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Abstract. In this paper a novel hybridization of agent-based evolution-
ary system (EMAS, a metaheuristic putting together agency and evo-
lutionary paradigms) is presented. This method assumes utilization of
particle swarm optimization (PSO) for upgrading certain agents used
in the EMAS population, based on agent-related condition. This may be
perceived as a method similar to local-search already used in EMAS (and
many memetic algorithms). The obtained and presented in the end of the
paper results show the applicability of this hybrid based on a selection
of a number of 500 dimensional benchmark functions, when compared to
non-hybrid, classic EMAS version.

1 Introduction

Solving difficult search problems requires turning to unconventional methods.
Metaheuristics are often called “methods of last resort” and are successfully
applied to solving different problems that cannot be solved with deterministic
means in a reasonable time. Moreover, metaheuristics do not assume any knowl-
edge about the intrinsic features of the search space, that helps a lot in solving
complex problems such as combinatorial ones. It has also been proven that there
is always need for searching for novel metaheuristics, as there is no Holy Grail
of metaheuristics computing, and there is no one method that could solve all
the possible problems with the same accuracy (cf. Wolpert and MacReady [21]).
One has however to retain common sense and not produce the metaheuristics
only for the sake of using another inspiration (cf. Sorensen [18]).

In 1996, Krzysztof Cetnarowicz proposed the concept of an Evolutionary
Multi-Agent System (EMAS) [7]. The basis of this agent-based metaheuristic
are agents—entities that bear appearances of intelligence and are able to make
decisions autonomously. Following the idea of population decomposition and evo-
lution decentralization, the main problem is decomposed into sub-tasks, each of
which is entrusted to an agent. One of the most-important features of EMAS is
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the lack of global control—agents co-evolve independently of any superior man-
agement. Another remarkable advantage of EMAS over classic population-based
algorithms is the parallel ontogenesis—agents may die, reproduce, or act at the
same time. EMAS was successfully applied to solving many discrete and contin-
uous problems, and was thoroughly theoretically analyzed, along with prepar-
ing of formal model proving its potential applicability to any possible problem
(capability of being an universal optimizer, based on Markov-chain analysis and
ergodicity feature) [3].

Particle swarm optimization [11] is an iterative algorithm commonly used for
mathematical optimization of certain problems. Particle swarm optimization was
originally proposed for simulating social behavior, and was used for simulating
the group movement of fish schools, bird flocks, and so on. But the algorithm was
also found to be useful for performing mathematical optimization after some sim-
plification. The algorithm considers a number of particles moving in the search
space, utilizing the available knowledge (generated by a certain particle and its
neighbors) regarding the current optimal solutions, providing the user with an
attractive technique retaining both exploitation and exploration features.

Memetic algorithms originate from Richard Dawkins’ theory of memes. Meme
is understood as a “unit of culture” that carries ideas, behaviors, and styles. This
unit spreads among people by being passed from person to person within a cul-
ture by speech, writing, and other means of direct and indirect communication.
The actual implementation of memetic algorithms proposed by Pablo Moscato
is based on coupling local-search technique with evolutionary process, either on
the reproduction level (e.g. during mutation: lamarckian memetization) or on
the evaluation level (baldwinian memetization).

The hybrid method presented in this paper is based on coupling two meta-
heuristics, namely EMAS and PSO, using the memetic approach, i.e. allowing
the agents in EMAS to run PSO-based “local-search”. It should be noted, that
PSO is a global optimization technique, and thus its synergy with EMAS seems
to be even more attractive than e.g. introducing of a certain steepest-descent
method that we have already done in the past [13].

The paper is organized as follows. After this introduction a number of hybrid
PSO and evolutionary methods are referenced, leading the reader to the short
recalling of EMAS basics and later presenting the PSO and its hybridization
with EMAS. Next the experimental results comparing the base model of EMAS
with the PSO-memetic one are shown, and finally the paper is concluded with
some remarks.

2 Hybrid Particle Swarm Optimization

There exist many methods which can be used to hybridize Genetic Algorithms
(GA) with Particle Swarm Optimization (PSO). One of them, called GA-PSO,
has been presented by Kao and Zahara [10]. Their algorithm starts with gen-
erating a population of individuals of a fixed size 4N where N is a dimension
of the solution space. The fitness function is calculated for each individual, the
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population is sorted by the fitness value and divided into two 2N subpopula-
tions. The top 2N individuals are further processed using standard real-coded
GA operators: crossover and mutation. Crossover is defined as a random linear
combination of two vectors and happens with 100% probability. The probabil-
ity of mutation is fixed at 20%. The obtained subpopulation of 2N individuals
is used to adjust the remaining 2N individuals in PSO method. This opera-
tion involves the selection of the global best particle, the neighborhood and the
velocity updates. The result is sorted in order to perform the next iteration. The
algorithm stops when the convergence criterion is met, that is when a standard
deviation of the objective function for N + 1 best individuals is below a prede-
fined threshold (authors suggest 10−4). The article shows the performance of the
hybrid GA-PSO algorithm using a suit of 17 standard test functions and com-
pares it to the results obtained with different methods (tabu search, simulated
annealing, pure GA, and some modifications). In some cases GA-PSO performs
clearly better, but in general behaves very competitive.

Similar method has been used by Li et al. [19]. Their algorithm, called
PGHA (PSO GA Hybrid Algorithm), divides the initial population into two
parts which then perform GA and PSO operators respectively. The subpopula-
tions are recombined into new population which is again divided into two parts
for the next population. Authors successfully used this technique for creation
optimal antenna design.

Another method of hybridization of PSO and GA has been presented by
Gupta and Yadav in [9] as PSO-GA hybrid. In their algorithm there are two
populations, PSO and GA based, running independently and simultaneously.
Occasionally, after a predefined number of iterations N1, certain number P1 of
individuals from each system are designated for an exchange. The results authors
obtained showed clear superiority of their PSA-GA hybrid technique over plain
PSO and GA algorithms. The article compares GA, PSO and PSO-GA hybrid in
the application of optimization 2nd and 3rd Order Digital Differential Operators.

There also exist GA/PSO hybrids for combinatorial problems. Borna and
Khezri developed a new method to solve Traveling Salesman Problem (TSP)
called MPSO [2]. Their idea is to perform the PSO procedure, but without
using velocity variable. Instead, the crossover operator between pbest (particle’s
best position) and gbest (global best position) is used to calculate new positions.
Both pbest and gbest values are updated as in normal PSO algorithm. Authors
show that their MPSO technique gives better accuracy than other methods.

A combination of GA and PSO for combinatorial vehicle routing optimization
problem (VRP) has been presented by Xu et al. [22]. Their algorithm starts with
parameters and population initialization. Then the step of particle encoding is
performed in order to calculate fitness function of each particle for VRP problem
in the following step. Then pbest and gbest values are updated as in standard
PSO. After that particles positions and velocities are recalculated using special
crossover formulas which use a random value from a defined range to describe
crossover probability. If the fitness of offspring is lower than the fitness of parents
it is discarded, otherwise it replaces the parents. The algorithm is performed in
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loop until the stop conditions are met. The test results show that the proposed
algorithm can find the same solutions as the best-known, but has overall better
performance than other algorithms.

AUC-GAPSO is a hybrid algorithm proposed by Ykhlef and Alqifari in order
to solve winner determination problem in multiunit double internet auction [23].
In each iteration the chromosomes are updated using specialized for this problem
crossover and mutation operators. After that a PSO step is performed and new
gbest and pbest together with new positions and velocities are calculated. If
gbest is not being changed for more than one fourth of the maximum number of
generations, the algorithm stops as no further improvement is assumed. Authors
showed that their method performs superior to plain AUC-GA giving higher
performance and reduced time to obtain satisfactory optimization results.

Different variation of PSO-GA hybrid has been presented by Singh et al.
[17]. Their technique, called HGPSTA, is similar to ordinary GA. PSO is used
to enhance individuals before performing crossover and mutation operators.
Once the fitness values of all individuals are calculated, the most successful
first half is selected for further processing using crossover. Parents are selected
by roulette wheel method. Mutation is then performed on entire population.
HGPSTA (Hybrid Genetic Particle Swarm Technique Algorithm) has been used
to identify the paths of software that are error prone in order to generate soft-
ware test cases. Authors demonstrated that the method needs less iterations to
deliver 100% test coverage than plain GA and PSO.

The performance of GA is also improved by incorporating PSO in the work
of Nazir et al. [16]. Individuals are enhanced by PSO step after crossover and
mutation operations are performed. There are some innovations to the basic
algorithm. The first one is that the probability of taking PSO enhancement
into account varies according to a special formula. The second one is that if
gbest value remains a number of times unchanged it is updated to prevent from
getting trapped in local extremum. The method has been used to select the most
significant features in gender classification using facial and clothing information.

Another hybrid method has been presented by Abd-El-Wahed, Mousa and
El-Shorbagy [1], who apply it to solve constrained nonlinear optimization prob-
lems. The entire procedure is based on interleaving steps of PSO and GA mecha-
nisms. Moreover the algorithm incorporates a calculation and usage of modified
dynamic constriction factor to maintain the feasibility of a particle. In GA part
selection, crossover and mutation are used, as well as elitist strategy. The last
step of an iteration is to repair infeasible individuals to make them feasible again.
Authors show an excellent performance of the algorithm for a presented set of
test problems.

Algorithm presented by Mousavi et al. in [15] is a mixture of PSO and GA
steps. The PSO part is performed first (updating particles’ positions and veloc-
ities), then standard selection, crossover and mutation steps follow. Before and
after the GA part the boundary check is done for each particle. If a particle
is out of predefined boundary then a new random particle is generated until it
fits into the boundary. Authors successfully applied their GA-PSO method in
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multi-objective AGV (automated guided vehicles) scheduling in a FMS (flexible
manufacturing system) problem. The study shows that GA-PSO outperforms
single PSO and GA algorithms in this application.

Kuo and Han in [14] describe and evaluate three hybrid GA and PSO algo-
rithms, HGAPSO-1, HGAPSO-2, HGAPSO-3. The first two are taken from other
studies, whereas the last one is invented by the authors. This method follows the
general PSO procedure, but if gbest is unchanged in given iteration, then each
particle is additionally updated using mutation operator. The idea is to prevent
premature convergence to a local optimum. Moreover the elitist policy is applied
in the last step. Positions of particles are checked to fit into a defined range, also
a velocity value is constrained by a predefined upper limit. Authors show that
their version is superior to the other two described. They apply the method to
solving bi-level linear programming problem.

Another overview of PSO hybridizations is presented in [20] by Thangaraj,
Pant, Abraham and Bouvry. The research also include some other algorithms
used in conjunction with PSO like differential evolution, evolutionary program-
ming, ant colony optimization, sequential quadratic programming, tabu search,
gradient descend, simulated annealing, k-means, simplex and others. A small
subset of them is chosen for further performance comparison using a set of stan-
dard numerical problems like Rosenbrock function, DeJong function etc.

Summing up the presented state-of-the-art, one can clearly see that many
approaches using Genetic Algorithm with PSO for improvement of the solu-
tions were realized, however none of them considered hybridization in fully
autonomous environment. Thus we would like to present an agent-based meta-
heuristic that utilizes PSO selectively, by certain agent, and its decision is fully
autonomous.

3 Evolutionary Multi Agent-Systems

Evolutionary Multi Agent-System [7] can be treated as an interesting and quite
efficient metaheuristic, moreover with a proper formal background proving its
correctness [3]. Therefore this system has been chosen as a tool for solving the
problem described in this paper.

Evolutionary processes are by nature decentralized and therefore they may
be easily introduced in a multi-agent system at a population level. It means that
agents are able to reproduce (generate new agents), which is a kind of cooperative
interaction, and may die (be eliminated from the system), which is the result of
competition (selection). A similar idea with limited autonomy of agents located
in fixed positions on some lattice (like in a cellular model of parallel evolutionary
algorithms) was developed by Zhong et al. [24]. The key idea of the decentralized
model of evolution in EMAS [12] was to ensure full autonomy of agents.

Such a system consists of a relatively large number of rather simple (reactive),
homogeneous agents, which have or work out solutions to the same problem (a
common goal). Due to computational simplicity and the ability to form inde-
pendent subsystems (sub-populations), these systems may be efficiently realized
in distributed, large-scale environments (see, e.g. [4]).
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Agents in EMAS represent solutions to a given optimization problem. They
are located on islands representing distributed structure of computation. The
islands constitute local environments, where direct interactions among agents
may take place. In addition, agents are able to change their location, which
makes it possible to exchange information and resources all over the system [12].

In EMAS, phenomena of inheritance and selection—the main components of
evolutionary processes—are modeled via agent actions of death and reproduc-
tion (see Fig. 1). As in the case of classical evolutionary algorithms, inheritance
is accomplished by an appropriate definition of reproduction. Core properties
of the agent are encoded in its genotype and inherited from its parent(s) with
the use of variation operators (mutation and recombination). Moreover, an agent
may possess some knowledge acquired during its life, which is not inherited. Both
inherited and acquired information (phenotype) determines the behavior of an
agent. It is noteworthy that it is easy to add mechanisms of diversity enhance-
ment, such as allotropic speciation (cf. [6]) to EMAS. It consists in introducing
population decomposition and a new action of the agent based on moving from
one evolutionary island to another (migration) (see Fig. 1).

Fig. 1. Evolutionary multi-agent system (EMAS)

Assuming that no global knowledge is available, and the agents being
autonomous, selection mechanism based on acquiring and exchanging non-
renewable resources [7] is introduced. It means that a decisive factor of the
agent’s fitness is still the quality of solution it represents, but expressed by
the amount of non-renewable resource it possesses. In general, the agent gains
resources as a reward for “good” behavior, and looses resources as a conse-
quence of “bad” behavior (behavior here may be understood as, e.g. acquir-
ing sufficiently good solution). Selection is then realized in such a way that
agents with a lot of resources are more likely to reproduce, while a low level of
resources increases the possibility of death. So according to classical Franklin’s
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and Graesser’s taxonomy—agents of EMAS can be classified as Artificial Life
Agents (a kind of Computational Agents) [8].

Many optimization tasks, which have already been solved with EMAS and
its modifications, have yielded better results than certain classical approaches.
They include, among others, optimization of neural network architecture, multi-
objective optimization, multimodal optimization and financial optimization.
EMAS has thus been proved to be a versatile optimization mechanism in prac-
tical situations. A summary of EMAS-related review has is given in [5].

EMAS may be held up as an example of a cultural algorithm, where evolu-
tion is performed at the level of relations among agents, and cultural knowledge
is acquired from the energy-related information. This knowledge makes it pos-
sible to state which agent is better and which is worse, justifying the decision
about reproduction. Therefore, the energy-related knowledge serves as situa-
tional knowledge. Memetic variants of EMAS may be easily introduced by mod-
ifying evaluation or variation operators (by adding an appropriate local-search
method).

4 From Classic to Hybrid PSO

In the basic particle swarm optimization [11] implementation, the potential solu-
tions are located in a subspace of D-dimensional Euclidean space RD limited in
each dimension (usually a D-dimensional hypercube). The search space is a
domain of the optimized quality function f : RD → R.

A particle is a candidate solution described by three D-dimensional vectors:
position X = xd, d ∈ [1 . . . D]; velocity V = vd, d ∈ [1 . . . D]; best known position
P = pd, d ∈ [1 . . . D]. A swarm is a set of m particles. The swarm is associated
with a D-dimensional vector G = gd, d ∈ [1 . . . D] which is swarm’s best known
position (the solution with the currently highest quality).

The execution of the algorithm begins by initializing the start values. Each
particle I belonging to the swarm S is initialized with the following values:

1. position X of the particle I is initialized with a random vector belonging to
the search space A

2. best known position is initialized with current particle’s position: P ← X
3. velocity V of the particle I is initialized with a random vector belonging to

the search space A
4. swarm’s best position is updated by the following rule: if f(P ) <

f(G) then G ← P

Once all the particles are initialized and uniformly distributed in the search
space, the main part of the algorithm starts executing. During each iteration of
the algorithm, the following steps are executed. These steps of the algorithm are
executed until a termination criteria are met. The most common termination
criteria for the particle swarm optimization are:
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Algorithm 1
for each particle I in swarm S do

update particle’s velocity:

V ← rg(G − X) + rp(P − X) + ωV ; rg, rp ∈ [0, 1]
update particle’s position:

X ← X + V
where ω is the inertia factor

update particle’s best position:

if f(X) < f(P ) then P ← X
update global best position:

if f(P ) < f(G) then G ← P
end for

1. number of executed iterations reaches a specified value,
2. swarm’s best position exceeds a specified value,
3. the algorithm found global optimum,
4. swarm’s best positions in two subsequent iterations are the same.

The idea of hybridization of EMAS with PSO follows the cultural and
memetic inspirations, by utilizing the PSO-defined movements of the solutions
(agents’ genotypes) as a kind of additional “local-search” algorithm for mak-
ing the “worse” agents better by updating their solutions (see Fig. 2). This is
not entirely a local-search algorithm, as PSO of course is a well-known global
optimization technique, however the planned synergy seems to be attractive and
thus not prone to early-convergence problems.

Fig. 2. Evolutionary multi-agent system with PSO modification (PSO-EMAS)

In the proposed hybrid algorithm, the agent may be treated either as reg-
ular EMAS agent—when its energy is higher than certain, fixed level, and as
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PSO particle—when its energy is lower (a dedicated energy threshold, so called
“move” energy is considered a parameter of the algorithm). Thus better agents
are evolved using well-known evolutionary methods, while worse agents update
their solutions based on PSO rules.

5 Experimental Results

The experiments were performed taking advantage of AgE 3 platform1, which is
distributed, agent-based computational platform developed by Intelligent Infor-
mation Systems Group. The platform was further developed in order to combine
PSO with EMAS. The tests were executed on Samsung NP550P5C with Intel
CORE i5-3210M @ 2.5 GHz; 8 GB RAM; Ubuntu 14.04.5 LTS.

5.1 Experimental Setting

In the PSO aspect of the hybrid algorithm, an agent can move in the search space
only when its energy value is lower than 40. The max/min velocity parameters
determine the size of the move performed by an agent. Other parameters pre-
sented below relate to the formula below, which is used for updating agent’s
velocity.

vt+1
i,d ← ω · vt

i,d + rp(pi,d − xi,d) + rg(gd − xi,d)

where:

– vt
i,d describes i-th agent’s (particle) d-th component of its velocity in t-th step

of algorithm;
– rp and rg are random numbers within (0, 1) range;
– pi,d is i-th agent’s local best position d-th component value;
– xi,d is i-th agent’s current position d-th component value;
– gd is globally best position d-th component value;
– ω is a weight considering current velocity of particle.

The most important parameters set for the compared systems were as follows:

– EMAS parameters: Population size: 50; Initial energy: 100; Reproduction
predicate: energy above 45; Death predicate: energy equal to 0; Crossover
operator: discrete crossover; Mutation operator: uniform mutation; Muta-
tion probability: 0.05; Reproduction energy transfer: proportional, 0.25; Fight
energy transfer: 5.0;

– PSO parameters: Move energy threshold: 40; Maximum velocity: 0.05; ω 0.5.

For each dimensionality and algorithm variant (EMAS or PSO-EMAS
hybrid) optimization tests were performed 30 times and the stopping condition
was time-related, namely each experiment could last only for 200 s.

1 http://www.age.agh.edu.pl.

http://www.age.agh.edu.pl
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5.2 Discussion of the Results

The main objective of the tests was to compare optimization results achieved for
PSO-EMAS hybrid with those obtained for EMAS approach. The experiments
were realized in the following sequence.

In the beginning, selected benchmark problems (Rastrigin in Fig. 3a, Rosen-
brock in Fig. 3b, Schwefel in Fig. 3c and Whitley in Fig. 3d) were optimized in
500 dimensions, in order to realize preliminary checking of the compared algo-
rithms. As shown in Fig. 3 in all the considered cases the hybrid of PSO and
EMAS did significantly better, however it is to note, that in all the cases the
actual global optima were not approached closely, probably because of arbitrar-
ily chosen algorithm parameters. Thus, in order to do further examination, any
of these problems could have been selected, therefore we have selected Rastrigin
problem, as this is a very popular benchmark and we have already used it many
times in our previous research.

Next, the parameters of the constructed hybrid (namely move energy, maxi-
mum velocity, weights of personal and global optima and weight of the previous
vector in PSO update) were tested on 500 dimensional Rastrigin problem. The
results of these tests are presented in Fig. 4.

Fig. 3. Comparison of EMAS and PSO-EMAS fitness for selected 500 dimensional
benchmark functions optimization
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Testing the move energy (see Fig. 4a) it is easy to see that the best results
were obtained for its value 40 (out of tested values between 5 and 60). It is to
note, that the reproduction energy is 45, so the difference is quite small: the
agents apparently participate in PSO hybrid until their energy becomes close to
the reproduction threshold. Then the PSO action is suspended and the agents
participate in EMAS part of the hybrid, acting towards reproduction.

Testing the maximum velocity (see Fig. 4b) can be summarized with a quite
natural and predictable solution: from the values between 0.03 and 1.0 the value
of 0.05 turned out to be the best in the tested case, suggesting that too high
values of the velocity cap will bring the examined hybrid to a random stochastic
search type algorithm, hampering the intelligent search usually realized by meta-
heuristic algorithms.

The graph showing the dependency of the weight of the previous vector ω
(see Fig. 4c) yielded 0.5 as the optimal value of this parameter for the tested
case. Again, similar to the observation of the move energy, not too big value
(considering the tested range) turned out to be the best. It is quite predictable,
as almost “copying” the previous vector would stop the exploration process, while
complete forgetting about this vector would lose the “metaheuristic” information
turning the whole algorithm to a purely random walk technique.

Fig. 4. Optimization of 500-dimensional Rastrigin problem using various values of PSO
parameters
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Finally, the Rastrigin problem was tested in different dimensions (10, 50,
100, 200, 300, 500), using the best values of the hybrid parameters found in
the previous step. For Rastrigin problem in less than 200-dimensional domains
standard EMAS achieved better results than hybrid variant, as shown on Fig. 5
and in Table 1. However in higher dimensional problems PSO-EMAS hybrid
significantly outperforms standard algorithm yielding both better fitness values
and lower standard deviations. The latter highlights good reproducibility of con-
ducted experiments, as opposed to results of EMAS in 500-dimensional Rastrigin
experiments.

Table 1. Final results found by EMAS and PSO-EMAS with standard deviation for
optimization of Rastrigin function in different dimensions

Dimensions EMAS average EMAS std.
dev.

PSO-EMAS
average

PSO-EMAS
std. dev.

10 0.00 0.00 0.00 0.00

50 0.00 0.00 12.15 8.78

100 1.40 0.40 52.26 6.62

200 108.81 9.60 143.45 13.14

300 464.16 35.80 251.19 27.51

500 3343.55 216.58 546.88 28.50

Fig. 5. Comparison of final fitness values for EMAS and PSO-EMAS using the best
parameters found during the experimentation.

6 Conclusion

In the paper a PSO and EMAS hybrid was presented and tested against several
selected, popular benchmark functions. The research consisted in preliminary
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testing different benchmark functions using arbitrarily chosen parameters, then
a detailed study on the best values for the PSO parameters based on Rastrigin
function in 500 dimensions was realized, and finally the efficacy of EMAS and
PSO-EMAS was tested for the Rastrigin function in different dimensions, using
the above-mentioned parameter values.

The results show that the hybrid version is significantly better than the
original one in some of the considered cases. Moreover, not only final fitness
values were similar or better (obtained in the assumed time of 200 s) but also
in most of the tested cases better fitness was significantly earlier obtained by
the hybrid version of the algorithm. In the future we plan to propose new PSO
and EMAS hybrid algorithms, as well as do broader experimentation with the
presented PSO-EMAS metaheuristic.
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