a set of

maximum coverage.
In order to find the maximum coverage, a query of selected source and target pairs

are carried out using Dijkstra’s algorithm. A |V|3 × |V| matrix with one column for each
node in each search space of the Dijkstra query and one row for each node, v ∈ V,
interpreted as a potential landmark, li, is initialized with zero entries. The ALT algorithm
is carried out on the same source and target pairs queried by the Dijkstra’s algorithm.
Then for each node in the Dijkstra algorithm’s search space, if the ALT algorithm doesn’t
visit the node, v, using li (i.e. li would exclude v from the search space), the entry for the
column assigned to the node v is set to 1 (see Fig. 4). Selecting k rows so that a maximum
number of columns are covered is equivalent to the maximum coverage problem.

96 G. Peque Jr. et al.

Fig. 4. The matrix for the landmark selection problem interpreted as a maximum coverage
problem [14]

For our case, the maximum coverage problem is modified to only consider a subset
of the origin-destination pairs used in the traffic simulation for the (s, t)− query. Addi‐
tionally, each row is composed of the k landmarks found by parallelAvoid rather than
all the nodes in the node set. The modified maximum coverage problem is then defined
as the landmark set that has the maximum number of columns in the matrix that is set
to 1. Furthermore, the number of columns set to 1 are summed up and then used as the
score of the landmark set. In this modified maximum coverage problem, the landmark
set with the highest score is used for the shortest path search.

4 Computational Results

The network used for the computational experiments is the Tokyo Metropolitan network
which is composed of 196,269 nodes, 439,979 links and 2210 origin-destination pairs.
A series of calculations were carried out and averaged over 10 executions for the Avoid,
advanceAvoid, maxCover and parallelAvoid algorithms using Fujitsu’s K computer. A
landmark set composed of k = 4 landmarks with k̂ = 2 and k̂ = 0 for the advanceAvoid
and parallelAvoid, respectively, were generated for each landmark selection strategy.

The K computer is a massively parallel CPU-based supercomputer system at the
Advanced Institute of Computational Science, RIKEN. It is based on a distributed
memory architecture with over 80,000 compute nodes where each compute node has 8
cores (SPARC64TM VIIIfx) and 16 GB of memory. Its node network topology is a 6D
mesh torus network called the tofu (torus fusion) interconnect.

The performance measures used are the execution times of the algorithms and the
respective query times of its SP searches using the landmark sets that each of the algo‐
rithms have generated. For parallelAvoid, its parallel implementation was also measured
using different number of CPUs for scalability.

Preprocessing Parallelization for the ALT-Algorithm 97

4.1 Execution and Query Times

The average execution times of the Avoid (A), advanceAvoid (AA), maxCover (MC)
and parallelAvoid (PA) algorithms generating 4 landmarks and the average query times
of each SP search using the generated landmarks are presented in the Table 1 below.

Table 1. Averaged execution times of the landmark selection strategies and averaged query times
of each SP searches in seconds.

Number of
CPUs

A AA MC PA Query time

1 (A) 124.270 —— —— —— 0.1382
1 (AA) —— 180.446 —— —— 0.1253
1 (MC) —— —— 521.602 —— 0.1081
2 (PA) —— —— —— 133.829 0.1390
4 (PA) —— —— —— 134.515 0.1282
8 (PA) —— —— —— 140.112 0.1128
16 (PA) —— —— —— 143.626 0.1102
32 (PA) —— —— —— 157.766 0.1078
64 (PA) —— —— —— 160.941 0.1044
128 (PA) —— —— —— 163.493 0.1022
256 (PA) —— —— —— 169.606 0.1004
512 (PA) —— —— —— 178.278 0.0998
1024 (PA) —— —— —— 180.661 0.0986

The table above shows that algorithms took at least 30 s to select a landmark. The
advanceAvoid algorithm took a longer time as it selected 6 landmarks (i.e. k = 4 and
k̂ = 2). The maxCover algorithm took the longest time as it generated 16 landmarks and
selected the best 4 landmarks through a local search. The local search was executed
⌊log2 k + 1⌋ which is equal to 2 in this case. The parallelAvoid algorithm’s execution
(landmark generation) time slowly increased because of the increasing number of CPUs
that the CPU, p̂j, had to share landmark data with.

In terms of query times, the algorithms follow Eq. (5) up to 16 CPUs. At 32 CPUs,
parallelAvoid’s query performance is better than maxCover’s query performance. Note
that 32 CPUs mean that 32 different landmark sets were generated by parallelAvoid
which is twice the number of landmarks generated by the maxCover algorithm. More‐
over, the table also shows that the number of CPUs is directly proportional to the land‐
mark generation time and inversely proportional to the query time. The former is due to
the overhead caused by communication which is expected. As the number of commu‐
nicating CPUs increase, the execution time of the algorithm also increases. While for
the latter, as the number of CPUs increase the possibility of finding a better solution also
increases which produces faster query times.

98 G. Peque Jr. et al.

4.2 Algorithm Scalability

A common task in high performance computing (HPC) is measuring scalability of an
application. This measurement indicates the application’s efficiency when using an
increasing number of parallel CPUs.

The parallelAvoid algorithm belongs to the weak scaling case where the problem
size assigned to each CPU remains constant (i.e. all CPUs will generate a set of land‐
marks which consumes a lot of memory). This is very efficient when used with the K
computer’s distributed memory architecture. In the Fig. 5 above, a major source of
overhead is data transfer. The data transfer overhead is caused by the transfer of land‐
mark data from CPU, p̂j, to all the other CPUs. This was implemented using the
MPI_Bcast command which has a tree-based structure that has a logarithmic complexity.
Hence, it can be noticed that by using a logarithmic scale on the x-axis, the weak scaling
is significantly affected by the data transfer overhead.

Fig. 5. Weak scaling for the parallelAvoid algorithm.

5 Conclusions

In this paper, we have presented a parallelized ALT preprocessing algorithm called the
parallelAvoid.

We have shown that this algorithm can increase the landmark’s efficiency while
significantly accelerating the preprocessing time using multiple CPUs. By using many
CPUs, it is possible to obtain a better landmark set in a significantly lesser amount of
time which produces faster query times. Compared to the maxCover algorithm, it is
limited only to the number of CPUs rather than the number of local search iterations.
This is important since the ALT algorithm is usually combined with other preprocessing

Preprocessing Parallelization for the ALT-Algorithm 99

algorithms to take advantage of its goal-directed search. Moreover, the parallelization
technique doesn’t sacrifice landmark quality in exchange for preprocessing speed unlike
the ALP (A*, landmarks and polygon inequality) algorithm [18, 19], a generalization
of the ALT algorithm or the partition-corners method used in [20, 21].

Additionally, results show that the major cause of overhead is the landmark data
transfer. This is because the data transfer of the landmark data from the CPU with the
highest score to the other CPUs use a tree-like structure which has a logarithmic
complexity.

Acknowledgement. This work was supported by Post K computer project (Priority Issue 3:
Development of Integrated Simulation Systems for Hazard and Disaster Induced by Earthquake
and Tsunami).

This research used computational resources of the K computer provided by the RIKEN
Advanced Institute for Computational Science through the HPCI System Research Project
(Project ID: hp170271).

References

1. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271
(1959)

2. Wagner, D., Willhalm, T.: Speed-up techniques for shortest-path computations. In: Thomas,
W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 23–36. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70918-3_3

3. Goldberg, A., Harrelson, C.: Computing the shortest path: A* search meets graph theory.
Technical report (2004)

4. Gutman, R.: Reach-based routing: a new approach to shortest path algorithms optimized for
road networks. In: Proceedings 6th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 100–111. SIAM (2004)

5. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and
simpler hierarchical routing in road networks. In: WEA, pp. 319–333 (2008)

6. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg
(2005). https://doi.org/10.1007/11561071_51

7. Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. ACM J. Exp.
Algorithmics 14 (2009)

8. Delling, D., Wagner, D.: Pareto paths with SHARC. In: Vahrenhold, J. (ed.) SEA 2009.
LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02011-7_13

9. Goldberg, A., Werneck, R.: Computing point-to-point shortest paths from external memory.
In: Proceedings Workshop on Algorithm Engineering and Experiments (ALENEX 2005).
SIAM (2005)

10. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and constrained
shortest path computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 126–
138. Springer, Heidelberg (2005). https://doi.org/10.1007/11427186_13

11. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In: Geoinformation und Mobilitat - von der Forschung zur
praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints (2004)

100 G. Peque Jr. et al.

http://dx.doi.org/10.1007/978-3-540-70918-3_3
http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/978-3-642-02011-7_13
http://dx.doi.org/10.1007/978-3-642-02011-7_13
http://dx.doi.org/10.1007/11427186_13

12. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining
hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In: McGeoch,
C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68552-4_23

13. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In: 9th DIMACS
Implementation Challenge (2006)

14. Peque Jr., G., Urata, J., Iryo, T.: Implementing an ALT algorithm for large-scale time-
dependent networks. In: Proceedings of the 22nd International Conference of Hong Kong
Society for Transport Studies, 9–11 December 2017

15. Fuchs, F.: On Preprocessing the ALT Algorithm. Master’s thesis, University of the State of
Baden-Wuerttemberg and National Laboratory of the Helmholtz Association, Institute for
Theoretical Informatics (2010)

16. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77978-0

17. Tretyakov, K., Armas-Cervantes, A., García-Bañuelos, L., Vilo, J., Dumas, M.: Fast fully
dynamic landmark-based estimation of shortest path distances in very large graphs. In:
Proceedings 20th CIKM Conference, pp. 1785–1794 (2011)

18. Campbell Jr., N.: Computing shortest paths using A*, landmarks, and polygon inequalities.
arXiv:1603.01607 [cs.DS] (2016)

19. Campbell Jr., N.: Using quadrilaterals to compute the shortest path. arXiv:1603.00963
[cs.DS] (2016)

20. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In:
Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Computational
Transportation Science (IWCTS 2013), New York, pp. 25–30, November 2013

21. Efentakis, A., Pfoser, D., Vassiliou, Y.: SALT. A unified framework for all shortest-path
query variants on road networks. arXiv:1411.0257 [cs.DS] (2014)

Preprocessing Parallelization for the ALT-Algorithm 101

http://dx.doi.org/10.1007/978-3-540-68552-4_23
http://dx.doi.org/10.1007/978-3-540-68552-4_23
http://dx.doi.org/10.1007/978-3-540-77978-0
http://arxiv.org/abs/1603.01607
http://arxiv.org/abs/1603.00963
http://arxiv.org/abs/1411.0257

	Preprocessing Parallelization for the ALT-Algorithm
	Abstract
	1 Introduction
	1.1 Background
	1.2 Contribution of This Paper
	1.3 Outline of This Paper

	2 Preliminaries
	2.1 Dijkstra’s Algorithm
	2.2 A* (A Star) Search Algorithm
	2.3 ALT Algorithm

	3 Preprocessing Landmarks
	3.1 Landmark Selection Strategies
	3.2 Landmark Set Scoring Function

	4 Computational Results
	4.1 Execution and Query Times
	4.2 Algorithm Scalability

	5 Conclusions
	Acknowledgement
	References

