
Parallel Latent Dirichlet Allocation
on GPUs

Gordon E. Moon(B), Israt Nisa, Aravind Sukumaran-Rajam(B),
Bortik Bandyopadhyay, Srinivasan Parthasarathy, and P. Sadayappan(B)

The Ohio State University, Columbus, OH 43210, USA
{moon.310,nisa.1,sukumaranrajam.1,bandyopadhyay.14,parthasarathy.2,

sadayappan.1}@osu.edu

Abstract. Latent Dirichlet Allocation (LDA) is a statistical technique
for topic modeling. Since it is very computationally demanding, its par-
allelization has garnered considerable interest. In this paper, we system-
atically analyze the data access patterns for LDA and devise suitable
algorithmic adaptations and parallelization strategies for GPUs. Exper-
iments on large-scale datasets show the effectiveness of the new parallel
implementation on GPUs.

Keywords: Parallel topic modeling
Parallel Latent Dirichlet Allocation · Parallel machine learning

1 Introduction

Latent Dirichlet Allocation (LDA) is a powerful technique for topic modeling
originally developed by Blei et al. [2]. Given a collection of documents, each
represented as a collection of words from an active vocabulary, LDA seeks to
characterize each document in the corpus as a mixture of latent topics, where
each topic is in turn modeled as a mixture of words in the vocabulary.

The sequential LDA algorithm of Griffiths and Steyvers [3] uses collapsed
Gibbs sampling (CGS) and was extremely compute-intensive. Therefore, a num-
ber of parallel algorithms have been devised for LDA, for a variety of tar-
gets, including shared-memory multiprocessors [13], distributed-memory systems
[7,12], and GPUs (Graphical Processing Units) [6,11,14,15,17]. In developing a
parallel approach to LDA, algorithmic degrees of freedom can be judiciously
matched with inherent architectural characteristics of the target platform. In
this paper, we conduct an exercise in architecture-conscious algorithm design
and implementation for LDA on GPUs.

In contrast to multi-core CPUs, GPUs offer much higher data-transfer band-
widths from/to DRAM memory but require much higher degrees of exploitable
parallelism. Further, the amount of available fast on-chip cache memory is orders
of magnitude smaller in GPUs than CPUs. Instead of the fully sequential col-
lapsed Gibbs sampling approach proposed by Griffiths et al. [3], different forms
of uncollapsed sampling have been proposed by several previous efforts [10,11]
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 259–272, 2018.
https://doi.org/10.1007/978-3-319-93701-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_20&domain=pdf

260 G. E. Moon et al.

in order to utilize parallelism in LDA. We perform a systematic exploration of
the space of partially collapsed Gibbs sampling strategies by

(a) performing an empirical characterization of the impact on convergence and
perplexity, of different sampling variants and

(b) conducting an analysis of the implications of different sampling variants on
the computational overheads for inter-thread synchronization, fast storage
requirements, and implications on the expensive data movement to/from
GPU global memory.

The paper is organized as follows. Section 2 provides the background on LDA.
Section 3 presents the high-level overview of our new LDA algorithm (AGA-
LDA) for GPUs, and Sect. 4 details our algorithm. In Sect. 5, we compare our
approach with existing state-of-the-art GPU implementations. Section 6 summa-
rizes the related works.

2 LDA Overview

Latent Dirichlet Allocation (LDA) is an effective approach to topic modeling.
It is used for identifying latent topics distributions for collections of text docu-
ments [2]. Given D documents represented as a collection of words, LDA deter-
mines a latent topic distribution for each document. Each document j of D

Algorithm 1. Sequential CGS based LDA
Input: DATA: D documents and x word tokens in each document, V : vocabulary size, K : number
of topics, α, β: hyper-parameters
Output: DT : document-topic count matrix, WT : word-topic count matrix, NT : topic-count
vector, Z : topic assignment matrix

1: repeat
2: for document = 0 to D − 1 do
3: L ← document length
4: for word = 0 to L − 1 do
5: current word ← DATA[document][word]
6: old topic ← Z [document][word]
7: decrement WT [current word][old topic]
8: decrement NT [old topic]
9: decrement DT [document][old topic]
10: sum ← 0
11: for k = 0 to K − 1 do

12: sum←sum + W T [current word][k]+β
NT [k]+V β

(DT [document][k] + α)

13: p[k] ← sum
14: end for
15: U ← random uniform() × sum
16: for new topic = 0 to K − 1 do
17: if U < p[new topic] then
18: break
19: end if
20: end for
21: increment WT [current word][new topic]
22: increment NT [new topic]
23: increment DT [document][new topic]
24: Z [document][word] ← new topic
25: end for
26: end for
27: until convergence

Parallel Latent Dirichlet Allocation on GPUs 261

documents is modeled as a random mixture over K latent topics, denoted by
θj . Each topic k is associated with a multinomial distribution over a vocabulary
of V unique words denoted by φk. It is assumed that θ and φ are drawn from
Dirichlet priors α and β. LDA iteratively improves θj and φk until convergence.
For the i th word token in document j, a topic-assignment variable zij is sampled
according to the topic distribution of the document θj|k, and the word xij is
drawn from the topic-specific distribution of the word φw|zij

. Asuncion et al. [1]
succinctly describe various inference techniques, and their similarities and dif-
ferences for state-of-the-art LDA algorithms. A more recent survey [4] discusses
in greater detail the vast amount of work done on LDA. In context of our work,
we first discuss two main variants, viz., Collapsed Gibbs Sampling (CGS) and
Uncollapsed Gibbs Sampling (UCGS).

Collapsed Gibbs Sampling. To infer the posterior distribution over latent
variable z, a number of studies primarily used Collapsed Gibbs Sampling (CGS)
since it reduces the variance considerably through marginalizing out all prior dis-
tributions of θj|k and φw|k during the sampling procedure [7,15,16]. Three key
data structures are updated as each word is processed: a 2D array DT main-
taining the document-to-topic distribution, a 2D array WT representing word-
to-topic distribution, and a 1D array NT holding the topic-count distribution.
Given the three data structures and all words except for the topic-assignment
variable zij , the conditional distribution of zij can be calculated as:

P (zij = k|z¬ij ,x, α, β) ∝
WT¬ij

xij |k + β

NT¬ij
k + V β

(DT¬ij
j|k + α) (1)

where DTj|k =
∑

w Sw|j|k denotes the number of word tokens in document j
assigned to topic k ; WTw|k =

∑
j Sw|j|k denotes the number of occurrences of

word w assigned to topic k ; NTk =
∑

w Nw|k is the topic-count vector. The
superscript ¬ij means that the previously assigned topic of the corresponding
word token xij is excluded from the counts. The hyper-parameters, α and β
control the sparsity of DT and WT matrices, respectively. Algorithm 1 shows
the sequential CGS based LDA algorithm.

Uncollapsed Gibbs Sampling. The use of Uncollapsed Gibbs Sampling
(UCGS) as an alternate inference algorithm for LDA is also common [10,11].
Unlike CGS, UCGS requires the use of two additional parameters θ and φ to
draw latent variable z as follows:

P (zij = k|x) ∝ φxij |kθj|k (2)

Rather than immediately using DT , WT and NT to compute the conditional
distribution, at the end of each iteration, newly updated local copies of DT , WT
and NT are used to sample new values on θ and φ that will be levered in the
next iteration. Compared to CGS, this approach leads to slower convergence

262 G. E. Moon et al.

since the dependencies between the parameters (corresponding word tokens) is
not fully being utilized [7,11]. However, the use of UCGS facilitates a more
straightforward parallelization of LDA.

3 Overview of Parallelization Approach for GPUs

As seen in Algorithm 1, the standard CGS algorithm requires updates to the DT ,
WT and NT arrays after each sampling step to assign a new topic to a word in a
document. This is inherently sequential. In order to achieve high performance on
GPUs, a very high degree of parallelism (typically thousands or tens/hundreds
of thousands of independent operations) is essential. We therefore divide the
corpus of documents into mini-batches which are processed sequentially, with
the words in the mini-batch being processed in parallel. Different strategies can
be employed for updating the three key data arrays DT , WT and NT . At one
extreme, the updates to all three arrays can be delayed until the end of processing
of a mini-batch, while at the opposite end, immediate concurrent updates can
be performed by threads after each sampling step. Intermediate choices between
these two extremes for processing updates also exist, where some of the data
arrays are immediately updated, while others are updated at the end of a mini-
batch. There are several factors to consider in devising a parallel LDA scheme
on GPUs:

– Immediate updates to all three data arrays DT , WT and NT would likely
result in faster convergence since this corresponds most closely to fully CGS.
At the other extreme, delayed updates for all three arrays may be expected
to result in the slowest convergence, with immediate updates to a subset of
arrays resulting in an intermediate rate of convergence.

– Immediate updating of the arrays requires the use of atomic operations, which
are very expensive on GPUs, taking orders of magnitude more time than
arithmetic operations. Further, the cost of atomics depends on the storage
used for the operands, with atomics on global memory operands being much
more expensive than atomics on data in shared memory.

– While delayed updates mean that we can avoid expensive atomics, additional
temporary storage will be required to hold information about the updates to
be performed at the end of a mini-batch, since storage is scarce on GPUs,
especially registers and shared-memory.

– The basic formulation of CGS requires an expensive division operation (Eq. 1)
in the innermost loop of the computation for performing sampling. If we
choose to perform delayed updates to DT , an efficient strategy can be devised
whereby the old DT entries corresponding to a minibatch can be scaled by
the division operation by means of the denominator term in Eq. 1 once before
processing of a mini-batch commences. This will enable the innermost loop
for sampling to no longer requires an expensive division operation.

In order to understand the impact on convergence rates for different update
choices for DT , WT and NT , we conducted an experiment using four datasets

Parallel Latent Dirichlet Allocation on GPUs 263

and all possible combinations of immediate versus delayed updates for the three
key data arrays. As shown in Fig. 1, standard CGS (blue line) has a better
convergence rate per-iteration than fully delayed updates (red line). However,
standard CGS is sequential and is not suitable for GPU parallelization. On the
other hand, delayed update scheme is fully parallel but suffers from a lower
convergence rate per-iteration. In our scheme, we divide the documents into
mini-batches. Each document within a mini-batch is processed using delayed
updates. At the end of each mini-batch, DT , WT and NT are updated and
the next mini-batch uses the updated DT , WT and NT values. Note that the
mini-batches are processed sequentially.

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

-7

-6.9

lo
g-

lik
el

ih
oo

d

KOS

WT-delayed NT-delayed DT-delayed
WT-delayed NT-delayed DT-immediate
WT-delayed NT-immediate DT-delayed
WT-delayed NT-immediate DT-immediate
WT-immediate NT-delayed DT-delayed
WT-immediate NT-delayed DT-immediate
WT-immediate NT-immediate DT-delayed
WT-immediate NT-immediate DT-immediate

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-8.5

-8

-7.5

-7

lo
g-

lik
el

ih
oo

d

NIPS

WT-delayed NT-delayed DT-delayed
WT-delayed NT-delayed DT-immediate
WT-delayed NT-immediate DT-delayed
WT-delayed NT-immediate DT-immediate
WT-immediate NT-delayed DT-delayed
WT-immediate NT-delayed DT-immediate
WT-immediate NT-immediate DT-delayed
WT-immediate NT-immediate DT-immediate

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-8.4

-8.2

-8

-7.8

-7.6

-7.4

lo
g-

lik
el

ih
oo

d

Enron

WT-delayed NT-delayed DT-delayed
WT-delayed NT-delayed DT-immediate
WT-delayed NT-immediate DT-delayed
WT-delayed NT-immediate DT-immediate
WT-immediate NT-delayed DT-delayed
WT-immediate NT-delayed DT-immediate
WT-immediate NT-immediate DT-delayed
WT-immediate NT-immediate DT-immediate

0 10 20 30 40 50 60 70 80 90 100

number of iterations

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g-

lik
el

ih
oo

d

NYTimes

WT-delayed NT-delayed DT-delayed
WT-delayed NT-delayed DT-immediate
WT-delayed NT-immediate DT-delayed
WT-delayed NT-immediate DT-immediate
WT-immediate NT-delayed DT-delayed
WT-immediate NT-delayed DT-immediate
WT-immediate NT-immediate DT-delayed
WT-immediate NT-immediate DT-immediate

Fig. 1. Convergence over number of iterations on KOS, NIPS, Enron and NYTimes
datasets. The mini-batch sizes are set to 330, 140, 3750 and 28125 for KOS, NIPS,
Enron and NYTimes, respectively. X-axis: number of iterations; Y-axis: per-word log-
likelihood on test set. (Color figure online)

Each data structure can be updated using either delayed updates or atomic
operations. In delayed updates, the update operations are performed at the end
of each mini-batch and is faster than using atomic operations. The use of atomic
operations to update DT , WT and NT makes the updates closer to standard

264 G. E. Moon et al.

sequential CGS, as each update is immediately visible to all the threads. Figure 1
shows the convergence rate of using delayed updates and atomic updates for each
DT , WT and NT . Using atomic-operations enables a better convergence rate
per-iteration. However, global memory atomic operations are expensive com-
pared to shared memory atomic operations. Therefore, in order to reduce the
overhead of atomic operations, we map WT to shared memory. In addition to
reducing the overhead of atomics, this also helps to achieve good data reuse for
WT from shared memory.

In order to achieve the required parallelism on GPUs, we parallelize across
documents and words in a mini-batch. GPUs have a limited amount of shared-
memory per SM. In order to take advantage of the shared-memory, we map
WT to shared-memory. Each mini-batch is partitioned into columns such that
the WT corresponding to each column panel fits in the shared-memory. Shared-
memory also offers lower atomic operation costs. DT is streamed from global
memory. However, due to mini-batching most of these accesses will be served by
the L2 cache (shared across all SMs). Since multiple threads work on the same
document and DT is kept in global memory, expensive global memory atomic
updates are required to update DT . Hence, we use delayed updates for DT .
Figure 2 depicts the overall scheme.

Fig. 2. Overview of our approach. V : vocabulary size, B: number of documents in the
current mini-batch, K: number of topics

4 Details of Parallel GPU Algorithm

As mentioned in the overview section, we divide the documents into mini-
batches. All the documents/words within a mini-batch are processed in parallel,

Parallel Latent Dirichlet Allocation on GPUs 265

Algorithm 2. GPU implementation of sampling kernel
Input: DOC IDX, WORD IDX, Z IDX: document index, word index and topic
index for each nnz in CSB format corresponding to the current mini-batch,
lastIdx: a vector which stores the start index of each tile, V : vocabulary size,
K : number of topics, β: hyper-parameter

1: tile id = block id
2: tile start = lastIdx[tile id]
3: tile end = lastIdx[tile id + 1]
4: shared WT [column panel width][K]
5: warp id = thread id / WARP SIZE
6: lane id = thread id % WARP SIZE
7: n warp k = thread block size / WARP SIZE

// Coalesced data load from global memory to shared memory
8: for i=warp id to column panel step n warp k do
9: for w = 0 to K step WARP SIZE do

10: shared WT [i][w+lane id] = WT [(tile id×col panel width+i)][w+lane id]
11: end for
12: end for
13: syncthreads()
14: for nnz = thread id+tile start to tile end step thread block size do
15: curr doc id = DOC IDX[nnz]
16: curr word id = WORD IDX[nnz]
17: curr word shared id = curr word id − tile id × column panel width
18: old topic = Z IDX[nnz]
19: atomicSub (shared WT [curr word shared id][old topic], 1)
20: atomicSub (NT [old topic], 1)
21: sum = 0
22: for k = 0 to K − 1 do
23: sum += (shared WT [curr word shared id][k]+β)×DNT [curr doc id][k]
24: end for
25: U = curand uniform() × sum
26: sum = 0
27: for new topic = 0 to K − 1 do
28: sum += (shared WT [curr word shared id][k]+β)×DNT [curr doc id][k]
29: if U < sum then
30: break
31: end if
32: end for
33: atomicAdd (shared WT [curr word shared id][new topic], 1)
34: atomicAdd (NT [new topic], 1)
35: Z IDX[nnz] = new topic
36: end for

// Update WT in global memory
37: for i=warp id to column panel step n warp k do
38: for w = 0 to K step WARP SIZE do
39: WT [(tile id×col panel+i)][w+lane id] = shared WT [i][w+lane id]
40: end for
41: end for
42: syncthreads()

266 G. E. Moon et al.

and the processing across mini-batches is sequential. All the words within a mini-
batch are partitioned to form column panels. Each column panel is mapped to
a thread block.

Shared Memory: Judicious use of shared-memory is critical for good performance
on GPUs. Hence, we keep WT in shared-memory which helps to achieve higher
memory access efficiency and lower cost for atomic operations. Within a mini-
batch, WT gets full reuse from shared-memory.

Reducing Global Memory Traffic for the Cumulative Topic Count: In the orig-
inal sequential algorithm (Algorithm1) the cumulative topic is computed by
multiplying WT with DT and then dividing the resulting value with NT . The
cumulative count with respect to each topic is saved in an array p as shown in
Line 13 in Algorithm 1. Then a random number is computed and is scaled by
the topic-count-sum across all topics. Based on the scaled random number the
cumulative topic count array is scanned again to compute the new topic. Keeping
the cumulative count array in global memory will increase the global memory
traffic especially as these accesses are uncoalesced. As data movement is much
more expensive than computations, we do redundant computations to reduce
data movement. In order to compute the topic-count-sum across all topics, we
perform a dot product of DT and WT in Line 23 in Algorithm 2. Then a ran-
dom number which is scaled by the topic sum is computed. The product of DT
and WT is recomputed, and based on the value of scaled random number, the
new topic is selected. This strategy helps to save global memory transactions
corresponding to 2 × number of words × number of topics (read and write)
words.

Reducing Expensive Division Operations: In Line 12 in Algorithm 1, division
operations are used during sampling. Division operations are expensive in
GPUs. The total number of division operations during sampling is equal to
total number of words across all documents × number of features. We can pre-
compute DNT = DT/NT (Algorithm 4) and then use this variable to com-
pute the cumulative topic count as shown in Line 23 in Algorithm2. Thus a
division is performed per document as opposed to per word which helps to
reduce the total number of division operations to total number of documents ×
number of features.

Reducing Global Memory Traffic for DT (DNT): In our algorithm, DT is
streamed from global memory. The total amount of DRAM (device memory)
transactions can be reduced if we can substitute DRAM access with L2 cache
accesses. Choosing an appropriate size for a mini-batch can help to increase L2
hit rates. For example, choosing a low mini-batch size will increase the probabil-
ity of L2 hit rates. However, if the mini-batch size is very low, there will not be
enough work in each mini-batch. In addition, the elements of the sparse matri-
ces are kept in segmented Compressed Sparse Blocks (CSB) format. Thus, the
threads with a column panel process all the words in a document before moving

Parallel Latent Dirichlet Allocation on GPUs 267

on to the next document. This ensures that within a column panel the temporal
reuse of DT (DNT) is maximized.

Algorithm 2 shows our GPU algorithm. Based on the column panel, all the
threads in a thread block collectively bring in the corresponding WT elements
from global memory to shared memory. WT is kept in column major order. All
the threads in a warp bring one column of WT and different wraps bring different
columns of WT (Line 10). Based on the old topic, the copy of WT in shared
memory and NT is decremented using atomic operations (Lines 19 and 20).

The non-zero elements within a column panel are cyclically distributed across
threads. Corresponding to the non-zero, each thread computes the topic-count-
sum by computing the dot product of WT and DNT (Line 23). A random
number is then computed and scaled by this sum (Line 25). The product of WT
and DNT is then recomputed to find the new topic with the help of the scaled
random number (Line 28). Then the copy of WT in shared memory and NT is
incremented using atomic operations (Lines 33 and 34).

At the end of each column panel, each thread block collectively updates the
global WT using the copy of WT kept in shared memory (Line 39).

Algorithm 3. GPU implementation of updating the DT

Input: DOC IDX, Z IDX: document index and topic index for each nnz in CSB
format corresponding to the current mini-batch

1: curr doc id = DOC IDX[thread id]
2: new topic = Z IDX[thread id]
3: atomicAdd (DT [curr doc id][new topic], 1)

Algorithm 4. GPU implementation of updating the DNT

Input: V : vocabulary size, α, β: hyper-parameters

1: curr doc id = blockIdx.x
2: DNT [curr doc id][thread id] = DT [curr doc id][thread id]+α

NT [thread id]+V β

At the end of each mini-batch, we need to update DT and pre-compute
DNT for the next mini-batch. Algorithm3 shows our algorithm to compute
DT . All the DT elements are initially set to zero using cudaMemset. We iterate
over all the words across all the documents. Corresponding to the topic of each
word, we increment the document topic count using atomic operations (Line 3).
The pre-computation of DNT is shown in Algorithm 4. In this algorithm, each
document is processed by a thread block and the threads within a thread block
are distributed across different topics. Based on the document and thread id,
each thread computes the DNT as shown in Line 2.

268 G. E. Moon et al.

5 Experimental Evaluation

Two publicly available GPU-LDA implementations, Lu-LDA by Lu et al. [6]
and BIDMach-LDA by Zhao et al. [17], are used in the experiments to compare
the performance and accuracy of the approach developed in this paper. We label
our new implementation as Approximate GPU-Adapted LDA (AGA-LDA). We
also use GibbsLDA++ [8] (Sequential CGS), a standard C++ implementation
of sequential LDA with CGS, as a baseline. We use four datasets: the KOS, NIPS,
Enron and NYTimes from the UCI Machine Learning Repository [5]. While
Table 2 shows the characteristics of the datasets, Table 1 shows the configuration
of the machines used for experiments.

Table 1. Machine configuration

Machine Details

GPU GTX TITAN (14 SMs, 192 cores/MP, 6 GB Global Memory, 876MHz,
1.5 MB L2 cache)

CPU Intel(R) Xeon(R) CPU E5-2680(28 core)

Table 2. Dataset characteristics. D is the number of documents, W is the total number
of word tokens and V is the size of the active vocabulary.

Dataset D W V

KOS 3,430 467,714 6,906

NIPS 1,500 1,932,365 12,375

Enron 39,861 6,412,172 28,099

NYTimes 299,752 99,542,125 101,636

In BIDMach-LDA, the train/test split is dependent on the size of the mini-
batch. To ensure a fair comparison, we use the same train/test split across dif-
ferent LDA algorithms. The train set consists of 90% of documents and the
remaining 10% is used as the test set. BIDMach-LDA allows changing the hyper-
parameters such as α. We tuned the mini-batch size for both BIDMach-LDA
and AGA-LDA and we report the best performance. In AGA-LDA, the hyper-
parameters, α and β are set to 0.1. The number of topics (K) in all experiments
is set to 128.

5.1 Evaluation Metric

To evaluate the accuracy of LDA models, we use the per-word log-likelihood on
the test set. The higher the log-likelihood, the better the generalization of the
model on unseen data.

Parallel Latent Dirichlet Allocation on GPUs 269

log(p(xtest)) =
∏

ij

log
∑

k

WTw|k + β
∑

w WTw|k + V β

DTj|k + α
∑

k DTj|k + Kα
(3)

per-word log-likelihood =
1

W test
log(p(xtest)) (4)

where W test is the total number of word tokens in the test set. For each LDA
model, training and testing algorithms are paired up.

0 0.5 1 1.5 2 2.5 3

time (s)

-7.9

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

-7.1

-7

-6.9

lo
g-

lik
el

ih
oo

d

KOS

AGA-LDA
BIDMach-LDA
Lu-LDA
Sequential CGS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-7.8

-7.7

-7.6

-7.5

-7.4

-7.3

-7.2

lo
g-

lik
el

ih
oo

d

NIPS

AGA-LDA
BIDMach-LDA
Lu-LDA
Sequential CGS

0 2.5 5 7.5 10 12.5 15

time (s)

-8.4

-8.2

-8

-7.8

-7.6

-7.4

lo
g-

lik
el

ih
oo

d

Enron

AGA-LDA
BIDMach-LDA
Lu-LDA
Sequential CGS

0 25 50 75 100 125 150 175 200

time (s)

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

lo
g-

lik
el

ih
oo

d

NYTimes

AGA-LDA
BIDMach-LDA
Lu-LDA
Sequential CGS

Fig. 3. Convergence over time on KOS, NIPS, Enron and NYTimes datasets. The mini-
batch sizes are set to 330, 140, 3750 and 28125 for KOS, NIPS, Enron and NYTimes,
respectively.

5.2 Speedup

Figure 3 shows the log-likelihood versus elapsed time of the different models.
Compared to BIDMach-LDA, AGA-LDA achieved 2.5×, 15.8×, 2.8× and 4.4×
on the KOS, NIPS, Enron and NYTimes datasets, respectively. AGA-LDA con-
sistently performs better than other GPU-based LDA algorithms on all datasets.
Figure 4 shows the speedup of our approach over BIDMach-LDA and Lu-LDA.
The y-axis in Fig. 4 is the ratio of time for BIDMach-LDA and Lu-LDA to achieve

270 G. E. Moon et al.

-7.65 -7.41 -7.29 -7.23 -7.19 -7.16 -7.15 -7.14 -7.13
log-likelihood

0

10

20

30

40

ra
tio

 o
f t

im
e

KOS

BIDMach-LDA
Lu-LDA

-7.73 -7.53 -7.42 -7.37 -7.34 -7.32
log-likelihood

0

5

10

15

20

25

30

ra
tio

 o
f t

im
e

NIPS

BIDMach-LDA
Lu-LDA

-8.31 -7.94 -7.75 -7.67 -7.62 -7.59 -7.57 -7.56
log-likelihood

0

5

10

15

ra
tio

 o
f t

im
e

Enron

BIDMach-LDA
Lu-LDA

-9.11 -8.75 -8.47 -8.34 -8.28 -8.25
log-likelihood

0

5

10

15

ra
tio

 o
f t

im
e

NYTimes

BIDMach-LDA
Lu-LDA

Fig. 4. Speedup of AGA-LDA over BIDMach-LDA and Lu-LDA.

a log-likelihood to how long AGA-LDA took. The result shows that y-values of
all points are greater than one for all cases, indicating that AGA-LDA is faster
than the existing state-of-the-art GPU-based LDA algorithms.

6 Related Work

The LDA algorithm is computationally expensive as it has to iterate over all
words in all documents multiple times until convergence is reached. Hence many
works have focused on efficient parallel implementations of the LDA algorithm
both in multi-core CPU as well as many-core GPU platforms.

Multi-core CPU Platform. Newman et al. [7] justifies the importance of dis-
tributed algorithms for LDA for large scale datasets and proposed an Approxi-
mate Distributed LDA (AD-LDA) algorithm. In AD-LDA, documents are par-
titioned into several smaller chunks and each chunk is distributed to one of the
many processors in the system, which performs the LDA algorithm on this pre-
assigned chunk. However, global data structures like word-topic count matrix
and topic-count matrix have to be replicated to the memory of each processor,
which are updated locally. At the end of each iteration, a reduction operation is
used to update all the local counts thereby synchronizing the state of the differ-
ent matrices across all processors. While the quality and performance of the LDA
algorithm is very competitive, this method incurs a lot memory overhead and
has performance bottleneck due to the synchronization step at the end of each

Parallel Latent Dirichlet Allocation on GPUs 271

iteration. Wang et al. [12] tries to address the storage and communication over-
head by an efficient MPI and MapReduce based implementation. The efficiency
of CGS for LDA is further improved by Porteous et al. [9] which leveraging the
sparsity structure of the respective probability vectors, without any approxima-
tion scheme. This allows for accurate yet highly scalable algorithm. On the other
hand, Asuncion et al. [1] proposes approximation schemes for CGS based LDA
in the distributed computing paradigm for efficient sampling with competitive
accuracy. Xiao and Stibor [13] proposes a dynamic adaptive sampling technique
for CGS with strong theoretical guarantees and efficient parallel implementation.
Most of these works either suffer from memory overhead and synchronization
bottleneck due to multiple local copies of global data-structures which are later
used for synchronization across processors, or have to update key data structures
using expensive atomic operations to ensure algorithmic accuracy.

Many-Core GPU Platform. One of the first GPU based implementations
using CGS is developed by Yan et al. [15]. They partition both the documents
and the words to create a set of disjoint chunks, such that it optimizes mem-
ory requirement, avoids memory conflict while simultaneously tackling a load
imbalance problem during computation. However, their implementation requires
maintaining local copies of global topic-count data structure. Lu et al. [6] tries to
avoid too much data replication by generating document-topic counts on the fly
and also use succinct sparse matrix representation to reduce memory cost. How-
ever, their implementation requires atomic operations during the global update
phase which increases processing overhead. Tristan et al. [11] introduces a vari-
ant of UCGS technique which is embarrassingly parallel with competitive perfor-
mance. Zhao et al. [17] proposes a state-of-the-art GPU implementation which
combines the SAME (State Augmentation for Marginal Estimation) technique
with mini-batch processing.

7 Conclusion

In this paper, we describe a high-performance LDA algorithm for GPUs based on
approximated Collapsed Gibbs Sampling. The AGA-LDA is designed to achieve
high performance by matching characteristics of GPU architecture. The algo-
rithm is focused on reducing the required data movement and overheads due
to atomic operations. In the experimental section, we show that our approach
achieves significant speedup when compared to the existing state-of-the-art GPU
LDA implementations.

References

1. Asuncion, A., Welling, M., Smyth, P., Teh, Y.W.: On smoothing and inference for
topic models. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, pp. 27–34. AUAI Press (2009)

272 G. E. Moon et al.

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 3, 993–1022
(2003)

3. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci.
101(Suppl 1), 5228–5235 (2004)

4. Jelodar, H., Wang, Y., Yuan, C., Feng, X.: Latent Dirichlet allocation (LDA) and
topic modeling: models, applications, a survey. arXiv:1711.04305 (2017)

5. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

6. Lu, M., Bai, G., Luo, Q., Tang, J., Zhao, J.: Accelerating topic model training on
a single machine. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds.)
APWeb 2013. LNCS, vol. 7808, pp. 184–195. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37401-2 20

7. Newman, D., Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for
topic models. JMLR 10, 1801–1828 (2009)

8. Phan, X.H., Nguyen, C.T.: GibbsLDA++: AC/C++ implementation of latent
dirichlet allocation (LDA) (2007)

9. Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
collapsed Gibbs sampling for latent Dirichlet allocation. In: SIGKDD. ACM (2008)

10. Tristan, J.B., Huang, D., Tassarotti, J., Pocock, A.C., Green, S., Steele, G.L.:
Augur: data-parallel probabilistic modeling. In: NIPS (2014)

11. Tristan, J.B., Tassarotti, J., Steele, G.: Efficient training of LDA on a GPU by
mean-for-mode estimation. In: ICML (2015)

12. Wang, Y., Bai, H., Stanton, M., Chen, W.-Y., Chang, E.Y.: PLDA: parallel latent
Dirichlet allocation for large-scale applications. In: Goldberg, A.V., Zhou, Y. (eds.)
AAIM 2009. LNCS, vol. 5564, pp. 301–314. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02158-9 26

13. Xiao, H., Stibor, T.: Efficient collapsed Gibbs sampling for latent Dirichlet alloca-
tion. In: ACML (2010)

14. Xue, P., Li, T., Zhao, K., Dong, Q., Ma, W.: GLDA: parallel Gibbs sampling for
latent Dirichlet allocation on GPU. In: Wu, J., Li, L. (eds.) ACA 2016. CCIS, vol.
626, pp. 97–107. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-
2209-8 9

15. Yan, F., Xu, N., Qi, Y.: Parallel inference for latent Dirichlet allocation on graphics
processing units. In: NIPS (2009)

16. Zhang, B., Peng, B., Qiu, J.: High performance LDA through collective model
communication optimization. Proc. Comput. Sci. 80, 86–97 (2016)

17. Zhao, H., Jiang, B., Canny, J.F., Jaros, B.: Same but different: fast and high quality
Gibbs parameter estimation. In: SIGKDD. ACM (2015)

http://arxiv.org/abs/1711.04305
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-37401-2_20
https://doi.org/10.1007/978-3-642-37401-2_20
https://doi.org/10.1007/978-3-642-02158-9_26
https://doi.org/10.1007/978-3-642-02158-9_26
https://doi.org/10.1007/978-981-10-2209-8_9
https://doi.org/10.1007/978-981-10-2209-8_9

	Parallel Latent Dirichlet Allocation on GPUs
	1 Introduction
	2 LDA Overview
	3 Overview of Parallelization Approach for GPUs
	4 Details of Parallel GPU Algorithm
	5 Experimental Evaluation
	5.1 Evaluation Metric
	5.2 Speedup

	6 Related Work
	7 Conclusion
	References

