®

Check for
updates

Automatic Mapping for
OpenCL-Programs on CPU/GPU
Heterogeneous Platforms

Konrad Moren'®) and Diana Gohringer?(®)

! Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
I0SB, 76275 Ettlingen, Germany
konrad.moren@iosb.fraunhofer.de
2 Adaptive Dynamic Systems, TU Dresden, 01062 Dresden, Germany
diana.goehringer@tu-dresden.de

Abstract. Heterogeneous computing systems with multiple CPUs and
GPUs are increasingly popular. Today, heterogeneous platforms are
deployed in many setups, ranging from low-power mobile systems to
high performance computing systems. Such platforms are usually pro-
grammed using OpenCL which allows to execute the same program on
different types of device. Nevertheless, programming such platforms is a
challenging job for most non-expert programmers. To enable an efficient
application runtime on heterogeneous platforms, programmers require
an efficient workload distribution to the available compute devices. The
decision how the application should be mapped is non-trivial. In this
paper, we present a new approach to build accurate predictive-models for
OpenCL programs. We use a machine learning-based predictive model to
estimate which device allows best application speed-up. With the LLVM
compiler framework we develop a tool for dynamic code-feature extrac-
tion. We demonstrate the effectiveness of our novel approach by applying
it to different prediction schemes. Using our dynamic feature extraction
techniques, we are able to build accurate predictive models, with accura-
cies varying between 77% and 90%, depending on the prediction mecha-
nism and the scenario. We evaluated our method on an extensive set of
parallel applications. One of our findings is that dynamically extracted
code features improve the accuracy of the predictive-models by 6.1% on
average (maximum 9.5%) as compared to the state of the art.

Keywords: OpenCL - Heterogeneous computing
Workload scheduling - Machine learning - Compilers - Code analysis

1 Introduction

One of the grand challenges in efficient multi-device programming is the workload
distribution among the available devices in order to maximize application per-
formance. Such systems are usually programmed using OpenCL that allows exe-
cuting the same program on different types of device. Task distribution-mapping

© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 301-314, 2018.
https://doi.org/10.1007/978-3-319-93701-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_23&domain=pdf

302 K. Moren and D. Gohringer

defines how the total workload (all OpenCL-program kernels) is distributed
among the available computational resources. Typically application developers
solve this problem experimentally, where they profile the execution time of kernel
function for each available device and then decide how to map the application.
This approach error prone and furthermore, it is very time consuming to analyze
the application scaling for various inputs and execution setups. The best map-
ping is likely to change with different: input/output sizes, execution-setups and
target hardware configurations [1,2]. To solve this problem, researchers focus on
three major performance-modeling techniques on which mapping-heuristic can
be based: simulations, analytical and statistical modeling. Models created with
analytical and simulation techniques are most accurate and robust [3], but they
are also difficult to design and maintain in a portable way. Developers often have
to spend huge amount of time to create a tuned-model even for a single target
architecture. Since modern hardware architectures are rapidly changing those
methods are likely to be out of the date. The last group, statistical modeling
techniques overcome those drawbacks, where the model is created by extract-
ing program parameters, running programs and observing how the parameters
variation affects their execution times. This process is independent of the target
platform and easily adaptable. Recent research studies [4-9] have already proved
that predictive models are very useful in wide range of applications. However, one
major concern for accurate and robust model design is the selection of program
features.

Efficient and portable workload mapping requires a model of corresponding
platform. Previous work on predictive modeling [10-13] restricted their attention
to models based on features extracted statically, avoiding dynamic application
analysis. However, performance related information, like the number of memory
transactions between the caches and main memory, is known only during the
runtime.

In this paper, we present a novel method to dynamically extract code features
from the OpenCL programs which we use to build our predictive models. With
the created model, we predict which device allows the best relative application
speed-up. Furthermore, we developed code transformation and analysis passes to
extract the dynamic code features. We measure and quantify the importance of
extracted code-features. Finally, we analyze and show that dynamic code features
increase the model accuracy as compared to the state of the art methods. Our
goal is to explore and present an efficient method for code feature extraction to
improve the predictive model performance. In summary:

— We present a method to extract OpenCL code features that leads to more
accurate predictive models.

— Our method is portable to any OpenCL environment with an arbitrary num-
ber of devices. The experimental results demonstrate the capabilities of our
approach on three different heterogeneous multi-device platforms.

— We show the impact of our newly introduced dynamic features in the context
of predictive modeling.

Automatic Mapping for OpenCL-Programs 303

This paper is structured as follows. Section2 gives an overview of the related
work. Section 3 presents our approach. In Sect.4 we describe the experiments.
In Sect.5 we present results and discuss the limitations of our method. In the
last section, we draw our conclusion and show directions for the future work.

2 Background and Existing Approaches

Several related studies have tackled the problem of feature extraction from
OpenCL programs, followed by the predictive model building.

Grewe and O’Boyle [10] proposed a predictive model based on static OpenCL
code features to estimate the optimal split kernel-size. Authors present that the
estimated split-factor can be used to efficiently distribute the workload between
the CPU and the GPU in a heterogeneous system.

Magni et al. [11] presented the use of predictive modeling to train and build
a model based on Artificial Neural Network algorithms. They predict the correct
coarsening factor to drive their own compiler tool-chain. Similarly to Grewe they
target almost identical code features to build the model.

Kofler et al. [12] build the predictive-model based on Artificial Neural Net-
works that incorporates static program features as well as dynamic, input sen-
sitive features. With the created model, they automatically optimize task parti-
tioning for different problem sizes and different heterogeneous architectures.

Wen et al. [13] described the use of machine learning to predict the proper
target device in context of a multi-application workload distribution system.
They build the model based on the static OpenCL code features with few run-
time features. They included environment related features, which provide only
information about the computing-platform capabilities. This approach is most
related to our work. They also study building of the predictive model to dis-
tribute the workloads in a context of the heterogeneous platform.

One observation is that all these methods extract code features statically
during the JIT compilation phase. We believe, that our novel dynamic code
analysis, can provide more meaningful and valuable code features. We justify
our statement by profiling the Listing 1.1.

I kernel

2 void floydWarshall(global uint * pathDist,global uint * path,
3 const uint numNodes, const uint pass)

1 {
5 const int xValue = get_global_id (0);

6 const int yValue = get_global_id (1) ;

7 const int oldWeight = pathDist[yValue * numNodes + xValuel;
8 const int tempWeight = (pathDist[yValue * numNodes + pass] +
9 pathDist [pass * numNodes + xValue]);

10 if (tempWeight < oldWeight){

11 pathDist [yValue * numNodes + xValue] = tempWeight;

12 path[yValue * numNodes + xValue] = pass;

13

Listing 1.1. AMD-SDK FloydWarshall kernel

The results are shown in Fig. 1. These experiments demonstrate the execution
times of the Listing 1.1 executed with varying input values (numNodes, pass)

304 K. Moren and D. Gohringer

Platform A Platform B Platform C

---cpu
—9gpu

=
o
D

Execution time [ms]

=
o
4

200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Nodes Nodes Nodes

Fig. 1. Profiling results for an AMD-SDK FloydWarshall kernel function on test plat-
forms. The target architectures are detailed in the Sect.4.1. The Y-Axis presents the
execution time in milliseconds, the X-Axis shows the varying number of nodes.

and execution-configurations on our experimental platforms. We can observe
that even for a single kernel function, the optimal mapping considerably depends
on the input/output sizes and the capabilities of the platform. In Listing 1.1
the arguments numNodes and pass control effectively the number of requested
cache lines. According to our observations, many of the OpenCL programs rely
on kernel input arguments, known only at the enqueuing time. In general, input
values of OpenCL-function arguments are unknown at the compilation time.
Many performance related information, like the memory access pattern, number
of executed statements, could possibly be dependent on these parameters. This
is a crucial shortcoming in previous approaches. The code-statements dependent
on values known during the program execution are undefined and could not
provide quantitative information. Since current state of the art methods analyze
and extract code features only statically, new methods are needed. In the next
section, we present our framework that addresses this problem.

3 Proposed Approach

This section describes the design and the implementation of our dynamic feature
extraction method. We present all the parts of our extraction approach: transfor-
mation and feature building. We describe which code parameters we extract and
how we build the code features from them. Finally, we present our methodol-
ogy to train and build the statistical performance model based on the extracted
features.

3.1 Architecture Overview

Figure2 shows the architecture of our approach. We modify and extend the
default OpenCL-driver to integrate our method. First, we use the binary LLVM-

Automatic Mapping for OpenCL-Programs 305

Feature : Predict Execute
extract [\ speed-up

/"."® W4 D

j Transformation

Execution-time

Kernel . Enqueue
function » Compile i kgrnel

N

Trained
Speed-up
predictor

@

Feature
building

Code
features

Fig. 2. Architecture of the proposed approach.

IR representation of the kernel function and cache it in the driver memory @. We
reuse IR functions during enqueuing to the compute-device. During the enque-
ing phase, cached IR functions with known parameters are used as inputs to
the transformation engine. At the time of enqueuing, the values of input argu-
ments, the kernel code and the NDRange sizes are known and remain constant.
A semantically correct OpenCL program always needs this information to prop-
erly execute [14]. Based on this observation, our transform module @ rewrites
the input OpenCL-C kernel code to a simplified version. This kernel-IR version
is analyzed to build the code features ®. Finally we deploy our trained predictive
model and embed it as a last stage in our modified OpenCL driver @. Following
sections describe steps @-@ in more details.

3.2 Dynamic Code Feature Analysis and Extraction

The modified driver extends the default OpenCL driver by three additional mod-
ules. First, we extend and modify the ¢l Build Program function in OpenCL API.
Our implementation adds a caching system @ to reduce the overhead of invok-
ing transformation and feature-building modules. We store internal LLVM-IR
representations in the driver memory to efficiently reuse it in the transforma-
tion module @. Building the LLVM-IR module is done only once, usually at
the application beginning. The transformation module @ is implemented within
the clEnqueueNdRangeKernel OpenCL API function. This module rewrites
the input OpenCL-C kernel code to a simplified version. The Fig.3 shows the
transformation architecture. The module includes two cache objects, which store
original and pre-transformed IR kernel functions. We apply transformations in
two phases T'1 and T2. First phase T'1, we load for a specific kernel name the

306 K. Moren and D. Gohringer

Enqueue
kernel

'4
’ @
Cache
IR kernels
G //777

1) NDRange setup
2) Kernel input args.

WG-IR -Input args.
in cache propagation

-mem2reg
Kernel - -instcombi
R Cache -simplifycfg
@ WG-IR -constmerge
kernels -scalar-evolution

-Loop-wrapping _
-Built-ins -
propagation Kernel

P L L L LS

Transformation module 7

.
-~

Feature
building

Fig. 3. Detailed view on our feature extraction module.

IR~code created during @ and then wrap the code region with work-item loops.
The wrapping technique is a known method described by Lee [15] and already
applied in other studies [16,17]. The work-group IR-function generation is per-
formed at kernel enqueue time, when the group size is known. The known work-
group size makes it possible to set constant values to the work-item loops. In a
second phase T2, we load the transformed work-group IR and propagate con-
stant input values. After this step, the IR includes all specific values not only the
symbolic expressions. The remaining passes of T2 further simplifies the code. The
Listing 1.2 presents the intermediate code after the transformation 71 and input
argument values propagation. Due to the space limitation, we do not present the
original LLVM-IR code but a readable-intermediate representation.

1 kernel
2 void floydWarshall(global uint * pathDist,global uint * path)
s {

A for (int yValue=0;yValue<1024;yValue++){

5 for (int xValue=0;xValue<1024;xValue++){

6 const int oldWeight = pathDist[yValue * 1024 + xValuel;
7 const int tempWeight = (pathDist[yValue * 1024 + 16] +
3 pathDist [16 * 1024 + xValuel);

9 if (tempWeight < oldWeight){
10 pathDist [yValue * 1024 + xValue] = tempWeight;
11 path[yValue * 1024 + xValuel = 16;

}

15 }
Listing 1.2. The readable-intermediate representation of Listing 1.1 after input and

built-in constants propagation. The execution parameters are: numNodes = 1024, pass
= 16, work-group sizes = (1,1), global sizes = (1024,1024)

Automatic Mapping for OpenCL-Programs 307

We can observe that the constant propagation pass, enables to determine
how the memory accesses are distributed. Now the system can extract not only
how many load and stores are requested, but also how are they distributed. With
pure static code analysis, this information is not available. Additionally, com-
pared to the pure static methods we analyze more accurately the instructions.
Our method simplifies the control flow graph and analyzes only the executable
instructions. In contrast, the static code analysis scans all basic blocks also these
that are not used. Furthermore, we extract for each load and store instructions
the Scalar Evolution (SCEV) expressions. The extracted SCEV expressions rep-
resent the evolution of loop variables in a closed form [18,19]. A SCEV consist
of a starting value, an operator and an increment value. They have the format
{<base>, +, <step>}. The base of an SCEV defines its value at loop iteration
zero and the step of an SCEV defines the values added on every subsequent
loop iteration [20]. For example, the SCEV expression for the load instruction
in Listing 1.2 on line 6 has the form {{%pathDist,+,4096},+,4}. We can see
that this compact representation describes the memory access of the kernel input
argument %pathDist. With this information, we analyze the SCEVs for existing
loads and stores to infer the memory access. We group the extracted memory
accesses in four groups. First invariant accesses with the stride zero. Stride zero
accesses (i.e., invariant) means that the memory access index is the same for
all loop iterations in a work-group. The second group, consecutive accesses with
stride one. Stride one means that the memory access index increases by one for
consecutive loop iterations. The third group, non-consecutive accesses with the
stride N, where N means that the memory access index is neither invariant nor
stride one. Finally, the last group, the unknown accesses with the stride X. In
general, SCEV expression can have an unknown value due to a dependence on
the results calculated during the code execution. Table 1 presents all extracted
information about the kernel function.

The selected features are not specific for any micro-architecture or device
type. We extract the existing OpenCL-C arithmetic, control and memory instruc-
tions. Additionally in contrast to other approaches, we extract the memory access
pattern. The selection of the features is a design specific decision. We analyze in
more detail the importance of selected features in Sect. 4.2. In the next section,
we use our extracted features to create the training data and describe how we
train our predictive model.

3.3 Building the Prediction Model

Building machine-learning based models involves the collection of data that is
used in the model training and evaluation. To retrieve the data we execute,
extract features and measure the execution time for various test applications.
We use different applications implemented in: the NVIDIA OpenCL SDK [21],
the AMD APP SDK [14], and the Polybench OpenCL v2.5 [22]. We execute the
applications with different input data sizes. The purpose of this is twofold. First,
the variable sizes of input data let us collect more training data and second, the
data is more diverse due to the implicit change in work-group sizes. Many of these

308 K. Moren and D. Gohringer

Table 1. Features extracted with our dynamic analysis method. These features are
used to build the predictive model.

Features Description
F1 | (arithmetic_inst)/(all_inst) | Computational intensity ratio
F2 | (memory_inst)/(alliinst) | Memory intensity ratio
F3 | (control_inst)/(all_inst) Control intensity ratio
F4 |datasize Global memory allocated
F5 | globalWorkSize Number of global threads
F6 |localWorkSize Number of local threads
F7 | workGroups Number of work-groups
F8 | Stride0 Invariant memory accesses
F9 | Stridel Consecutive memory accesses
F10 | StrideN Scatter/gather memory accesses
F11 | StrideX Unknown memory accesses

applications adapt the number of work-groups with the change of input/output
data sizes. By varying the input variables of applications, we create the data set
with 5887 samples. The list of application is shown in Table 2.

In our approach, we execute presented OpenCL programs on the CPU and
the GPU to measure the speedup of the GPU execution for each individual
kernel over the CPU. Furthermore, to consider various costs of data transfers on
architectures with discrete and integrated GPUs, we measure the transfer times
between the CPU and GPU. We define it as DT. To model the real cost of the
execution on the GPUs, we add the DT to the GPU execution time. Finally, in
a last step we combine the CPU/GPU execution times and label the kernel-code
to one of five speed-up classes. The Eq. 1 defines the speed-up categories for our
predictive model.

Classl #fm < lz(no speedup)
Class2 lz < #;UDT <3z
Speedup_class = { Class3 3z < #;UDT <5z (1)
Class4 hr < #P_EDT <Tzx
Classh % > Tx

In our experiments, we use the Random Forest (RF) classifier. The reason
for this is twofold. First, the RF classifier enables to build the relative feature
importance ranking. In Sect. 5 we use this metric to explore the relative feature
importance on the classification accuracy. The second one is that, the classifiers
based on decision trees are usually fast. We also investigated other machine
learning algorithms but due to the space limitations, we will not show a detailed
comparison of these classifiers. Finally, once the model is trained we use the
trained model during the runtime @ to determine the kernel scheduling.

Automatic Mapping for OpenCL-Programs

309

Table 2. The applications used to train and evaluate our predictive model.

Suite Application Input sizes | Application Input sizes
AMD SDK | Binary search 80K—-1M Bitonic sort 8K—64K
Binomial option 1K-64K Black Scholes |34M
DCT 130K—20M | Fast Walsh 2K-32K
transform
Floyd Warshall 1K-64K LU 8M
decomposition
Monte Carlo Asian | 4AM—-8M Matrix 130K-52M
multiplication
Matrix transpose | 130K-50M | Quasi random | 4K
sequence
Reduction 8K RadixSort 8K—64K
Simple convolution | 130K-1M | Scan large 4K-64K
arrays
Nvidia SDK | DXT compression | 2M-6M Median filter | 3M
Dot product 9K-294K |FDTD3d 8M—-260M
HMM 2M—-4M Tridiagonal 320K—-20M
Polybench | Atax 66K—2M | Bicg 66K—2M
Gramschmidt 15K-1M Gesummv 130K-5M
Correlation 130K-5M | Covariance 130K-52M
Syrk 190K-5M | Syr2k 190K-5M

4 Experimental Evaluation

4.1 Hardware and Software Platforms

We evaluate on three CPU+GPU platforms. The details are shown in Table 3.
All platforms have Intel CPUs, two platforms include discrete GPUs. The third
platform is an Intel SoC (System on Chip) with integrated CPU/GPU. We use
LLVM 3.8 with Ubuntu-Linux 16.04 LTS to drive our feature extraction tool.
The host-side compiler is GCC 5.4.0 with -O3 option. On the device-side Intel
OpenCL SDK 2.0, NVIDIA Cuda SDK 8.0 and AMD OpenCL SDK 2.0 provide
compilers.

4.2 Evaluation of the Model

We train and evaluate two speed-up models with different features to compare
our approach with the state of the art. The first model, is based on our dynamic
feature extraction method. Table 1 shows the features applied to build the model.
To train and build the second model, we extract statically only the code features
F1-F7 from the kernel function (i.e. during the JIT-compilation). The mem-
ory access features F8-F11 known only during the runtime are not included.

310 K. Moren and D. Gohringer

Table 3. Hardware platforms

Platform A CPU 17-4930K GPU Radeon R9-290
Architecture Ivy Bridge Hawaii

Core count 6 (12w/HT) 2560

Core clock 3.9GHz 0.9 GHz

Memory bandwidth | 59.7 GB/s 320 GB/s

Platform B CPU I7-6600U GPU HD-520
Architecture Skylake Skylake

Core count 2 (4w/HT) 192

Core clock 3.4GHz 1.0 GHz

Memory bandwidth | 34.1 GB/s 25.6 GB/s

Platform C CPU Xeon E5-2667 | GPU Geforce GTX 780 Ti
Architecture Sandy Bridge Kepler

Core count 6 (12w/HT) 2880

Core clock 3.5 GHz 0.9 GHz

Memory bandwidth | 51.2 GB/s 288.4GB/s

For both models, we apply the following train and evaluation method. We split
10 times our dataset into train and test sets. Each time we randomly select
33% of dataset samples for the evaluation process. The remaining 67% are used
to train the model. Figure4 presents the confusion matrix for the evaluation
scenario.

We observe that the prediction accuracy for the model created with dynamic
features is higher than for the model based on static features. On the Platform A
the model based on dynamic features have a 90.1% mean accuracy. The accuracy
values is an average over testing scenarios. We calculate the accuracy as the ratio
between sum of values on the diagonal in Fig. 4 to all values. We observe similar
results for two other Platforms B and C. The mean accuracies for the remaining
platforms are 77% and 84% for Platforms B and C respectively. Overall, we can
report increase of the prediction accuracy with dynamically extracted features
by 9.5%, 4.9% and 4.1% for the tested Platforms. We observe also that, the
model based on dynamic features leads to lower slowdowns. We can observe from
Fig. 4 that the model with static features predicts less accurate, the error rate
is 19.4%, for the dynamic model only 9.9%. More importantly, we can see that
the distribution of errors is different. Overall, we can observe that the number
of miss-predictions, values below and above the diagonal, is higher for the model
created with static features. In the worst case, the model based on statically
extracted features predicts only 36 times correctly the 7z speed-up on the GPU.
This point corresponds to the lowest row in the confusion matrix presented in
Fig. 4.

Automatic Mapping for OpenCL-Programs 311

<xfPY 47 1 4 o0 1400 <xplopd 142 1 6 O A
% 1200 ﬁ 1200
% <Ilx3x>{ 71 178 10 O 0 1000 g <1x-3x>1 131 117 11 0 0 1000
z G 800
O Gesx>{ 7 19 9 0 1 800 O xsx>{ 9 16 10 0 1
z 600 & 600
o <5x-7x>{ 7 3 3 3 3 400 9 <5x-7x>{ 9 1 3 3 3 400
E E
>%x{11 1 3 0 63 200 >1x{ 29 11 2 0 36 200
. 0 - : : . . 0
+ +7 7 7 7 7 7
N g*,s* b*n* " o 43 L,5+,6* 46*’1* S
Predicted CPU/GPU class Predicted CPU/GPU class

(a) (b)

Fig. 4. The confusion matrix for platform A, (a) results for the model with dynamic
features (b) results without dynamic features.

5 Discussion

We find out in our experiments that the predictive models designed with the
dynamic code features are more accurate and lead to lower performance degra-
dation in context of workload distribution. To further explore the impact of
dynamic features on the classification, we analyze the relative feature impor-
tance. The selected RF classifier enables to build the relative feature importance
ranking. The relative feature importance metric is based on two statistical meth-
ods Gini-impurity and the Information gain. More details about the RF classifier
and the feature importance metric are included in the [23]. Figure 5 presents the
relative feature importance for the both models presented in the previous section.

]o.16

. 02F m 019
RN 0.17

z ~ [o016

] | o

g S 0.15

= o P 0.13

3 ’ © o 0.11
E R o

e -2 42 =

Z 510 5@

= D o

D 5.1072 3.8-1072

Q“» Q”D Q“.) Q\ Q‘\ QQ) Qfx

(b)

B4
“
%
%

Fig. 5. Relative feature importance for the classifier (a) trained with dynamic features
and (b) with statically extracted features. The values on X-Axis are features presented
in Table 1, the Y-Axis represents the ranking of relative feature importance.

312 K. Moren and D. Gohringer

We can observe for the model created with the dynamic code features that
the most informative features (i.e. mostly reducing the model variance), are
consecutive memory access F'9 and the F'5 number of global work-items. For the
second model created with statically extracted features, most informative are
number of loads and stores the F2 and again the F'5 count of global work-items.
The high position in the ranking for loads and stores confirms the importance
of memory accesses extracted with our dynamic approach. One intuitive and
reasonable explanation for the importance of dynamic code features (memory
accesses) would be that many of the analyzed workloads are memory-bound.

5.1 Limitations

Our dynamic approach described in previous sections increases a classification
accuracy. However, the proposed and described method in this paper has also
several limitations. Our memory access analysis is limited to a sub-set of all
possible code variants. The Scalar Evolution pass computes only the symbolic
expressions for combinations of constants, loop variables and static variables.
It supports only a common integer arithmetic like addition, subtraction, mul-
tiplication or unsigned division [20]. Other possible code variants and resulting
statements lead to unknown values. Another aspect is the feature extraction
time. Compared to the pure static methods our dynamic method generates an
overhead during the runtime. We can observe the variable overhead between 0.3
and 4 ms, dependent on the platform capabilities and the code complexity.

6 Conclusion and Outlook

Deploying data parallel applications using the right hardware is essential for
improving application performance on heterogeneous platforms. A wrong device
selection and as a result not efficient workload distribution may lead to a signif-
icant performance loss. In this paper, we propose a novel systematic approach
to build the predictive model that estimates the compute device with an opti-
mal application speed-up. Our approach uses dynamic features available only
during the runtime. This improves the prediction accuracy independently of the
applications and hardware setups. Therefore, we believe that our work provides
an effective and adaptive approach for users who are looking for high perfor-
mance and efficiency on heterogeneous platforms. The performed experiments
and results encourage us to extend and improve our methodology in the future.
We will extract and experiment with other code features and classifiers. Addi-
tionally, we will improve our feature extraction method to further increase the
model accuracy and reduce the overall runtime.

Automatic Mapping for OpenCL-Programs 313

References

10.

11.

12.

13.

14.

Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Gropp, W., Matsuoka, S., (eds.)
International Conference for High Performance Computing, Networking, Storage
and Analysis, Denver, CO, USA, SC 2013, 17-21 November 2013, pp. 45:1-45:12.
ACM, New York (2013)

Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for system-
atic performance tuning. In: State of the Practice Reports, SC 2011, pp. 6:1-6:12.
ACM,New York (2011)

Lopez-Novoa, U., Mendiburu, A., Miguel-Alonso, J.: A survey of performance mod-
eling and simulation techniques for accelerator-based computing. IEEE Trans. Par-
allel Distrib. Syst. 26(1), 272-281 (2015)

Bailey, D.H., Snavely, A.: Performance modeling: understanding the past and
predicting the future. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648, pp. 185-195. Springer, Heidelberg (2005). https://doi.org/10.
1007/11549468_23

Nagasaka, H., Maruyama, N., Nukada, A., Endo, T., Matsuoka, S.: Statistical
power modeling of GPU kernels using performance counters. In: Green Computing
Conference, pp. 115-122. IEEE Computer Society (2010)

Kerr, A., Diamos, G.F., Yalamanchili, S.: Modeling GPU-CPU workloads and sys-
tems. In: Kaeli, D.R., Leeser, M., (eds.) Proceedings of 3rd Workshop on Gen-
eral Purpose Processing on Graphics Processing Units, GPGPU 2010, Pittsburgh,
Pennsylvania, USA, 14 March 2010. ACM International Conference Proceeding
Series, vol. 425, pp. 31-42. ACM (2010)

Dao, T.T., Kim, J., Seo, S., Egger, B., Lee, J.: A performance model for GPUs
with caches. IEEE Trans. Parallel Distrib. Syst. 26(7), 1800-1813 (2015)

Baldini, I., Fink, S.J., Altman, E.R.: Predicting GPU performance from CPU runs
using machine learning. In: SBAC-PAD, Washington, DC, USA, pp. 254-261. IEEE
Computer Society (2014)

Tripathy, B., Dash, S., Padhy, S.K.: Multiprocessor scheduling and neural network
training methods using shuffled frog-leaping algorithm. Comput. Ind. Eng. 80,
154-158 (2015)

Grewe, D., O’Boyle, M.F.P.: A static task partitioning approach for heterogeneous
systems using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 286-305.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19861-8_16
Magni, A., Dubach, C., O'Boyle, M.F.P.: Automatic optimization of thread-
coarsening for graphics processors. In: Amaral, J.N., Torrellas, J., (eds.) PACT,
pp. 455-466. ACM (2014)

Kofler, K., Grasso, 1., Cosenza, B., Fahringer, T.: An automatic input-sensitive
approach for heterogeneous task partitioning. In: Malony, A.D., Nemirovsky, M.,
Midkiff, S.P., (eds.) ICS, pp. 149-160. ACM (2013)

Wen, Y., Wang, Z., O’Boyle, M.F.P.: Smart multi-task scheduling for OpenCL pro-
grams on CPU/GPU heterogeneous platforms. In: 21st International Conference
on High Performance Computing, HiPC 2014, Goa, India, 17-20 December 2014,
pp. 1-10 (2014)

AMD: AMD APP SDK v2.9 (2014)

https://doi.org/10.1007/11549468_23
https://doi.org/10.1007/11549468_23
https://doi.org/10.1007/978-3-642-19861-8_16

314

15.

16.

17.

18.

19.

20.

21.
22.

23.

K. Moren and D. Goéhringer

Lee, J., Kim, J., Seo, S., Kim, S., Park, J., Kim, H., Dao, T.T., Cho, Y., Seo, S.J.,
Lee, S.H., Cho, S.M., Song, H.J., Suh, S., Choi, J.: An OpenCL framework for het-
erogeneous multicores with local memory. In: Salapura, V., Gschwind, M., Knoop,
J. (eds.) 19th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2010), Vienna, Austria, 11-15 September 2010, pp. 193-204.
ACM (2010)

Kim, H.S., Hajj, L.LE., Stratton, J.A., Lumetta, S.S., Hwu, W.M.: Locality-centric
thread scheduling for bulk-synchronous programming models on CPU architec-
tures. In: Olukotun, K., Smith, A., Hundt, R., Mars, J. (eds.) Proceedings of the
13th Annual IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO 2015, San Francisco, CA, USA, 07-11 February 2015, pp. 257-268.
IEEE Computer Society (2015)

Jo, G., Jeon, W.J., Jung, W., Taft, G., Lee, J.: OpenCL framework for arm pro-
cessors with neon support. In: Proceedings of the 2014 Workshop on Programming
Models for SIMD /Vector Processing. WPMVP 2014, pp. 33-40. ACM, New York
(2014)

Zima, E.V.: On computational properties of chains of recurrences. In: Proceedings
of the 2001 International Symposium on Symbolic and Algebraic Computation.
ISSAC 2001, p. 345. ACM, New York (2001)

Engelen, R.A.: Efficient symbolic analysis for optimizing compilers. In: Wilhelm, R.
(ed.) CC 2001. LNCS, vol. 2027, pp. 118-132. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45306-7_9

Grosser, T., Grofllinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(4)
(2012)

Nvidia: NVIDIA OpenCL SDK code samples (2014)

Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: Innovative Parallel Computing
(InPar), pp. 1-10, May 2012

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

https://doi.org/10.1007/3-540-45306-7_9
https://doi.org/10.1007/3-540-45306-7_9

	Automatic Mapping for OpenCL-Programs on CPU/GPU Heterogeneous Platforms
	1 Introduction
	2 Background and Existing Approaches
	3 Proposed Approach
	3.1 Architecture Overview
	3.2 Dynamic Code Feature Analysis and Extraction
	3.3 Building the Prediction Model

	4 Experimental Evaluation
	4.1 Hardware and Software Platforms
	4.2 Evaluation of the Model

	5 Discussion
	5.1 Limitations

	6 Conclusion and Outlook
	References

