
Improving Large-Scale Fingerprint-Based
Queries in Distributed Infrastructure

Shupeng Wang1, Guangjun Wu1(B), Binbin Li1, Xin Jin2, Ge Fu2, Chao Li2,
and Jiyuan Zhang1

1 Institute of Information Engineering, CAS, Beijing 100093, China
wuguangjun@iie.ac.cn

2 National Computer Network Emergency Response Technical Team/Coordination

Center of China (CNCERT/CC), Beijing 100031, China

Abstract. Fingerprints are often used in a sketching mechanism, which
maps elements into concise and representative synopsis using small space.
Large-scale fingerprint-based query can be used as an important tool in
big data analytics, such as set membership query, rank-based query and
correlationship query etc. In this paper, we propose an efficient approach
to improving the performance of large-scale fingerprint-based queries in a
distributed infrastructure. At initial stage of the queries, we first trans-
form the fingerprints sketch into space constrained global rank-based
sketch at query site via collecting minimal information from local sites.
The time-consuming operations, such as local fingerprints construction
and searching, are pushed down into local sites. The proposed approach
can construct large-scale and scalable fingerprints efficiently and dynam-
ically, meanwhile it can also supervise continuous queries by utilizing the
global sketch, and run an appropriate number of jobs over distributed
computing environments. We implement our approach in Spark, and
evaluate its performance over real-world datasets. When compared with
native SparkSQL, our approach outperforms the native routines on query
response time by 2 orders of magnitude.

Keywords: Big data query · Data streams · Distributed computing
Memory computing

1 Introduction

In recent years, plenty of applications produce big and fast datasets, which are
usually continuous and unlimited data sets [8,11]. Many applications have to
analyze the large-scale datasets in real time and take appropriate actions [3,5,
9,13,14]. For example, a web-content service company in a highly competitive
market wants to make sure that the page-view traffic is carefully monitored,
such that an administer can do sophisticated load balancing, not only for better
performance but also to protect against failures. A delay in detecting a response
error can seriously impact customers satisfaction [10]. These applications require
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10862, pp. 425–433, 2018.
https://doi.org/10.1007/978-3-319-93713-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93713-7_36&domain=pdf


426 S. Wang et al.

a continuous stream of often key-value data to be processed. Meanwhile, the data
is continuously analyzed and transformed in memory before it is stored on a disk.
Therefore, current analytics of big data are more focused on research for efficient
processing key-value data across a cluster of servers.

The fingerprints-based structures, such as standard bloom filter (SBF) and
dynamic bloom filters (DBF) [7], are usually considered as an efficient sketching
mechanism for processing the key-value data, and they can map the key-value
items into small and representative structure efficiently by hash functions [1,4].
Fingerprint-based queries can be used as important tools for complex queries in
big data analytics, such as membership query, rank-based queries, and correla-
tionship queries [3]. Whereas when confronting large-scale data processing, the
current sketching mechanism framework not only decreases the speed of data
processing because of the fixed configured policies, but also increases collisions
of fingerprint-based applications for dynamic datasets [2,6,7]. In this paper, we
consider the problem of deploying large-scale fingerprint-based applications over
distributed infrastructure, such as Spark, and propose an efficient approach to
automatically reconfigure data structure along with the continuous inputs, as
well as run a reasonable number of jobs in parallel two meet the requirements
of big data stream analytics. The contributions of our paper are as follows:

1. We present distributed sketching approach, which mainly constitutes global
dyadic qdigest and local dynamic bloom filters (DBFs) [7], which can provide
capability of data processing with high system throughput. The global dyadic
qdigest is constructed via collecting the minimal rank-based qdigest structure
from local sketch and can be scaled efficiently. We can also tail the operations
of distributed query processing by running an appropriate number of jobs over
the local sites, which contain the result tuples.

2. We present detailed theoretical and experimental evaluation of our approach
in terms of query accuracy, storage space and query time. We also design and
implement our approach in Spark, and compare it with the state-of-the-art
sampling techniques and the native system under production environments
using real-world data sets.

Spark is often considered as a general-purpose memory computing system,
which can provide capability of supporting analytical queries with fault-tolerant
framework. We implement prototype of our approach in Spark, and compare
it with the native systems (e.g., Spark) and general-purpose sketching method
(Spark with Sampling) over real-world datasets. The experimental results vali-
date the efficiency and effectiveness of our approach. Our approach only costs
100 ms for continuously membership queries over 1.4 billion records.

2 Approach Design

2.1 Sketch Design

The data structure of our sketch includes two parts: (1) A top level dyadic
qdigest, which accepts items of out-of-order data stream and compresses them



Improving Large-Scale Fingerprint-Based Queries 427

into a rank-based structure. We design a hashMap-based structure to implement
the dyadic qdigest to improve the speed of the data processing. (2) A precise
fingerprints structure, which map keys within a range of the dyadic qdigest
into DBFs. Also, we design efficient query processing techniques to boost the
performance of data processing over large-scale and dynamic datasets.

Fig. 1. Data structure for a local sketch.

We extend the traditional qdigest [12] to dyadic qdigest, which is used to
divide the value space of input items into dyadic value range and compress them
into a memory constrained rank-based structure for high-speed data streams
processing. A dyadic qdigest can be considered as a logarithmic partition of
space [0, φ − 1], and any interval [a, b] can be divided into log2(b − a) inter-
vals. In order to improve the speed of data processing, we design a hash-based
dyadic qdigest to maintain rank-based sketch structure, while maintaining the
binary tree semantics of traditional qdigest [12]. Suppose the rank-based struc-
ture maintains summaries in value space [0,φ − 1]. A node is represented by id,
and the id is 1, iff. the node is the root node, otherwise, ids of leaf nodes equal
to value + φ. We can maintain a binary tree semantics for a node with id via
following formulations:

1. Left child id of the node is id × 2;
2. Right child id of the node is id × 2 + 1;
3. Parent id of the node is �id/2�.

The mapping between the hashMap and input item key can be computed by
hash function f1. A simple implementation is that we can compute the function
via f1(h(key)) = h(key) mod φ, where h is a hashcode computing function
such as MD5. For example, if φ = 8, f1(h(key)) = 6, the right child id is
2 ∗ f1(h(key)) = 12 and left child id is 2 ∗ f1(h(key)) + 1 = 13. Hence, we
can compute the traditional binary tree structure over domain φ by hash-based
computing easily.



428 S. Wang et al.

When an item with key inserts into the sketch structure, we first calculate
the node id of the item via f1(h(key)), search the corresponding node by the id,
and increase the number of items in the nodes. As with the DBFs, we arrange
them at each node of the dyadic qdigest to record the fingerprints of input items,
such that we insert key into the active filter of DBF through f2(key). The basic
idea of DBFs is the filters array calculated with standard bloom filters (SBF),
and the bloom filter that is currently written into is called active bloom filter.
If the number of keys maintained at the active filter exceeds the threshold of
collisions, we freeze the active filter as a frozen filter and create a new filter as
an active filter.

In general, the query and inserting efficiency for a binary tree with M nodes
is O(log M). While the hash-based implementation of a binary tree structure
can improve the query time to O(1). Also, it can be seen from Fig. 1 that the
writing time of an item into DBF is O(k), where k is the number of hash func-
tions used in the active filter. At the same time, the above structure can also
be compressed and scaled flexibly to meet the requirements of the distributed
memory computing framework.

2.2 Query Processing

In a distributed computing infrastructure, the driver of query application usually
deployed at query site and supervise the continuous queries over distributed
local sites. In our approach, the large-scale fingerprint-based queries include two
stages: the initial stage, at which we collect information from local sites and build
the global dyadic qdigest at query site using constrained space; query processing
stage, at which we send the query to local sketches which are related to a query in
a batch mode guided by the global qdigest, and push-down the query processing
into each local sketch. At the end of the stage we just exchange and collect the
minimal information from local sites for final results. We next present the details
of the two stages.

Recall that the local sketch structure, including dyadic qdigest and DBFs
attached into each range (or called node) of the dyadic structure. At the initial
stage of large-scale query processing, the query site collects the dyadic qdigest
from local sketches and merge them into a global dyadic qdigest, which can
consume constrained space. The operation can be conducted by pairwise merg-
ing between two sketches. Since the tree merging procedure just collects and
merges between high-level dyadic qdigest summaries, such that the amount of
data exchanged between local sites is small. At the final stage of the merging
operation, we compress the union tree according to space-constrained parameters
k by constrains (1) and (2). Note that the proposed framework can transform
the continuously point queries into a batch-processing mode, and run reasonable
number of jobs dynamically according to data distribution. Next, we present
applications of large-scale fingerprint-based queries utilizing our approach.

Now, we need to formalize the input & output of a query and extract different
attributes for sketching. The problem is to search the membership of a set of keys,
and returns true or false for the key existence prediction. This query method is



Improving Large-Scale Fingerprint-Based Queries 429

usually used in interactive queries or as tools for users interface. The dyadic
qdigest extract the hashcode of keys from inputs, and predict the existence in
the DBFs.

The DBFs based on SBF are compact and provide probabilistic prediction
and may return true for an input key. The DBF also can provide false positive
error, which reports true for some keys that are not actually members of the
prediction. Let m, k, na and d be core parameter of a SBF as the previous
literature [7]. The DBFs compress the dynamic dataset D into s×m SBFs matrix.
In this paper, we use fSBF

m,k,na,d
and fDBF

m,k,na,d
to describe the false positive error of

a SBF and DBFs when the d elements maintained in the sketch. If 1 ≤ d ≤ na, it
indicates that the number of elements in the set A does not exceed the collision
threshold na, thus DBF (A) is actually a standard bloom filter, whose false
positive rate can be calculated in the same way as SBF (A). The error fDBF

m,k,na,d

of a membership query can depicted as

fDBF
m,k,na,d = fSBF

m,k,na,d = (1 − e−k×d/m)k. (1)

If d > na, there are s SBFs used in DBF (A) for data set A, meanwhile
there are i(1 ≤ i ≤ s − 1) SBFs which contain na items in the filter, and false
positive rates are all fSBF

(m,k,na,na)
. We design an active filter for the inserting,

and false positive rate of the active filter in DBF(A) is fSBF
(m,k,na,t)

, where t is
d−na ×�d/na�. Therefore, the probability that all bits of the filters in DBF(A)
are set to 1 is (1 − fSBF

(m,k,na,na)
)�d/na�(1 − fSBF

(m,k,na,t)
), and the false positive rate

of DBF(A) is shown in Eq. 2. We notice that when there is only one filter in
DBF(A), Eq. 2 can transform into Eq. 1.

fDBF
m,k,na,d = 1 − (1 − fSBF

(m,k,na,na))
�d/na�(1 − fSBF

(m,k,na,t))

= 1 − (1 − (1 − e−k×na/m)k)�d/na� × (1 − (1 − e−k×(d−na×�d/na�)/m)k).

(2)

3 Experimental Evaluation

In this paper, we implement our approach in Spark, which works on the on
YARN with 11 servers. The configuration information of a server of the cluster
is shown in Table 1. We use the real-word traffic of page-views nearly 100 GB
uncompress datasets. We mainly focus our evaluation on query efficiency and
query accuracy of our approach.

We first compare our prototype with the native system Spark. We use the
rank-based queries as the testing cases. The large-scale quantiles query is a
more important and complex statistical query method. For quantiles queries,
Spark provides the percentile function to support quantiles lookups. We use the
percentile function in SparkSQL to conduct the rank-based queries on Spark
platform. The SparkSQL statement, such as “select percentile (countall, array



430 S. Wang et al.

Table 1. Configuration information in our experiments.

Name Configuration Information

Operating system CentOS 6.3

CPU model Intel(R) Xeon(R) E5-2630@2.30 GHz

CPU cores 24 × 6

Memory 32 GB

Spark version 2.1.0

JDK version 1.8.0 45-b14

Scala version 2.11.7

Hadoop version 2.7.3

(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)) from relations”, can be used to obtain
the ten quantiles from data set exactly. Meanwhile, the data structure of the two
approaches, such as sketching structure of our approach, and related RDDs of
Spark, are all kept in memory.

The results are shown in Fig. 2(a) and (b). The large-scale rank-based fin-
gerprints queries need to scan the dataset to obtain the global ranking quan-
tiles, which is a time-consuming operation. Our approach can improve the query
efficiency through partition and distributed sketching framework, thus it can
improve the query efficiency greatly. Under the 10 GB real-world data set test-
ing, our approach can respond a query less than 200 ms, while the memory
computing framework Spark costs 35 s to respond the same query.

(a) query efficiency. (b) query accuracy.

Fig. 2. Compared with native Spark.

In order to evaluate the query performance of our approach over large-scale
datasets, we conduct the evaluation over 100 GB uncompressed data. When the
data set is larger than the maximum space for RDDs in Spark, the data will be



Improving Large-Scale Fingerprint-Based Queries 431

spilled into disk, and it impacts the query processing greatly. The Spark provides
a sampling (denoted as Spark&Sampling) interface to conquer the real-time data
processing over large-scale datasets. The Spark&Sampling is a type of Bernoulli
sampling with no placement. The sampling method extracts samples from parti-
tions and maintains samples in memory blocks. We improve the accuracy of the
sampling method using adjustment weights for samples. For an input item v, we
sample it with the probability of p, p ∈ (0, 1), then the adjusted weight of the
item is v/p. We configure the same memory usage for the two approaches, we
compare them on three aspects: construction time, query efficiency and query
accuracy. The experimental results are shown in Fig. 3(a), (b) and (c).

(a) construction time. (b) query accuracy. (c) query efficiency.

Fig. 3. Compared with Spark with sampling interface.

Our approach can extract samples from large-scale datasets and arrange them
into specified sketching structure, while the Spark&Sampling extracts random-
ized samples from partitions and attaches them in block directly, thus the time
costed in our approach is slightly higher than Spark&Sampling method.

After the sketch construction, we conduct 100 randomized rank-based fin-
gerprints queries, and compute the average query efficiency and query accu-
racy of a query. The global sketch is a type of qdigest structure, which predicts
the quantiles with some errors. We present the error comparisons of the two
approaches. Our sketch can provide the error less than 0.1% for the rank-based
quantiles estimation, while the error in Spark&sampling is larger than 0.7%.
Meanwhile, our approach can improve the query response time significantly over
large-scale datasets. When compared under 100 GB real-world dataset, our app-
roach can provide an answer within 300 ms, while the Spark&sampling needs
180 s to respond the same query. Therefore, our approach is more appropriate
for big and fast dataset processing and can provide real-time (or near real-time)
response for large-scale fingerprint based queries

4 Conclusion

Large-scale fingerprint-based queries are often time-consuming operations. In
this paper, we propose a distributed sketching framework to boost the perfor-
mance of the large-scale queries, such as continuously membership queries and



432 S. Wang et al.

rank-based queries. Towards minimizing the shuffling time between the local
sites, we construct a global dyadic qditest structure at query site using con-
strained space. For large-scale queries, the global sketch only build at initial
stage of the queries, and can supervise the following continuously queries. This
design enable our approach to run reasonable number of jobs under data skew
scenarios. At local sites, we combine the sketching techniques, such as dyadic
qdigest and dynamic bloom filters to build concise structure for dynamic data
processing. The experimental results have expose the efficiency and effectiveness
of our approach for large-scale queries over distributed environments. In the
future, we plan to apply our approach in production environments to improve
the efficiency of complex queries, such as group by queries and join queries.

Acknowledgment. This work was supported by the National Key Research and
Development Program of China (2016YFB0801305).

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. ACM
(1970)

2. Corominasmurtra, B., Sol, R.V.: Universality of Zipf’s law. Phys. Rev. E Stat.
Nonlinear Soft Matter Phys. 82(1 Pt 1), 011102 (2010)

3. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than bloom. In: ACM International on Conference on Emerging NET-
WORKING Experiments and Technologies, pp. 75–88 (2014)

4. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Networking 8(3), 281–293 (2000)

5. Wu, G., Yun, X., Li, C., Wang, S., Wang, Y., Zhang, X., Jia, S., Zhang, G.: Sup-
porting real-time analytic queries in big and fast data environments. In: Candan,
S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS,
vol. 10178, pp. 477–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-55699-4 29

6. Guo, D., Wu, J., Chen, H., Luo, X.: Theory and network applications of dynamic
bloom filters. In: IEEE International Conference on Computer Communications
IEEE INFOCOM 2006, pp. 1–12 (2006)

7. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE
Trans. Knowl. Data Eng. 22(1), 120–133 (2010)

8. Guo, L., Ma, J., Chen, Z.: Learning to recommend with multi-faceted trust in social
networks. In: Proceedings of the 22nd International Conference on World Wide
Web Companion, WWW 2013 Companion, pp. 205–206. International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva, Switzer-
land (2013)

9. Katsipoulakis, N.R., Thoma, C., Gratta, E.A., Labrinidis, A., Lee, A.J., Chrysan-
this, P.K.: CE-Storm: confidential elastic processing of data streams. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2015, pp. 859–864. ACM, New York (2015)

10. Mishne, G., Dalton, J., Li, Z., Sharma, A., Lin, J.: Fast data in the era of big data:
Twitter’s real-time related query suggestion architecture. In: Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, pp. 1147–1158. ACM, New York (2013)

https://doi.org/10.1007/978-3-319-55699-4_29
https://doi.org/10.1007/978-3-319-55699-4_29


Improving Large-Scale Fingerprint-Based Queries 433

11. Preis, T., Moat, H.S., Stanley, E.H.: Quantifying trading behavior in financial
markets using Google trends. Sci. Rep. 3, 1684 (2013)

12. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new
aggregation techniques for sensor networks. In: Proceedings of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems, SenSys 2004, pp. 239–
249. ACM, New York (2004). https://doi.org/10.1145/1031495.1031524, https://
doi.org/10.1145/1031495.1031524

13. Wang, Z., Quercia, D., Séaghdha, D.O.: Reading tweeting minds: real-time analysis
of short text for computational social science. In: Proceedings of the 24th ACM
Conference on Hypertext and Social Media, HT 2013, pp. 169–173. ACM (2013)

14. Xiaochun, Y., Guangjun, W., Guangyan, Z., Keqin, L., Shupeng, W.: FastRAQ:
a fast approach to range-aggregate queries in big data environments. IEEE Trans.
Cloud Comput. 3(2), 206–218 (2015). https://doi.org/10.1109/TCC.2014.2338325

https://doi.org/10.1145/1031495.1031524
https://doi.org/10.1145/1031495.1031524
https://doi.org/10.1145/1031495.1031524
https://doi.org/10.1109/TCC.2014.2338325

	Improving Large-Scale Fingerprint-Based Queries in Distributed Infrastructure
	1 Introduction
	2 Approach Design
	2.1 Sketch Design
	2.2 Query Processing

	3 Experimental Evaluation
	4 Conclusion
	References




