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Abstract. AI and machine learning are mathematical modeling methods for
learning from data and producing intelligent models based on this learning. The
data these models need to deal with, is normally a mixed of data type where both
numerical (continuous) variables and categorical (non-numerical) data types.
Most models in AI and machine learning accept only numerical data as their
input and thus, standardization of mixed data into numerical data is a critical
step when applying machine learning models. Having data in the standard shape
and format that models require often a time consuming, nevertheless very sig-
nificant step of the process.
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1 Introduction

1.1 Motivation

As an example, when we have a data set (below) combined of many variables where all
are numerical ones except two variables of categorical type (gender and marital status)
as following [50]:

Table 1. Original mixed variables

User Age Income Gender Marital status

1 31 90,000 M Single
2 45 45,000 M Married
3 63 34,000 M Divorced
4 33 65,000 F Divorced
5 47 87,000 F Single
6 38 39,000 M Married
7 26 120,000 M Married
8 25 32,000 F Married
9 29 55,000 F Single
10 44 33,000 F Single
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When applying many machine learning models, the models need the data to be
numerical data type. Thus, the categorical data should be converted into numerical
type. The most efficient way of converting the categorical variable is the introduction of
dummy variables (one hot encoding) for which a new (dummy) variable is created for
each category (except the last category – since it’d be dependent on the rest of dummy
variables, i.e., its value could be determined when all other dummy variables are
known) of the categorical variable. These dummy variables are binary variables and
could assume only two values, 1 and 0. The value 1 means the sample has the value of
that variable and 0 means the opposite.

Here, for this example, we have two categorical variables:

1. Gender: there are only two categories, so we need to create one dummy variable.
2. Marital Status: there are three categories so we need to create two new dummy

variables.

The result after the creation of dummy variables is shown in Table 2.

After this transitional step, we could use any machine learning model for this data
set as all its variables are numerical one.

In general, for any categorical variable of “m” categories (classes), we need to
create “m − 1” dummy variables. The problem arises when any specific categorical
variable has large (based on our work, that means larger than 8) number of categories.
The reason is that, in these cases, the number of dummy variables need to be created
becomes too large causing the data to become of high dimension. The high dimen-
sionality of data leads to “curse of dimensionality” problem and thus all related issues
related to “curse of dimensionality” such as the need of “exponential increase in the
number of data rows” and “difficulties of distance computation” would appear.
Obviously, one needs to avoid the situation since, in addition to these problems, curse
of dimensionality also leads to misleading results from any machine learning models
such as finding false patterns discovered based on noise or random chance. Besides all

Table 2. The original variables after the introduction of dummy variables.

User Age Income Dummy variable-1
(female)

Dummy variable-2
(married)

Dummy
variable-3 (single)

1 31 90000 0 0 1
2 45 45000 0 1 0
3 63 34000 0 0 0
4 33 65000 1 0 0
5 47 87000 1 0 1
6 38 39000 0 1 0
7 26 120000 0 1 0
8 25 32000 1 1 0
9 29 55000 1 0 1
10 44 33000 1 0 1
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of that, higher dimension leads to higher “computational cost” and “slow model
response and lower robustness”, all of which should be avoided. Therefore, in the
process of transformation of categorical data into numerical data types, we must reduce
the number of newly created numerical variables to reduce the dimension of data [50].

Two examples of the case of categorical variables of large categories or classes are
“country of residence” and “URL related data such as the last site visited by the user”.
For the first variable, there are more than 150 categories and for the second, there is
potentially as many categories as the number of users which is a very large (in the order
of millions) number. To address these types of problem, this work establishes a new
approach of reducing the number of categories (when the number of categories in a
categorical variable in larger than 10) to K categories for K� 10. This way, we will
create a limited number of dummy variables to replace the categorical variable in the
data set.

For some types of categorical variables such as “country of residence”, we may find
some attributes online and thus, using these attributes and applying clustering models
and web scraping, we can create only a handful of dummy variable to replace the
categorical variables of large categories [50].

But, there are other type of categorical variables, such as “URL” variable, where it
is not possible to scrap features online and thus the above method [50] cannot be
applied. This paper focuses on a method of dealing with this type of categorical data.

2 The Approach Used in This Work

2.1 The Difficulties in Dealing with Modern Data

Quite often, the models in machine learning are models that use only numeric data.
Though, practically all data that are used in machine learning are mixed type, numerical
and categorical data. When used for machine learning models that could use only
numerical data, mixed data types are handled using three different approaches: first
approach is trying to, instead, using models that could handle mixed data type, second
approach is to ignore (drop) categorical variables. The last approach is converting
categorical variables to numerical type by introducing dummy variables. The first
approach introduces many limitations as there are only a limited number of models that
could handle mixed data and those models are often not the best model fitting the data
set. The second approach leads to ignoring much of the information in data set, i.e., the
categorical data. The practical approach is the third one, i.e., conversion of categorical
data into numerical data. As we explained above, this can be done correctly only when
all categorical variables have only limited number of categories (10 or less). Else, it
leads to high dimensional data that causes, among other problems, machine learning
models to produce meaningless (biased) results. In other words, when the variable has
many classes, this approach becomes infeasible because the number of variables will be
too much for the numeric models to handle.

This work detects a much smaller number of “latent classes” that are the under-
pinning classes or categories for the original categories of each categorical variable.
This way, the high dimensionality is avoided and thus, we can use these latent classes
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to perform the dummy variable generation described above to use any machine
learning. The small number of latent categories are detected using k-means clustering.

The basic idea is that categorical variables that have many values (or unique values
for each sample) provide little information for other samples. To maintain the useful
information from these variables, the best method is to keep that useful (latent)
information. This invention does it by finding the latent categories by clustering all
categories into similar groups. Using k-means clustering of the categories of any cat-
egorical variable, we may two distinct cases. First, is when each category has given
features or attributes. This is rarely seen in the data sets. The second case is when there
are no such attributes about each of the categories and we need to create them.

In the cases, we have features for all categories or classes of any variable, we could
use k-means clustering directly. Though, quite often, there is no attributes information
about these classes in the data sets. This work uses NLP [2, 13, 18–20, 53, 57] models
(Natural Language Processing) to address the case of categorical variables without any
attributes or features. The objective is to find a small number of dummy variables
replacing the categorical variable, that we want to convert to a numerical one.

We show our approach for the very important example of URL variable.

2.2 Application of Our Model by Using the Example of URL Data

Categorical variables having URL are important example of these types of categorical
variables. They are frequently present in click data and often have very large possible
values, sometime as much as the number of users.

To extract the latent categories from these URL variables, we try to cluster them
into similar URL’s i.e. URLs with similar paths. We choose to extract a word and
character using n-gram vector representations from the URL’s, then cluster these vector
representations using K-means clustering.

URL clustering is a great example because of the difficulty of the task. The diffi-
culty is not only as a result of the number of URLs but also because of the lack of
information (attributes) about them that can be used for clustering. When there is no
information available about the variables, we need to use NLP. It important that we use
NLP to perform the clustering because we have no knowledge of the format of the
URLs, i.e., we have no attributions for each URL and clustering cannot be done
without attributes. In this case, we use NLP to build the needed attributes for the URLs.
When URLs have the same domain, like www.google.com, then the clusters would all
be under www.google.com. However, the URLs could also be under multiple domains
in which case the clusters would be under multiple domains. A predetermined
algorithm would not be able to dynamically handle this variability. This is another
reason that, in the case of URLs as an example, we use NLP to cluster them based off
syntactic similarity, specifically word bigrams i.e. groups of three words. Our cate-
gorical variable has 500 categories, all under the domain of www.adobe.com. A few of
these categories are;
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For the algorithm to work best, we first strip the URL’s of any characters that provide
little information for clustering (since these words may introduce no new information).
Thesewords include punctuation and commonwords such as “http” and “www”.We, thus,
perform pre-processing on this listwhich includes removing punctuation, queries (anything
after the character “?”), and stop-words (http, com, www, html, etc.). After this step, we are
left with the URLs as space separated words representing the path of URL (Fig. 2);

Fig. 1. The example of URL variable list with 500 different categories.

Fig. 2. The process of deleting noisy words from the url variable.
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A sample of the result looks like (Fig. 3):

One of the most popular tools in NLP is the ones involving representation of words
with a numerical vector representation in an n dimensional space. Using the context of
a word, it can be mapped into an n-dimensional vector space. Learned representations
such as word embedding is increasingly popular for modeling semantics in NLP. This
is done by reducing semantic composition to simple vector operations. We’ve modified
and extended traditional representation learning techniques [13, 18, 50] to support
multiple word senses and uncertain representations.

In this work, we used a modification so that, instead of projecting individual words,
we project whole URLs containing multiple words. We use these words and their
contexts as features for the projection of the whole URL (Fig. 4).

adobe creativecloud business teams
adobe creativecloud desktop-app
adobe creativecloud business enterprise
adobe creativecloud business teams
adobe creativecloud business enterprise
adobe creativecloud business teams plans
adobe creativecloud

adobe creativecloud buy students
adobe creativecloud buy education
adobe creativecloud buy students
adobe creativecloud buy students
adobe creativecloud buy education
adobe creativecloud buy government
adobe creativecloud buy government

Fig. 3. The url data after the removal of words that may be irrelevant for clustering.

Fig. 4. Vector representation of the url data.
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Using the cleaned list, we extract vector representations of the URL’s using the tool
“Sally”. Sally is a tool that maps a set of strings to a set of vectors. The features that we
use for this mapping are bi-gram words and tri-gram characters. Thus, using word
bigrams of the URLs as features, we project the URLs into vector space using “Sally”.
Sally represents the URLs using a sparse matrix representation. This means that the
URLs are projected into very long vectors with each dimension representing a word
trigram that has been seen in the dataset. If a trigram has been observed in the URL its
value in the vector is 1. Otherwise the value is 0. This results in a long vector with most
values equal to 0 and a few values equal to 1. All the vectors together make a matrix
that is a sparse matrix because of its many 0 values. Finally, we used K-means clus-
tering on the embedding. Given that the URLs have been transformed into points in
n-dimensional vector space, K-means clustering can find groups of points and parti-
tions them as a cluster in the dataset. Given a number K which is the number of clusters
for the algorithm to discover, K-means finds the best partitioning of the dataset such
that the points in the clusters are mutually as similar as possible. In the context of URLs
this means finding the groups of URLs that share the most word trigrams. Figure 5
shows that the best K values is 10.

2.3 Computing the Optimal Number of Clusters

To compute the optimal number of clusters, we use Silhouette method which is based
on minimizing the dissimilarities inside a cluster and maximizing the dissimilarities
among clusters [31, 50]:

Fig. 5. The computation of optimal number of clustering using word tri-grams.
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The Silhouette model computes s(i) for each data point in the data set for each K:

sðiÞ ¼ bðiÞ � aðiÞ
max aðiÞ; bðiÞf g

Where a ið Þ is the mean distance of point i to all the other points in its cluster. Also,
b ið Þ is the mean distance to all the points in its closest cluster, i.e., b ið Þ is the minimum
mean distance of point i to all clusters that i is not a member of.

The optimal K is the K that maximizes the total score s(i) for all data set. The score
values lie in the range of [−1, 1] with −1 to be the worst possible score and +1 to be the
optimal score. Thus, the closest (average score of all points) score to +1 is the optimal
one and the corresponding K is the optimal K. Our experiments show that the value of
K has upper bound of 10. Here, we use not only the score but the maximum separation
and compactness of the clusters, as measured by distance between clusters and uni-
formity of the width of clusters, to test and validate our model simultaneously when
computing optimal K. Figure 6 depicts Silhouette model for different K [50].

Using the results from silhouette model, we use k-means clustering to cluster the
URL data. Some of the clusters are shown in Fig. 7.

Fig. 6. Using silhouette model to compute the optimal number of clusters, to be 10.
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adobe data-analytics-cloud
adobe data-analytics-cloud analytics
adobe data-analytics-cloud
adobe data-analytics-cloud analytics
adobe data-analytics-cloud
adobe data-analytics-cloud
adobe data-analytics-cloud analytics
adobe data-analytics-cloud
adobe data-analytics-cloud analytics
adobe data-analytics-cloud analytics
adobe data-analytics-cloud analytics
adobe data-analytics-cloud analytics select
adobe data-analytics-cloud analytics prime
adobe data-analytics-cloud analytics ultimate
adobe data-analytics-cloud analytics video
adobe data-analytics-cloud analytics predictive-intelligence
adobe data-analytics-cloud analytics live-stream
adobe data-analytics-cloud analytics data-workbench
adobe data-analytics-cloud analytics mobile-app-analytics
adobe data-analytics-cloud analytics capabilities
adobe data-analytics-cloud analytics new-capabilities
adobe data-analytics-cloud analytics resources
adobe data-analytics-cloud analytics learn-support
adobe data-analytics-cloud analytics select
adobe data-analytics-cloud analytics prime
adobe data-analytics-cloud analytics ultimate
adobe data-analytics-cloud analytics video
adobe data-analytics-cloud analytics predictive-intelligence
adobe data-analytics-cloud analytics live-stream
adobe data-analytics-cloud analytics data-workbench
adobe data-analytics-cloud analytics mobile-app-analytics
adobe data-analytics-cloud analytics marketing-attribution
adobe data-analytics-cloud analytics analysis-workspace

adobe products photoshop
adobe products illustrator
adobe products indesign
adobe products premiere
adobe products experience-design
adobe products elements-family
adobe products special-offers
adobe products photoshop
adobe products photoshop-lightroom
adobe products illustrator
adobe products premiere
adobe products indesign
adobe products experience-design
adobe products captur

Fig. 7. Some of the clusters for the url data.
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As the figure above shows, our method has grouped together URLs with similar
paths and separated URLs with dissimilar paths.

3 The Results and Conclusion

This project provides a method of converting categorical variables to numerical vari-
ables so machine learning models could use data. For this conversion to be plausible
for categorical variables with many classes, we propose that clustering can be used to
decrease the number of classes in the variable to a small number for dummy variable
generation. Though, some variables may have accessible features which makes it
possible to cluster them, but many variables lack the information or features that would
be needed for clustering models. This work deal effectively with these types of cate-
gorical variables and assumes no extra features and information may be available,
neither explicitly nor implicitly – by web scraping, for such variables. For the model to
work, we used NLP to create a vector representation of the variables. Then, we use the
vector representation to cluster the variables, i.e., clustering the categories of the
variables.

This work provides a new and only practical method of dealing with the stan-
dardization of categorical variables when the variables have large number of categories
or classes and have no explicitly or implicitly available features. Our model avoids the
deletion of the categorical variables and thus loss of information that causes machine
learning models to produce meaningless results. This work also leads to the avoidance
of creating high dimensional data where “curse of dimensionality” leads to high
computational cost, need of exponentially larger data sets, distorted values for distance
metrics and biased models.
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