
Benchmarking Parallel Chess Search
in Stockfish on Intel Xeon and Intel Xeon

Phi Processors

Pawel Czarnul(B)

Faculty of Electronics, Telecommunications and Informatics,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

pczarnul@eti.pg.edu.pl

Abstract. The paper presents results from benchmarking the parallel
multithreaded Stockfish chess engine on selected multi- and many-core
processors. It is shown how the strength of play for an n-thread version
compares to 1-thread version on both Intel Xeon and latest Intel Xeon
Phi x200 processors. Results such as the number of wins, losses and draws
are presented and how these change for growing numbers of threads.
Impact of using particular cores on Intel Xeon Phi is shown. Finally,
strengths of play for the tested computing devices are compared.

Keywords: Parallel chess engine · Stockfish · Intel Xeon
Intel Xeon Phi

1 Introduction

For the past several years, growth in performance of computing devices has
been possible mainly through increasing the number of cores, apart from other
improvements such as cache organization and size, much less through increase
in processor clock speed. This is especially visible in top HPC systems on the
TOP500 list [14]. The top system is based on Sunway manycore processors, the
second is a hybrid multicore Intel Xeon + Intel Xeon Phi coprocessor based
system and the third a hybrid multicore Intel Xeon + NVIDIA P100 GPUs.

It is becoming very important to assess which computing devices perform
best for particular classes of applications, especially when gains from increasing
the number of threads are not obvious. We investigate performance of parallel
chess game playing in the strong Stockfish engine [13], especially on the latest
Intel Xeon Phi x200 processor which features upgraded internal mesh based
architecture, MCDRAM memory and out of order execution. This is compared
to both scalability and playing strength on server type Intel Xeon CPUs.

Partially supported by the Polish Ministry of Science and Higher Education, part
of tests performed at Academic Computer Center, Gdansk, Poland, part of tests
performed on hardware donated by Intel Technology Poland.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 457–464, 2018.
https://doi.org/10.1007/978-3-319-93713-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_40&domain=pdf
http://orcid.org/0000-0002-4918-9196

458 P. Czarnul

2 Related Work

Performance of chess players, both human and engines, that play against each
other is typically assessed using the Elo rating system [6,11]. Some approaches
have been proposed such as the Markovian interpretation for assessment of play
by various players from various eras to be able to compare strengths of play [1].

The typical algorithm for tree search in chess has been alpha-beta search.
Several algorithms and approaches1 regarding parallelization of chess playing
have been proposed. In Young Brothers Wait Concept [7] the algorithm first
searches the oldest brother in a search tree to obtain cutoff values and search
other branches in parallel. In Lazy SMP many threads or processes search the
same tree but with various depths and move orderings. It is used in many engines
today such as Stockfish. Asynchronous Parallel Hierarchical Iterative Deepen-
ing (APHID) is an algorithm that is asynchronous and divides the search tree
among the master (top level) which makes passes over its part of the tree and
slaves which search deeper parts of the tree. Paper [3] presents speed-ups from
14.35 up to around 37.44 on 64 processors for various programs including Chi-
nook, TheTurk, Crafty and Keyano. Monte-Carlo Tree Search, while successful
for Go, suffers from issues such as difficulty to identify search traps in chess [2].
Despite optimizations, the testbed implementation could not match the strength
of alpha-beta search. On the other hand, the very recent paper [12] presents Alp-
haZero – a program that defeated Stockfish using alpha-beta search. AlphaZero
uses MCTS combined with incorporation of a non-linear function approxima-
tion based on a deep neural network. It searches fewer positions focusing on
selected variations. In paper [16] the authors proposed a method called P-GPP
that aimed at improving the Game Position Parallelization (GPP) that allows
parallel analysis of game subtrees by various workers. P-GPP extends GPP with
assignment of workers to nodes using realization probability. Implementation
was tested using Stockfish for workers with communication between the master
and workers using TCP sockets for up to 64 cores using two computers. The
authors have demonstrated increased playing strength up to sixty workers at
the win rate of 0.646.

Benchmarking performance and speed-ups was performed in several works
and for engines and algorithms playing various games as well as for various com-
puting devices – CPUs, GPUs, coprocessors such as Intel Xeon Phi. For instance,
in [9] Monte Carlo Tree Search (MCTS) was benchmarked on Intel Xeon Phi
and Intel Xeon processors. Speed-ups up to around 47 were achieved for Intel
Xeon Phi and up to around 18 for Intel Xeon across all tested implementations
including C++ 11, Cilk Plus, TBB and TPFIFO with a queue implementing
work sharing through a thread pool. Furthermore, paper [10] contains data and
comparison of performance of Intel Xeon CPU to Intel Xeon Phi for the MCTS
algorithm useful in games such as Hex and Go. The same authors tested per-
formance and speed-ups on both 2x Intel Xeon E5-2596v2 for a total of 24
physical cores and 48 logical processor as well as Intel Xeon Phi 7120P with

1 https://chessprogramming.wikispaces.com/Parallel+Search.

https://chessprogramming.wikispaces.com/Parallel+Search

Benchmarking Parallel Chess Search 459

61 cores and 244 logical processors. The authors, having benchmarked n-thread
versions against n/2-thread versions, have determined that almost perfect speed-
ups could be observed up to 16 and 64 cores for the two platforms respectively.
Furthermore, they determined that the Intel Xeon Phi coprocessor offered vis-
ibly worse total performance than CPUs due to relatively higher communica-
tion/compute ratio. In paper [8] the authors proposed a general parallel game
tree search algorithm on a GPU and benchmarked its performance compared to
a CPU-based platform for two games: Connect6 and chess. The speed-up com-
pared to the latter platform with pruning turned out to be 10.58x and 7.26x
for the aforementioned games respectively. In terms of large scale parallelization
on a cluster, paper [15] presents results obtained on a cluster for Shogi chess.
The authors have investigated effects of dynamic updates in parallel searching
of the alpha-beta tree which proved to offer significant improvements in perfor-
mance. Speed-ups up to around 250 for branching factor 5 and depth 24 on 1536
cores of a cluster with dynamic updates and without sharing transposition tables
were measured. The authors have shown that using Negascout in the master and
proper windows in workers decreases the number of nodes visited and generates
speed-up of up to 346 for the aforementioned configuration. Several benchmarks
have been conducted for Stockfish that demonstrate visible speed-up versus the
number of threads on multi-core CPUs2,3.

The contribution of this work is as follows:

1. benchmarking the reference Stockfish chess engine on the state-of-the-art Intel
Xeon Phi x200 manycore processor,

2. testing on how selection of cores (thread affinity) affects performance,
3. comparison of Intel Xeon and Intel Xeon Phi performance for Stockfish.

3 Methodology and Experiments

Similarly to the tests already performed on multicore CPUs (see footnotes 2 and
3), in this work we benchmark the Stockfish engine running with a particular
number of threads against its 1 thread version. Gains allow to assess how much
better a multithreaded version is and to what number of threads (and cores on
which the threads run) it scales. This is especially interesting in view of the
recent Intel Xeon x200 processors with up to 72 physical cores and 288 logical
processors.

For the experiments performed in this work the following computing devices
were used: 2 Intel Xeon E5-2680 v2 at 2.80 GHz CPUs with a total of 20 physical
cores and 40 logical processors as multi-core processors and 1 Intel Xeon Phi CPU
7210 at 1.30 GHz with a total of 64 physical cores and 256 logical processors.

Each configuration included 1000 games played by an n thread version against
the 1 thread version. Games were played with white and black pieces by the ver-
sions with switching colors of the pieces after every game. For the 256 thread

2 http://www.fastgm.de/schach/SMP-scaling.pdf.
3 http://www.fastgm.de/schach/SMP-scaling-SF8-C10.pdf.

http://www.fastgm.de/schach/SMP-scaling.pdf
http://www.fastgm.de/schach/SMP-scaling-SF8-C10.pdf

460 P. Czarnul

configuration, the Stockfish code was slightly updated to allow such a configu-
ration (the standard version allowed up to 128 threads). Time controls were 60 s
for first 40 moves.

As a reference, Fig. 1 presents how the results changed for a configuration of
an n-thread Stockfish against the 1 thread version over successive games played
on the Intel Xeon Phi. The score is computed as follows from the point of view
of the n-thread version:

s =
1 · nwins + 1

2 · ndraws

nwins + ndraws + nlosses
(1)

where: nwins – number of wins, ndraws – number of draws, nlosses – number of
losses for the n-thread version.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

S
co

re
 o

f n
-t

hr
ea

d
S

to
ck

fis
h

 a
ga

in
st

 1
 th

re
ad

 S
to

ck
fis

h

game number

score of 128-thread Stockfish against 1 thread Stockfish - 1st from top
score of 16-thread Stockfish against 1 thread Stockfish - 2nd from top

score of 8-thread Stockfish against 1 thread Stockfish - 3rd from top
score of 4-thread Stockfish against 1 thread Stockfish - 4th from top
score of 2-thread Stockfish against 1 thread Stockfish - 5th from top

Fig. 1. Score of n-thread Stockfish against 1 thread Stockfish on Intel Xeon Phi x200

Tests were performed using tool cutechess-cli [4]. Firstly, tests were per-
formed on the Intel Xeon Phi on how using particular cores affects performance.
In one version, the application was instructed to use physical cores first. This
was achieved with command taskset according to placement and identification
of cores provided in file /proc/cpuinfo. In the other version, threads could use
all available logical processors, no taskset command was used. Comparison of
results for the Intel Xeon Phi and the two versions is shown in Fig. 2.

Following tests were performed with using physical cores first on the Intel
Xeon Phi x200. Figure 3 presents numbers of games with a given result: win, loss
or draw out of 1000 games played by each n thread version against the 1 thread
version and the final scores for each version computed using Eq. 1. It can be seen
that gain is visible up to and including 128 threads with a slight drop for 256
threads. The Stockfish code was modified (changed limits) to allow running on
256 threads as the original version limited the number to 128 threads.

Benchmarking Parallel Chess Search 461

 0.8
 0.81
 0.82
 0.83
 0.84
 0.85
 0.86
 0.87
 0.88
 0.89
 0.9

 32 64 128

A
ve

ra
ge

 s
co

re
 o

f n
-t

hr
ea

d
S

to
ck

fis
h

 a
ga

in
st

 1
 th

re
ad

 S
to

ck
fis

h

number of threads used by Stockfish

score of n-thread Stockfish against 1 thread Stockfish, taskset used
score of n-thread Stockfish against 1 thread Stockfish, no taskset used

Fig. 2. How using taskset affects performance on Intel Xeon Phi x200

Furthermore, analogous tests were performed for a workstation with 2 Intel
Xeon E5-2680 v2 2.80 GHz CPUs with a total of 20 physical cores and 40 logical
processors, available to the author. Numbers of particular results and final scores
are shown in Fig. 4. For this configuration, best results were obtained for 16
threads with a slight drop for 40 threads.

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16 32 64 128 256 512
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r

of
 g

am
es

 w
ith

 a
 g

iv
en

 r
es

ul
t

A
ve

ra
ge

 s
co

re
 o

f n
-t

hr
ea

d
S

to
ck

fis
h

 a
ga

in
st

 1
 th

re
ad

 S
to

ck
fis

h

number of threads used by Stockfish

losses (left axis)
wins (left axis)

draws (left axis)
 score of n-thread Stockfish against

 1 thread Stockfish (right axis)

Fig. 3. n thread Stockfish against 1 thread Stockfish on Intel Xeon Phi x200

Apparently, better scalability for the Intel Xeon Phi stems from relatively
lower performance of a single core and consequently better potential for improve-
ment of the playing strength. This can be observed also for parallel computation
of similarity measures between large vectors for which better speed-up compared

462 P. Czarnul

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16 32 64
 0

 0.2

 0.4

 0.6

 0.8

 1
N

um
be

r
of

 g
am

es
 w

ith
 a

 g
iv

en
 r

es
ul

t

A
ve

ra
ge

 s
co

re
 o

f n
-t

hr
ea

d
S

to
ck

fis
h

 a
ga

in
st

 1
 th

re
ad

 S
to

ck
fis

h

number of threads used by Stockfish

losses (left axis)
wins (left axis)

draws (left axis)
 score of n-thread Stockfish against

 1 thread Stockfish (right axis)

Fig. 4. n thread Stockfish against 1 thread Stockfish on 2 x Intel Xeon E5-2680 v2

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

 50 100 150 200 250

N
od

es
/s

ec
on

d

number of threads used by Stockfish

Intel Xeon Phi CPU 7210
2 x Intel Xeon E5-2680 v2

Fig. 5. Nodes/second processed on the testbed platforms

to 1 core was observed for an Intel Xeon Phi coprocessor but final performance
appeared to be similar for Intel Xeon Phi and two Intel Xeon CPUs [5].

Additionally, Stockfish was benchmarked for nodes/second processed for var-
ious numbers of threads involved. Results are shown in Fig. 5. The performance
of a single Intel Xeon Phi core is lower than that of a single Intel Xeon proces-
sor core. For the maximum number of threads equal to the number of logical
processors on both platforms, the theoretical performance of the Intel Xeon Phi
is slightly larger. It should be noted though that this is more of a theoretical
benchmark for performance of processing of this particular code.

Benchmarking Parallel Chess Search 463

Finally, the best version on the Intel Xeon E5 CPUs using 16 threads was
tested against the best version on the Intel Xeon Phi processor using 128 threads.
Out of 1050 games, 38 were won on Intel Xeon Phi, 37 were lost and 975 draws
were observed for a final score of 0.500047619 computed using Eq. 1.

4 Summary and Future Work

In the paper we have investigated speed-up potential of the Stockfish multi-
threaded chess engine on both multi- and many-core processors such as Intel
Xeon and latest Intel Xeon Phi x200 processors. It was shown that using taskset
to select cores on an Intel Xeon Phi improved performance. Performance of two
tested Intel Xeon processors appeared to be practically the same as one tested
Intel Xeon Phi processor for the chess engine. We plan to test more computing
devices including latest Intel Xeon CPUs as well as to conduct tests for a wider
range of time controls, especially larger ones that might turn out to be more
beneficial for processors with more cores.

References

1. Alliot, J.M.: Who is the master? ICGA J. 39(1), 3–43 (2017)
2. Arenz, O.: Monte carlo chess. Bachelor thesis, Technische Universitat Darmstadt,

April 2012
3. Brockington, M.G., Schaeffer, J.: APHID: asynchronous parallel game-tree search.

J. Parallel Distrib. Comput. 60, 247–273 (2000)
4. Cute Chess Website (2017). https://github.com/cutechess/cutechess
5. Czarnul, P.: Benchmarking performance of a hybrid intel xeon/xeon phi system for

parallel computation of similarity measures between large vectors. Int. J. Parallel
Prog. 45(5), 1091–1107 (2017)

6. Elo, A.: The Rating of Chess Players, Past and Present. Ishi Press, Bronx (2008)
7. Feldmann, R., Monien, B., Mysliwietz, P., Vornberger, O.: Distributed game tree

search. In: Kumar, V., Gopalakrishnan, P.S., Kanal, L.N. (eds.) Parallel Algo-
rithms for Machine Intelligence and Vision, pp. 66–101. Springer, New York (1990).
https://doi.org/10.1007/978-1-4612-3390-9 3

8. Li, L., Liu, H., Wang, H., Liu, T., Li, W.: A parallel algorithm for game tree search
using GPGPU. IEEE Trans. Parallel Distrib. Syst. 26(8), 2114–2127 (2015)

9. Mirsoleimani, S.A., Plaat, A., Herik, J.V.D., Vermaseren, J.: Scaling Monte Carlo
tree search on Intel Xeon Phi. In: 2015 IEEE 21st International Conference on
Parallel and Distributed Systems (ICPADS), pp. 666–673 (2016)

10. Mirsoleimani, S.A., Plaat, A., van den Herik, H.J., Vermaseren, J.: Parallel
Monte Carlo tree search from multi-core to many-core processors. In: Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015, vol. 3, pp. 77–83.
IEEE (2015)

11. Rydzewski, A., Czarnul, P.: A distributed system for conducting chess games in
parallel. In: 6th International Young Scientists Conference in HPC and Simulation.
Procedia Computer Science, Kotka, November 2017

https://github.com/cutechess/cutechess
https://doi.org/10.1007/978-1-4612-3390-9_3

464 P. Czarnul

12. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis,
D.: Mastering Chess and Shogi by self-play with a general reinforcement learning
algorithm. ArXiv e-prints, December 2017

13. Stockfish (2017). https://stockfishchess.org/
14. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Top500. www.top500.org/
15. Ura, A., Tsuruoka, Y., Chikayama, T.: Dynamic prediction of minimal trees in

large-scale parallel game tree search. J. Inf. Process. 23(1), 9–19 (2015)
16. Yokoyama, S., Kaneko, T., Tanaka, T.: Parameter-free tree style pipeline in asyn-

chronous parallel game-tree search. In: Plaat, A., van den Herik, J., Kosters, W.
(eds.) ACG 2015. LNCS, vol. 9525, pp. 210–222. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-27992-3 19

https://stockfishchess.org/
www.top500.org/
https://doi.org/10.1007/978-3-319-27992-3_19
https://doi.org/10.1007/978-3-319-27992-3_19

	Benchmarking Parallel Chess Search in Stockfish on Intel Xeon and Intel Xeon Phi Processors
	1 Introduction
	2 Related Work
	3 Methodology and Experiments
	4 Summary and Future Work
	References

