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Abstract. A stable gas-kinetic scheme based on circular function is proposed
for simulation of viscous compressible flows in this paper. The main idea of this
scheme is to simplify the integral domain of Maxwellian distribution function
over the phase velocity and phase energy to modified Maxwellian function,
which will integrate over the phase velocity only. Then the modified Maxwel-
lian function can be degenerated to a circular function with the assumption that
all particles are distributed on a circle. Firstly, the RAE2822 airfoil is simulated
to validate the accuracy of this scheme. Then the nose part of an aerospace plane
model is studied to prove the potential of this scheme in industrial application.
Simulation results show that the method presented in this paper has a good
computational accuracy and stability.
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1 Introduction

With the development of numerical simulation, the computational fluid dynamics
(CFD) is becoming more and more important in industrial design of aircraft since its
high-fidelity description of the flow field compared to the engineering method. Most
numerical schemes are based on directly solving the Euler or N-S equations [1–3].
Whereas, a new method we proposed here is to solve the continuous Boltzmann model
at the micro level and N-S equations at macro level. The gas-kinetic scheme (GKS) is
commonly used as a continuous Boltzmann model which is based on the solution of
Boltzmann equation and Maxwellian distribution function [4–7]. The GKS attracts
more researchers’ attention during the last thirty years since its good accuracy and
efficiency in solving the inviscid and viscous fluxes respectively [8, 9].

The GKS is developed from the equilibrium flux method (EFM) [10] to solve
inviscid flows in the very beginning. Then, the Kinetic Flux Vector Splitting (KFVS)
[11] scheme is applied to solve collisionless Boltzmann equation. The Bhatnagar Gross
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Krook (BGK) gas kinetic scheme was developed by Prendergast et al. [12], Chae et al.
[13], Xu [14, 15] and other researchers based on the KFVS scheme. The particle
collisions are considered in BGK scheme to improve the accuracy, which contributes
great developments and application potential for BGK gas kinetic scheme.

In this work, a stable gas-kinetic scheme based on circular function framework is
proposed for simulating the 2-D viscous compressible flows. Most existing GKS are
based on Maxwellian function and make it time consuming and complex. Hence, the
original Maxwellian function, which is the function of phase velocity and phase
energy, is simplified into a function including phase velocity only. The effect of phase
energy is contained in the particle inter energy ep. Then, based on the assumption
which all particles are concentrated on a circle, the simplified Maxwellian function can
be reduced to a circular function, which makes the original infinite integral to be
integrated along the circle. Compressible flow around RAE2822 airfoil is simulated to
validate the proposed scheme. Furthermore, the nose part of an aerospace plane model
is studied to prove the application potential of this scheme.

2 Methodology

2.1 Maxwellian Distribution Function

Maxwellian distribution function is an equilibrium state distribution of Boltzmann
function. The continuous Boltzmann equation based on Bhatnagar Gross Krook
(BGK) without external force collision model is shown as Eq. (1):

@f
@t

þ n � rf ¼ 1
s

f eq � fð Þ; ð1Þ

Where f is the gas distribution function and the superscript eq means the equilibrium
state approached by f through particle collisions within a collision time scale s.

The Maxwellian distribution function is

f eq ¼ gM ¼ qðk
p
ÞDþK

2 e
�k

PD
i¼1

ni�Uið Þ2 þ
PK
j¼1

f2j

� �
; ð2Þ

in which Ui is the macroscopic flow velocity in i-direction and k ¼ m=ð2kTÞ ¼
1=ð2RTÞ. The number of phase energy variables is K¼3� DþN. D is the dimension
and N is freedom rotational degree number.

The heat ratio c can be expressed as:

c ¼ bþ 2
b

¼ KþDþ 2
KþD

; ð3Þ

in which b represents the freedom degree number of molecules.
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Based on Maxwellian function (Eq. (2)), the continuous Boltzmann equation
(Eq. (1)) can be recovered to N-S equations by applying Chapman-Enskog expansion
analysis [4] with following conservation moments equations:

Z
gMdN ¼ q; ð4aÞ

Z
gMnadN ¼ qua; ð4bÞ

Z
gMðnana þ

XK
j¼1

f2j ÞdN ¼ qðuaua þ bRTÞ; ð4cÞ

Z
gMnanbdN ¼ quaub þ pdab; ð4dÞ

Z
gMðnana þ

XK
j¼1

f2j ÞnbdN ¼ q½uaua þðbþ 2ÞRT �ub; ð4eÞ

in which dN ¼ dnadnbdnvdf1df2 � � � dfK is the volume element in the phase velocity
and energy space. q is the density of mean flow, the integral domain for each variable is
ð�1; þ1Þ.

Due to phase velocity is independent from phase energy space, Eq. (2) can be
written as:

gM ¼ gM1 � gM2; ð5Þ
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If we define dN1 ¼ dnadnbdnv and dN2 ¼ df1df2 � � � dfK , then we can get
dN ¼ dN1dN2. With these definitions, the integral form of gM2 can be concluded as:

Z
gM2dN2 ¼

Z
k
p

� �K
2

e

�k
PK
j¼1

n2
j

df1df2 � � � dfK ¼ 1: ð8Þ

Substituting Eqs. (5)–(8) to Eq. (4), we have
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Z
gM1dN1 ¼ q; ð9aÞ

Z
gM1nadN1 ¼ qua; ð9bÞ

Z
gM1ðnana þ 2epÞdN1 ¼ qðuaua þ bRTÞ; ð9cÞ
Z

gM1nanbdN1 ¼ quaub þ pdab; ð9dÞ
Z

gM1ðnana þ 2epÞnbdN1 ¼ q½uaua þðbþ 2ÞRT �ub; ð9eÞ

in which ep is particle potential energy, shown as Eq. (10):

ep ¼ 1
2

Z
gM2

XK
j¼1

f2j dN2 ¼ K
4k

¼ ½1� D
2
ðc� 1Þ�e; ð10Þ

where e ¼ p=½ðc� 1Þq� is the potential energy of mean flow. It can be seen from
Eqs. (9) and (10) that ep is independent from phase velocity ni.

2.2 Simplified Circular Function

Suppose that all the particles in the phase velocity space are concentrated on a circle
which has center ðu1; u2Þ and radius c, shown as:

n1 � u1ð Þ2 þ n2 � u2ð Þ2¼c2; ð11Þ

in which c2 means the mean particle kinetic energy and we have

c2 ¼

R PD
i¼1

ðni � UiÞ2gM1dN1R
gM1dN1

¼ D
2k

¼ Dðc� 1Þe: ð12Þ

By substituting Eq. (12) into Eq. (9a) we can get Eq. (13), which is the mass con-
servation form in the cylindrical coordinate system:
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Then we can get the simplified circular function shown as follows:

gC ¼
q
2p ðn1 � u1Þ2 þðn2 � u2Þ2 ¼ c2;
0 else:

�
: ð14Þ

All particles are concentrated on the circle and the velocity distribution is shown as

Fig. 1. Then the phase velocity components in the Cartesian coordinate system can be
expressed as:

n1 ¼ u1 þ c cosðhÞ; ð15aÞ

n2 ¼ u2 þ c sinðhÞ: ð15bÞ

Substituting Eqs. (14) and (15) to Eq. (9), the conservation forms of moments to
recover N-S equations can be expressed as follows:

Z
gM1dN1 ¼

Z 2p

0
gCdh ¼ q; ð16aÞ

Z
gM1nadN1 ¼

Z 2p

0
gCnadh ¼ qua; ð16bÞ

Z
gM1ðnana þ 2epÞdN1 ¼

Z 2p

0
gCðnana þ 2epÞdh ¼ qðuaua þ bRTÞ; ð16cÞ

Z
gM1nanbdN1 ¼

Z 2p

0
gCnanbdh ¼ quaub þ pdab; ð16dÞ

Z
gM1ðnana þ 2epÞnbdN1 ¼

Z 2p

0
gCðnana þ 2epÞnbdh ¼ q½uaua þðbþ 2ÞRT �ub:

ð16eÞ

Fig. 1. Configuration of the phase velocity at a cell interface
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2.3 Governing Equations Discretized by Finite Volume Method

N-S equation discretized by finite volume method in 2-dimensional can be expressed
as:

dWI

dt
¼ � 1

XI

XNf

j¼1

FNjSj; ð17Þ

in which I represents the index of a control volume, XI is the volume, Nf means the
number of interfaces of control volume I and Sj is the area of the interface in this
volume. The conservative variables W and convective flux Fn can be expressed as:

W ¼
q
qu1
qu2

qðu21 þ u22 þ bRTÞ=2

2
664

3
775; F ¼

qUn

qu1Un þ nxp
qu2Un þ nyp

Unqðu21 þ u22 þðbþ 2ÞRTÞ=2

2
664

3
775: ð18Þ

Suppose that cell interface is located on r ¼ 0, then the distribution function at cell
interface (Eq. (19)) consists two parts, the equilibrium part f eq and the non-equilibrium
part f neq:

f ð0; tÞ ¼ gCð0; tÞþ f neqð0; tÞ ¼ f eqð0; tÞþ f neqð0; tÞ: ð19Þ

To recover N-S equations by Boltzmann equation from Chapman-Enskog analysis [4,
9, 16–19], the non-equilibrium part f neqi ð0; tÞ applying Taylor series expansion in time
and physics space can be written as:

f neqð0; tÞ ¼ �s0 gCð0; tÞ � gCð�ndt; t � dtÞþ oðdt2Þ� �
: ð20Þ

Substituting Eq. (20) into Eq. (19) and omit the high order error item, then we have

f ð0; tÞ � gCð0; tÞþ s0 gCð�ndt; t � dtÞ � gCð0; tÞ½ �; ð21Þ

in which gCð�ndt; t � dtÞ is the distribution function around the cell interface, s0 ¼
s=dt ¼ l=pdt is dimensionless collision time. l is dynamic coefficient of viscosity, dt is
the streaming time step which represents the physical viscous of N-S equations. Now
convective flux at cell interface can be expressed as:

F ¼ FI þ s0ðFII�FIÞ; ð22Þ

in which FI represents contribution of equilibrium distribution function gCð0; tÞ at cell
interface and FII means equilibrium distribution function gCð�ndt; t � dtÞ at sur-
rounding point of the cell interface. Their functions are shown as:
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FI ¼
qu1

qu1u1 þ p
qu1u2

ðqEþ pÞu1

2
664

3
775
face

; ð23Þ

FII ¼
Z

ncir1 ucir
a gcirC dh; ð24Þ

in which the superscript face represents value at ð0; tÞ and cir means ð�ndt; t � dtÞ.
When n1 � 0, we have expressions as Eq. (25). The superscript L become R when

n1\0:

ncir1 ¼ uL1 �
@uL1
@x1

ðuþ
1 þ cþ cosðhÞÞdt � @uL1

@x2
ðuþ

2 þ cþ sinðhÞÞdtþ cþ cosðhÞ; ð25aÞ

ncir2 ¼ uL2 �
@uL2
@x1

ðuþ
1 þ cþ cosðhÞÞdt � @uL2

@x2
ðuþ

2 þ cþ sinðhÞÞdtþ cþ sinðhÞ; ð25bÞ

ecirp ¼ eLp �
@eLp
@x1

ðuþ
1 þ cþ cosðhÞÞdt � @eLp

@x2
ðuþ

2 þ cþ sinðhÞÞdt; ð25cÞ

gcirC ¼ gLC � @gLC
@x1

ðuþ
1 þ cþ cosðhÞÞdt � @gLC

@x2
ðuþ

2 þ cþ sinðhÞÞdt: ð25dÞ

Substituting Eq. (25) into Eq. (24), the final expression of the equilibrium distribution
function at the surrounding points of the cell interface FII can be calculated by

FIIð1Þ ¼
Z

ncir1 gcirC dh ¼
Z

ða0 þ a1rþ a2sÞðg0 þ g1rþ g2sÞdh; ð26aÞ

FIIð2Þ ¼
Z

ncir1 ncir1 gcirC dh ¼
Z

ða0 þ a1rþ a2sÞða0 þ a1rþ a2sÞðg0 þ g1rþ g2sÞdh;
ð26bÞ

FIIð3Þ ¼
Z

ncir1 ncir2 gcirC dh ¼
Z

ða0 þ a1rþ a2sÞðb0 þ b1rþ b2sÞðg0 þ g1rþ g2sÞdh;
ð26cÞ

FIIð4Þ ¼
Z

ncir1 ð1
2
ncir
		 		2 þ ecirp ÞgcirC dh

¼
Z

ða0 þ a1rþ a2sÞ 1
2

ða0 þ a1rþ a2sÞ2 þðb0 þ b1rþ b2sÞ2

 �

þ ðe0 þ e1rþ e2sÞ
� �

ðg0 þ g1rþ g2sÞdh:
ð26dÞ
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The operators in Eq. (26) can be expressed as:

a0 ¼ uL1 �
@uL1
@x1

uþ
1 dt � @uL1

@x2
uþ
2 dt; a1 ¼ cþ � @uL1

@x1
cþ dt; a2 ¼ � @uL1

@x2
cþ dt;

b0 ¼ uL2 �
@uL2
@x1

uþ
1 dt � @uL2

@x2
uþ
2 dt; b1 ¼ � @uL2

@x1
cþ dt; b2 ¼ cþ � @uL2

@x1
cþ dt;

e0 ¼ eLp �
@eLp
@x1

uþ
1 dt � @eLp

@x2
uþ
2 dt; e1 ¼ � @eLp

@x1
cþ dt; e2 ¼ � @eLp

@x2
cþ dt;

g0 ¼ gLC � @gLC
@x1

uþ
1 dt � @gLC

@x2
uþ
2 dt; g1 ¼ � @gLC

@x1
cþ dt; e2 ¼ � @gLC

@x2
cþ dt;

ð27Þ

in which uþ
1 ; uþ

2 and cþ are predictional normal velocity, tangential velocity and
particle specific velocity at cell interface. These velocities can be obtained both by Roe
average [19] and the value of the former moment at cell interface.

3 Numerical Simulations

To validate the proposed circular function-based gas-kinetic scheme for simulation of
viscous compressible flows, the RAE2822 airfoil and nose part of aerospace plane
model are discussed.

3.1 Case1: Compressible Flow Around RAE2822 Airfoil

The transonic flow around RAE2822 airfoil is discussed to validate the accuracy of the
proposed scheme. The free stream has Mach number of Ma1 ¼ 0:729 with 2.31° angle
of attack.

Fig. 2. Pressure contours of presented
scheme around RAE2822 airfoil.

Fig. 3. Pressure coefficient comparison of
RAE2822 airfoil surface.
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Figure 2 shows the pressure contours obtained by the proposed scheme. Figure 3
shows the comparison between experimental data [20], Roe scheme and the presented
scheme. It can be seen clearly that the presented scheme has good accordance with both
experimental data and results of Roe scheme.

3.2 Case2: Supersonic Flow Around Nose Part of Aerospace Plane Model

The supersonic flow around the nose part of an aerospace plane model (wind tunnel) is
simulated in this section. The model is 290 mm in length, 58 mm in width, the head
radius is 15 mm and semi-cone angle is 20°. The free stream has Mach number of
Ma1 ¼ 3:6 with −5, 0 and 5° angle of attack respectively. Figure 4 gives out the
pressure contours simulated by the presented scheme at 5° angle of attack, and Fig. 5 is
the Mach number contours at the same condition.

Figure 6 shows comparison of pressure coefficient distribution on upper and lower
surface of aerospace plane model at −5 angle of attack, which computed by scheme
presented, Roe scheme and Van Leer scheme. It can be seen that the result of present
solver has good accordance with other two numerical schemes. Similar conclusions can
be obtained according to Figs. 7 and 8. Therefore, the solver presented in this article
shows both high computational accuracy and numerical stability. Hence, the circular
function-based gas-kinetic scheme shows the potential of future industrial application
in flight vehicle research and design.

Fig. 4. Pressure contours at 5° angle of attack Fig. 5. Mach number contours at 5° angle of
attack
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4 Conclusions

This paper presents a stable gas-kinetic scheme based on circular function. It is focus
on improving the calculation efficiency of existing GKS. Firstly, simplifying the
original Maxwellian function, which is the function of phase velocity and phase
energy, into the function of phase velocity. Furthermore, reducing the simplified
function to a circular function. Hence, the original infinite integral can be changed to
the integral along the circle.

Transonic flow around RAE2822 airfoil and supersonic flow around the nose part
of an aerospace plane model are studied. The results show a good computational
accuracy and the potential for future industrial application.

Fig. 6. Pressure coefficient comparison at
−5° angle of attack

Fig. 7. Pressure coefficient comparison at 0°
angle of attack

Fig. 8. Pressure coefficient comparison at 5° angle of attack
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