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Abstract. The prevalence of type 2 Diabetes Mellitus (T2DM) has
reached critical proportions globally over the past few years. Diabetes
can cause devastating personal suffering and its treatment represents a
major economic burden for every country around the world. To property
guide effective actions and measures, the present study aims to examine
the profile of the diabetic population in Mexico. We used the Karhunen-
Loève transform which is a form of principal component analysis, to
identify the factors that contribute to T2DM. The results revealed a
unique profile of patients who cannot control this disease. Results also
demonstrated that compared to young patients, old patients tend to have
better glycemic control. Statistical analysis reveals patient profiles and
their health results and identify the variables that measure overlapping
health issues as reported in the database (i.e. collinearity).
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1 Introduction

The number of people suffering from diabetes mellitus globally has more than
doubled over the past three decades. In 2015, an estimated 415 million people
worldwide (representing 8.8% of the population) developed diabetes mellitus;
91% of these people had type 2 diabetes mellitus (T2DM) [1]. Remarkably the
International Diabetes Federation estimates that another 193 million individ-
uals with diabetes remain undiagnosed. These individuals are at a great risk
of developing health complications. The evidence documenting the large eco-
nomic burden of treating T2DM has also risen dramatically in the past decade
[2]. The causes of the epidemic are embedded in an extremely complex com-
bination of genetic and epigenetic predisposition interacting within an equally
complex combination of societal factors that determine behavior and environ-
mental risks [3]. Great efforts have been taken to build a reliable T2DM patients
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database and to determine the methodologies and statistical analysis that will
allow researchers to identify the variables that best predict outcomes, and inform
public health policies to reduce the epidemic and its associated social and eco-
nomic costs [4]. The rest of the present work is organized as follows. In Sect. 2
we present the methodology used to develop statistical and multivariate analysis
to be performed on the database of patients diagnosed with T2DM provided by
the Mexican National Nutrition Institute. Results and conclusions are presented
in Sects. 3 and 4, respectively.

2 Methods

2.1 Patient Database

The present study reports on an analysis of patient data provided by a third
level hospital (i.e. highly specialized) from the National Nutrition Institute in
Mexico. The database comprises p = 40 health features in n = 204 patients
diagnosed with T2DM. The age of the patients ranges from 29 to 90 years (μ =
61, σ = 11.7), with 80% of these patients between the age of 50 and 70 years,
and 60% the patients are females. The health features include in this database
comprise four socio-demographic features1, three non-modifiable risk factors2

and 33 modifiable risk factors3 that are commonly studied in the context of
T2DM [4].

2.2 Multivariate Analysis

For multivariate analysis, we applied the Karhunen-Loève transform which is a
form of principal component analysis (PCA) [5]. PCA allows for the identifica-
tion of variable subsets that are highly correlated and could be measuring the
same health indicator, implying dimensionality reduction. The method works
through an orthonormal linear transformation constructed with the idea of rep-
resenting the data as best as possible representation in terms of the least squares
technique [6], which converts the set of health features, possibly correlated, into
a set of variables without linear correlation called principal components. The
components are numbered in such a manner that the first explains the great-
est amount of information through their variability, while the last explains the
least. The solution of the computation of the principal components is reduced
to an eigenvalue-eigenvector problem reflected in a single positive-semidefinite
symmetric matrix called the correlation or covariance matrix.

The eigenvectors of the correlation matrix show the direction in a feature
space of p = 40 dimensions in which the variance is maximized. Each principal
component contains the cosine of the projection of the patients to the eigenvec-
tor correspond. This is relevant because if a variable can be associated with a

1 Socio-economic strata, residence area, educational levels and occupation.
2 Age, gender and size.
3 Weight, HbA1c (measure glycated hemoglobin), triglycerides, etc.
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particular principal component, it must point approximately in the same direc-
tion of the eigenvector, and their cosine should approach the value 1. If the value
of the cosine approaches 0, then the variable points in an orthogonal direction to
the principal component and they are not likely associated. The product of each
eigenvector by its corresponding eigenvalue will give each vector a magnitude
relative to its importance. These scaled vectors are called Factor Loadings. The
projection of each sample of n = 204 patients to each eigenvector is called the
Factor Score. This will help cluster samples to determine patient profiles.

The principal component analysis method requires a standardized database
X for its development, i.e. each of its features have zero mean and variance equal
to one.

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
xn1 xn2 · · · xnp

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− x1 −
− x2 −

...
− xn −

⎞
⎟⎟⎟⎠ =

⎛
⎝

| | |
X1 X2 · · · Xp

| | |

⎞
⎠ ,

where xi = (xi1, xi2, ..., xip) represents the ith patient, and Xj = (x1j ,
x2j , ..., xpj)T represents the jth health feature, i = 1, 2, ..., n and j = 1, 2, ..., p,
and n ≥ p. Geometrically, the n patients represent points in the p-dimensional
feature space.

The linear transformation that will take the database to a new uncorrelated
coordinate system of features which keeps as much important information as
possible and identify if more than one health feature might be measuring the
same principle governing the behavior of the patients, will be constructed vector
by vector.

Let v1 = (v11, v21, ..., vp1)T �= 0 be this first vector such that, as the technique
least squares [6], the subspace generated by it has the minimum possible distance
to all instances. This problem can be represented mathematically as the following
optimization problem:

min
n∑

i=1

||xi − yi1||2,

where yi1 denote the projection of the ith instance xi onto the subspace spanned
by v1, and ki1 = 〈xi,v1〉

||v1||2 , with the usual Euclidean inner product and norm.
Then, by the Pythagoras Theorem ||xi − yi1||2 = ||xi||2 − ||yi1||2, and not-

ing that ||xi|| is a constant, the problem turn into min
∑n

i=1 ||xi − yi1||2 =
max

∑n
i=1 ||yi1||2. Thus, if Y1 = (k11, k21, ..., kn1)T then ||Y1||2 =

∑n
i=1 k2

i1 =∑n
i=1 ||yi1||2 and max

∑n
i=1 ||yi1||2 = max

∑n
i=1 ||Y1||2.

With some simple calculations involving the biased variance estimator, the
correlation definition, the Euclidean norm, and the properties of X standardized,
we can be concluded that 1

n ||Y1||2 = V ar(Y1) = vT
1 Corr(X)v1, where Corr(X)

is the correlation matrix of X. Therefore max
∑n

i=1 ||Y1||2 = max vT
1 Corr(X)v1.



194 D. Canales et al.

Note that, since Corr(X) is a constant, vT
1 Corr(X)v1 increases arbitrarily

if ||v1|| increases. Thus, the problem turns into the next optimization problem

max
v1

vT
1 Corr(X)v1

subjet to ||v1|| = 1.

The Lagrange multiplier technique let conclude that v1 is the eigenvector of
Corr(X) corresponding to the larger eigenvalue λ1. Then max vT

1 Corr(X)v1 =
max λ1 solve the problem min

∑n
i=1 ||xi − yi1||2 = max λ1.

This means that the first vector of the subspace that maintains the minimum
distance to all the instances is given by the eigenvector v1 corresponding to the
eigenvalue λ1 of the correlation matrix of the standardized database, Corr(X).
Then, as the correlation matrix is symmetric and positive-defined, by the Prin-
cipal Axes Theorem, Corr(X) has an orthogonal set of p eigenvectors {vj}pj=1

corresponding to p positive eigenvalues {λj}pj=1. Which implies that by ordering
the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and following an analysis similar to
the previous one, we have that the next searched vector is the eigenvector v2
corresponding to λ2, the largest eigenvalue after λ1, and so on for the following
vectors. The Main Axes Theorem and the condition of the Lagrange Multipliers
that each vj must be normal imply that the set of eigenvectors is orthonormal,
and {Yj}pj=1 are called the set of principal axes. So, Y1 = Xv1 the first principal
component, Y2 = Xv2 the second principal component, and so on.

In this way, the new coordinate system that is given by the change to the
base {vj}pj=1, provides the orthonormal linear transformation that takes the
standardized database to a new space of uncorrelated features that maintains the
greatest amount of information from the original database. This new database
is represented by the matrix of principal components Y = (Y1, Y2, ..., Yp) =
X(v1, v2, ..., vp). In general terms, what this means is that the projection of the
database in the new coordinate system results in a representation of the original
database with the property that its characteristics are uncorrelated and where
the contribution of the information of the original database that each of them
keeps, is reflected in the variances of the main components. This property allows
extracting the characteristics that do not provide much information, fulfilling the
task of reducing the dimensionality of the base. In addition, this technique allows
the original database to identify and relate the characteristics that could be
measuring the same principle that governs the behavior of the base contributing
a plus to this analysis technique.

3 Results

Our statistical analysis revealed the following interesting trend in the database of
T2DM: old patients tend to have good glycemic control. Our analysis also shows
that patients with poor glycemic control are commonly young, are overweight or
obese (70%), and belong to a low socio-economic strata (85%). Further, patients
with poor glycemic control frequently have an educational level lower than the
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high school level (80%), are unemployed (66%), smoke (80%), and have higher
levels of triglycerides and cholesterol. These patients also demonstrate great dis-
ease chronicity with a range of complications, such as liver disease (68%), diabetic
foot (56%), hypoglycemia (71%), and diabetic Ketoacidosis (82%). They have to
undergo insulin (62%) and metformin (52%) treatments. With regard to disease
progression, the two glycemic measures (HbA1c and 2ndHbA1c) were associated
with a 47% reduction in glycemic control, while 53% of patients retained the
same level of glycemic control or improved, and 69% retained the same level
control or worse. Thus, our results demonstrate that patients in the database
who were remained in control in most cases. However, if patients had poor control
they tended to retain poor control or even get worse.

Correlation analysis demonstrated that the first and second measures of
HbA1c, size and gender, and blood urea nitrogen (BUN) and creatinina, were sig-
nificantly associated with diabetic retinopathy (DR) and nephropathy. Regard-
ing the association with height and gender, it should be noted that on average,
men are taller than women. Renal failure is usually measured through BUN and
Creatinina. Additionally, DR and nephropathy are both known chronic compli-
cations of diabetes mellitus (see Fig. 1).

Corr(HbA1c,2ndHbA1c) =.71
Corr(Size,Gender) =.66
Corr(BUN,Creatinina) =.65
Corr(RD,Neprhopathy) =.54

Fig. 1. The chart shows the upper triangular correlation matrix of the database. Pos-
itive correlations are displayed in blue and negative correlations are displayed in red
color. Color intensity and the size of the circle are proportional to the correlation coef-
ficients (see legend provided on right). The most highly correlated values are provided
ant the top (bottom). (Color figure online)
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Figure 2 shows variance, percentage of variation, and the cumulative per-
centage of variation for each of the ten principal components obtained via the
Karhunen-Loève transform. The percentage of variation analysis indicates the
amount of information explained by all of the health features in the database.
Here, 32.2% of the health features in the database can be explained through the
first four principal components. A list of the health features most highly cor-
related with each of the principal components is provided in Table 1 such that
the values represent the correlation between each health feature and the corre-
sponding principal component. For example 0.63 corresponds to the correlation
between the first principal component and the health feature Evolution Time.
Broadly, this list means that the Evolution Time, Nephropathy, BUN, and DR
are interrelated and can together be represented by the first principal compo-
nent. This principal component explains 10.3% of variance in health features
and may reflect the chronicity of diabetes. This principal component suggests
that a long evolution time is associated with a great risk of kidney damage and
micro-vascular complications such as elevation of BUN and eye damage (DR).
The second principal component, which explains 9.0% of the variance in health
features, is associated with the degree of glycemic control. The third principal
component, which explains 7.1% of the variance, is predominantly associated
with weight. Finally, the fourth principal component which explains 5.8% of the
variance in health features, measures patient height.

Principal
Component

Eigenvalue
V ar(Yi) = λi

Percentage
of variance

Cumulative
percentage

Principal
Component

Eigenvalue
V ar(Yi) = λi

Percentage
of variance

Cumulative
percentage

Y1 4.11 10.27% 10.27% Y6 1.75 4.37% 41.43%
Y2 3.61 9.02% 19.29% Y7 1.67 4.19% 45.61%
Y3 2.85 7.11% 26.40% Y8 1.48 3.71% 49.32%
Y4 2.32 5.80% 32.20% Y9 1.42 3.55% 52.87%
Y5 1.94 4.86% 37.05% Y10 1.33 3.32% 56.19%

Fig. 2. Top: Percent of variance explained by each of the principal components Yi,
i = 1, 2, ..., 40. Bottom: For each component, the percentage variance and cumulative
percentage variance is provided.
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Figure 3 shows the graphic of the first two lists, the correlation between the
principal components Y1 and Y2 with each health feature.

Figure 4 depicts plots for Y1, Y2, Y3 and Y4, arranged in triads. The first
graph depicts the plot of the first three principal components, wherein Y1 is
related to chronicity of diabetes through the strong associations with Nephropa-
thy, Evolution Time, BUN and DR, Y2 is related to glycemic degree control,
and Y3 is related to weight. In each graph, blue points represent patients with
high glycemic control (GC), green points represent patients with levels of regular
GC (RGC), and yellow points represent patients with bad GC (BGC), and in
red points patients in extremely poor GC (EGC). These patient groupings are
not retained in the third scatter plot as this plot does not include the second
component which determines the degree of GC.

Table 1. Correlation between the principal components and health features.

Y1 (10.27%) Y2 (9.02%) Y3 (7.11%) Y4 (5.80%)

(.63)Evolution Time (.72)Glycemic Control
Degree

(.87)Weight (.64)Size

(.62)Nephropathy (.70)HbA1c (.77)BMI (Body Mass
Index)

(.61)Gender

(.57)BUN (Blood Urea
Nitrogen)

(.67)2ndHbA1c (.66)Overweight /
Obesity

(.53)DR (Diabetic
Retinopathy)

(.57)TX Insulin

Fig. 3. Correlation between each health feature and components Y1 and Y2, i.e.
Corr(Yi, Xj), where i = 1, 2 and Xj are the health features, j = 1, 2, ..., 40.
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a) b)

c) d)

Fig. 4. Comparison of principal components. (a) Displays the first three principal com-
ponents. (b) Displays the first (Nephropathy, Evolution Time, BUN and DR), second
(Control of GC, HbA1c, 2ndHbA1c and insulin treatment) and fourth (Height and Gen-
der) principal components. (c) Displays the first (Nephropathy, Evolution Time, BUN
and DR), third (Weight, BMI and Overweight/Obesity) and fourth (Size and Gender)
principal components. (d) Displays the second (Degree GC, HbA1c, 2ndHbA1c and
insulin treatment), third (Weight, BMI, and Overweight/Obesity) and fourth (Height
and Gender) principal components.

Figure 5, shows the contributions of the health features to the first, second,
third and fourth principal components, respectively. Such percentage of contri-
bution is given as follows Ci = Corr(Yi,Xj)

2
∑40

j=1 Corr(Yi,Xj)2
%, where Xj represents the jth

health feature and Yi represents the ith principal component. In each figure, the
red dashed line on the graph above indicates the expected average contribution.
If the contribution of the variables were uniform, the expected value would be

1
#variables = 1

40 = 2.5%. Regarding joint contributions, Fig. 6 shows the contribu-
tions of health features to the four principal components. This joint contribution
is given by Cc4 =

∑4
i=1 CiV ar(Yi)∑40
l=1 V ar(Yl)

. The red dashed line in each of these figures
indicates the linear combination between the expected average contribution and
the percentage of the variance of the principal components, i.e.

∑4
i=1

1
40V ar(Yi)∑40

l=1 V ar(Yl)
%.
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Fig. 5. Percentage of contributions of different health features to principal components
1–4 (i.e. C1, C2, C3 and C4). (Of note, components 1–4 explained 10.3%, 9.02%, 7.11%
and 5.8% of the variance in data, respectively). (Color figure online)

Fig. 6. Graph of Cc4, the joint contributions of the various health features to the first
four principal components. These components explain 32.2% of the variance in the
data.

4 Conclusions

The present study examined multivariate patterns of health in a dataset of Mex-
ican T2DM patients. Through statistic analysis, we found that old patients tend
to have good GC. Our analysis revealed patient profiles that corresponded to
poor GC.
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These profiles revealed that patients with poor GC tended to be young, over-
weight or obese, belonged to low socio-economic strata, had low education, were
unemployed, and had high levels of triglycerides and cholesterol. In addition,
patients with poor GC tended to have liver disease, diabetic foot, hypoglycemia,
diabetic Ketoacidosis, smoke and take undergo insulin and metformin treat-
ments.

Overall, we found that the poorer GC, the harder it is for them to stay in
and the more they tend to get worse: 79% of those who have bad and extremely
uncontrol GC remain bad or get worse. In contrast, the better they are, the more
they stay in and their rate of decline is not so high: 66% of those in GC and
Regular GC remain good or improve it.

In order to reduce dimensionality and extract more information from the
relationship between the features of the dataset, in this work we applied
the Karhunen-Loéve transformation, a form of principal component analysis.
Through this method the original dataset was taken to a new coordinate system
of 20 dimensions under the least squares principle, with the property that its
features (principal components) are not correlated and keep 80.43 % of the infor-
mation of the original dataset, facilitating the handle and study of the dataset
information. In addition, this technique allowed the original dataset to identify
and relate the features that could be measuring the same principle that governs
the behavior of the dataset through their principal components. Thus, we found
that the first principal component, which has the highest amount of variance
in the data, explained 10.3% of the health features and was related to diabetes
chronicity. This component suggests that along disease evolution time is associ-
ated with a great risk of kidney damage and microvascular complications. The
second principal component explained 9.0% of health features and was associ-
ated with the level of GC. The third principal component explained 7.1% of
the variance and was predominantly associated with patient weight. Finally, the
fourth principal component, which explained 5.8% of the variance, was associ-
ated with patients height. The remaining principal components did not reveal
relevant information.

Future research should examine dataset that include a larger number of
patients. In addition, we expect the advanced statistical analysis and machine
learning tools and techniques will promote a further great discovery.
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