
An Efficient Deep Learning Model
for Recommender Systems

Kourosh Modarresi(&) and Jamie Diner

Adobe Inc., San Jose, CA, USA
kouroshm@alumni.stanford.edu, diner@adobe.com

Abstract. Recommending the best and optimal content to user is the essential
part of digital space activities and online user interactions. For example, we like
to know what items should be sent to a user, what promotion is the best one for a
user, what web design would fit a specific user, what ad a user would be more
susceptible to or what creative cloud package is more suitable to a specific user.
In this work, we use deep learning (autoencoders) to create a new model for

this purpose. The previous art includes using Autoencoders for numerical fea-
tures only and we extend the application of autoencoders to non-numerical
features.
Our approach in coming up with recommendation is using “matrix comple-

tion” approach which is the most efficient and direct way of finding and eval-
uating content recommendation.

Keywords: Recommender systems � Artificial intelligence � Deep learning

1 Introduction

1.1 An Overview of Matrix Completion Approach

With the advancements in data collection and the increased availability of data, the
problem of missing values will only intensify. Traditional approaches to treating this
problem just remove rows and/or column that have missing values but, especially in
online applications, this will mean removing most of the rows and columns as most
data collected is sparse. Naïve approaches impute missing values with the mean or
median of the column, which changes the distribution of the variables and increases the
bias in the model. More complex approaches create one model for each column based
on the other variables; our test show that this work well for small matrices but the
computational time increases exponentially as more columns are added. For only
numerical datasets, matrix factorization using SVD-based models proved to work on
the Netflix Prize but has the drawback of inferring a linear combination between
variables and not working well with mixed datasets (continuous and categorical). For
sequential data, researches have been done using Recurrent Neural Networks (RNN).
However, the purpose of this paper is to create a general matrix completion algorithm
that does not depend on the data being sequential and works with both continuous and
categorical variables that would be the founding block of a Recommendation System.
A novel model is proposed using an autoencoder to reconstruct each row and impute

© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 221–233, 2018.
https://doi.org/10.1007/978-3-319-93701-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_17&domain=pdf

the unknown values based on the known values, with a cost function that optimizes
separately the continuous and categorical variables. Tests show that this method out-
performs the performance of more complex models with a fraction of the execution
time.

Matrix Completion is a problem that’s been around for decades but took promi-
nence in 2006 with the Netflix Price, where the first model to beat Netflix’s baseline
recommender system by more than 10% would win 1 million dollars. In such a dataset,
each row represented a different user and each column a different movie. When a user i
rated movie j, the position ij of the matrix would reflect the rating, otherwise it would
be a missing value. This is a very particular type of dataset, as every column repre-
sented a movie from which a limited number of ratings was possible (1–5). It is fair to
say that the difference between the values in the columns reflect the taste of the user
but, in a general sense, each column represents the same concept i.e., a movie. Most of
the research in matrix completion and recommendation systems have been done on
datasets of this type, predicting the rating that a user will give on a movie, song, book,
or any other content. However, most of the datasets, created in the real world, are not
of this type as each column may represent a different type of data. Thus, the data could
be demographical (age, income, etc.), geographical (city, state, etc.), medical (tem-
perature, blood pressure, etc.), just to name a few. Any dataset may have missing
values, and the purpose of this work is to create a general model that imputes these
missing values and recommends contents in the face of having all possible type of
data.

1.2 The State of the Art

Naïve Approaches
The most basic approach is to fill the missing values with the mean or median (for
continuous variables) or the mode (for categorical variables). This method presents two
clear problems: the first is that it is changing the distribution of the variable by giving
more prominence and over-representation to the imputed variable than it really has in
the data, and the second is that bias is introduced to the model, as the output is the same
for all the missing values in a specific column. This is specially a problem for highly
sparse datasets. It is important to notice that a variation of this method exists where the
mean or median of the row (instead of the column) is imputed, but only works for
continuous variables. The mode could be used for both continuous and categorical but
will still present the problems described earlier. Some more models can be found in [1,
6, 48, 66–68].

Collaborative Filtering and Content-Based Filtering
Collaborative filtering is one of the main methods for completing Netflix-style datasets.
In collaborative filtering, a similarity between rows (or columns) is calculated and used
to compute a weighted average of the known values to impute the missing values. This
method only works for numerical datasets, and is not scalable as similarity must be
computed for all pairs (which is very computationally expensive).

222 K. Modarresi and J. Diner

Content-Based filtering uses attributes of the columns to find the similarity between
them and then calculate the weighted average to impute. This method only works for
numerical datasets.

SVD Based
The Singular Value Decomposition works by finding the latent factors of the matrix by
factorizing it into 3 matrices:

X ¼ URVT

Where U is an m x m unitary matrix, R is a diagonal matrix of dimensions m x n
and V is an n x n unitary matrix. The matrix R represent the singular values of matrix
X, and the columns of U and V are orthonormal. It reconstructs the matrix X by finding
its low-rank approximation. A preprocessing step for this method is pre-imputing the
missing values, usually with the mean of the column, as missing values are not per-
mitted. This method is one of the most popular one as it was the winning solution of the
Netflix Prize, but has the drawback of only working on numerical datasets, inferring a
linear combination of the columns, and usually are fit for Netflix-style datasets.

More Complex Approaches
More complex approaches create one model for each variable with missing values,
using the rows with known values in a column as the training set. A model is trained
using all the variables, except the one column, as the input, and that column as the
output. After a model is trained, the missing values are estimated by predicting the
output of the other rows. The principal drawback of these methods is that the number of
models that have to be trained increase with the number of columns of the dataset,
therefore it is very computationally expensive for large datasets. This framework can
work for mixed datasets or for numerical only datasets, depending on the model used.
Pre-imputing missing values is needed for this framework as missing values are not
permitted, usually with the mean of the column.

Some implementations of these models use Random Forest (missForest, works for
mixed datasets), chained equations (mice, works for numerical only), EMB (Amelia,
works for mixed datasets in theory but in this paper only the numerical part worked),
FAMD (missMDA, works for mixed datasets).

2 Our Deep Learning Model

2.1 The General Framework

When designing the model, three main objectives were considered:

• Minimize reconstruction error for continuous variables
• Minimize reconstruction error for categorical variables
• Eliminate the effect of missing values in the model

Our proposed method uses autoencoders to reconstruct the dataset and impute the
missing values. The concept originates from idea of SVD method through using deep

An Efficient Deep Learning Model for Recommender Systems 223

learning model. Autoencoders are an unsupervised method that tries to reconstruct the
input in the output using a neural network that is trained using backpropagation.

A general overview of the model is shown in Fig. 1.

2.2 The Step of Pre-process the Dataset

The dataset can be of three types: all continuous, all categorical, or mixed (some
columns are continuous and some categorical). Therefore, the first step of pre-
processing the data is finding out which columns are numerical and which are cate-
gorical. The procedure followed in this work, to achieve this, is shown in Fig. 2, below.

Once the column type is known, each of the continuous columns (if they exist) are
normalized using Min Max Scaling. This way, every numerical column is scaled
between 0 and 1. This step of normalization of data is a necessary step in the appli-
cation of Neural Networks. The minimum and maximum values for each column are
saved to be able to rescale the reconstructed matrix to the original scale.

After normalizing the continuous columns, the next step is encoding the categorical
columns. For simplicity purposes, and because the order of the columns is not relevant
in the model, all the continuous columns are moved to the beginning of the matrix and
the categorical columns to the end. Then, each categorical column is encoded using
One-Hot encoding, where one new column is created for each level of each categorical
variable. The column with the label has a value of 1 and the rest a value of 0.

Fig. 1. The general overview of the model.

Categorical # Levels
> 5

Numerical Categorical

Values Not
numerical

True

True

False

False

For each column

Fig. 2. The column type definition.

224 K. Modarresi and J. Diner

At this step, the matrix is all numerical and every column is between 0 and 1. For
the reasons that will be explained in Sect. 2.3, three masks will be extracted from the
encoded dataset:

• Missing Value Mask: same shape as the encoded matrix, where the missing values
are encoded as 0 and the non-missing values as 1.

• Numerical Mask: a vector of the same length as the number of columns, where the
continuous columns (if exist) are encoded as 1 and the categorical columns (if exist)
are encoded as 0.

• Categorical Mask: the complement of the numerical mask, where the continuous
columns are encoded as 0 and the categorical as 1.

The last step in encoding the matrix is converting all missing values to 0. This
serves two purposes: the first is that neural networks can’t handle missing values, and
the other is to remove the effect of these missing nodes in the neural network. Once the
encoded matrix and the three masks are created, the training step can begin.

2.3 Training the Autoencoder

To train the autoencoder, each row of the encoded matrix is treated as the input and
output at the same time. Therefore, the number of nodes in the input (n_input) and
output layer are equal to the number of columns in the encoded matrix.

The architecture that was defined consists of 3 hidden layers. The design is sym-
metrical with the number of nodes of each of the hidden layers as follows:

• Hidden Layer 1: n_input/2
• Hidden Layer 2: n_input/4
• Hidden Layer 3: n_input/2

x0

x1

x2

x3

Xn_input-1

Xn_input

X’0

X’1

X’2

X’3

X’n_input-1

X’n_input

be1

be2

bd1

bd2

Encoder 1
[(n_input+1) x n_input/2]

Encoder 2
[(n_input/2+1) x n_input/4]

Decoder 1
[(n_input/4+1) x n_input/2]

Decoder 2
[(n_input/2+1) x n_input]

Fig. 3. The network architecture.

An Efficient Deep Learning Model for Recommender Systems 225

There are two encoding layers and two decoding layers. The reason why the
number of nodes for the hidden layers is smaller than the input layer is due to the idea
of projecting the data onto a lower dimension and find the latent factors to reconstruct
the data set from there.

Figure 3 shows the autoencoder neural network architecture, with the dimensions
of each encoding/decoding layer. The “+1” in the first dimension of each
encoder/decoder is the bias term that was added.

The activation function that was used for each of the nodes is the sigmoid given as,

r xð Þ ¼ 1
1þ e�x

The output of each encoder and decoder are computed as follows:

Encoder 1 ¼ r X �WE1 þBE1ð Þ

Where * denotes matrix multiplication, WE1 are the weights for encoder 1
learned from the network (initialized randomly) and BE1 is the bias of the encoder 1
learned from the network (initialized randomly). This result is fed to the second
encoder,

Encoder 2 ¼ r Encoder 1 �WE2 þBE2ð Þ

Similarly, for the Decoders:

Decoder 1 ¼ r Encoder 2 �WD1 þBD1ð Þ

X 0 ¼ Decoder 2 ¼ r Decoder 1 �WD2 þBD2ð Þ

The output of decoder 2 has the same dimensions as the input and is the output
from which the weights will be trained.

2.4 The Cost Functions

As stated previously, there are three main objectives in this work; to minimize
reconstruction error for both continuous and categorical variables, and to eliminate the
effect of missing values in the model.

Continuous and categorical variables are different in nature, and therefore should be
treated differently when used in any model. In most neural networks applications, there is
only one type of output variable (either continuous or categorical) but in this case, there
may be mixed nodes. This work proposes using a mixed cost function that is the sum of
two separate cost functions, one for continuous variables and one for categorical variables.

costtotal ¼ argmin
W ;B

ðcostcontinuous þ costcategoricalÞ

226 K. Modarresi and J. Diner

To be able to distinguish between continuous and categorical variables, the
numerical and categorical masks, that are created earlier, will be used.

For the purpose of the third objective, the missing values mask will be used to only
consider the error of values that are not missing. By using this approach, there is no
need to pre-impute missing values as they will have no effect on the overall cost
function.

Mathematically, the continuous cost function is as follows:

costcontinuous ¼
X

i;j
X 0
ij � Xij

� �
dnumjdmissij

� �2

Where X 0
ij is the output of Decoder 2 for position ij, Xij is the same value in the

original encoded matrix, dnumj is the value in the numerical mask for column j, and
dmissij is the value in the missing value mask for position ij. It is clear that this cost will
only consider values that are in columns that are numerical ðdnumj ¼ 1Þ and that are not
missing in the original matrix ðdmissij ¼ 1Þ.

The categorical cost function is given by the cross entropy:

costcategorical ¼ �
X
i;j

Xij ln X 0
ij

� �
þ 1� Xij
� �

ln 1� X 0
ij

� �� �
dcatjdmissij

Similarly, X 0
ij is the output of Decoder 2 for position ij, Xij is the same value in the

original encoded matrix, dcatj is the value in the categorical mask for column j, and
dmissij is the value in the missing value mask for position ij. It is clear that this cost will
only consider values that are in columns that are categorical ðdcatj ¼ 1Þ and that are not
missing in the original matrix ðdmissij ¼ 1Þ. The total cost function is minimized using
Gradient Descent. The learning rate for these tests was set at a default of 0.01.

2.5 The Post-processing of the Dataset

The output of the Autoencoder is a matrix where all the numerical columns are at the
beginning, and all the categorical columns are split among different columns, with a
value between 0 and 1, at the end. The goal is to reconstruct the original matrix, with
the columns in the same order and each categorical variable as one column with
different levels.

The first step is computing the “prediction” for the categorical variables, that is, the
level of the categorical variables that obtained the highest score after the decoder 2.
Once the category is found, the name of the column is assigned as the category or level
for that variable. This is repeated for all categorical variables.

Once each categorical column is decoded to its original form and levels, the col-
umns are reordered using the order of the original dataset. Then, the numerical vari-
ables are scaled back using the minimum and maximum values saved during the
pre-processing step for each column.

An Efficient Deep Learning Model for Recommender Systems 227

At this point, the matrix is in the same shape and scale as the original matrix; with
all the missing values imputed.

The model in this work is based on a deep learning model using autoencoder for
content recommendation based on the solution of the matrix completion problem. The
main idea that this work proposes is extending the state of the art to impute missing
values of any type of dataset, and not just numerical. One of the principal idea of this
work is the application of a new cost function, a mixed cost function, that has not been
done before. This function detects which columns are continuous and which are cat-
egorical, and computes the proper error depending on the type of the data. This
improves considerably the performance of the model and can be extended to any neural
network application that requires output nodes of mixed types.

3 The Results and Conclusion

3.1 The Data Set and the Results

For this analysis, 15 publicly available datasets [12–26] were used. The dataset was
selected such that the data set would be diverse with respect to sparsity level, domain or
application, amount of numerical vs categorical data, and the number of rows and
columns.

To create a more varied selection of data, 100 bootstrap samples were created from
each of the datasets by selecting a random number of rows, a random number of
columns, and a random number of missing values.

To measure the performance of continuous variables, the Normalized Root Mean
Squared Error (NRMSE) measure is used. The reason this metric is used is that we
could compare the performance of difference datasets regardless of the range or vari-
ance it has. The lower the NRMSE score, the better.

NRMSE ¼

ffi
mean xtrue � xpred

� �2� �

var xtrueð Þ

vuut

To measure the performance of categorical variables, the Accuracy is used. The
higher the accuracy score, the better.

Accuracy ¼ mean xtrue ¼ xpred
� �

The execution time is measured in seconds. The lower the execution time, the
better.

To compare the performance of our model vs other state of the art models, seven
packages in R were used as baselines models: Amelia [51], impute [49], mice [72],
missForest [70], missMDA [59], rrecsys [11], and softImpute [48]. The models in these
packages are state of the art solutions for the matrix completion problem and cover all
the models described in the introduction.

228 K. Modarresi and J. Diner

The number of missing values ranged from 0 to 100%, but limitations on other
packages only allowed only up to 80% on most models, and 20% on Amelia package
model.

Figure 4 shows the performance of the models with 1500 bootstrap samples (100
per dataset) measured by the NRMSE. It can be seen that the model proposed in this
paper outperforms all of the models, with less variation in the results. The closest
model, Amelia, was only tested with up to 20% sparsity but our autoencoder still
improves the median NRMSE by 11% (0.09293 vs 0.10395).

Fig. 4. Comparing the performance using NRMSE.

An Efficient Deep Learning Model for Recommender Systems 229

Figure 5 shows the accuracy of categorical variables for all packages that are able
to handle them. Out of the seven packages that were tested to compare, only four are
able to impute categorical variables. The model proposed in this paper sits right in the
middle in terms of median performance with large variation in the results.

Figure 6 shows the execution time in seconds for all the packages. The tests were
run in a MacBook Pro with a 2.5 GHz Intel Core i7 processor. It can be seen that the
autoencoder model is the third slowest, however the median computational cost is still
reasonable at about 0.5 s per model. Comparing the execution time to models that can
handle categorical values, the two models that outperform in accuracy take about 5
times as long to execute as the autoencoder indicating our model has the best

Fig. 5. Comparing the accuracy of different models.

Fig. 6. Comparing the execution time of different models.

230 K. Modarresi and J. Diner

performance for NRMSE for all models tested. Thus, for the models that can handle
mixed datasets, our model has the best tradeoff between accuracy and execution time.

The results indicate our model outperforms existing models. It has the best NRMSE
of all models, and has the best trade-off accuracy and computational complexity as the
two models.

References

1. Becker, S., Bobin, J., Candès, E.J.: NESTA, a fast and accurate first-order method for sparse
recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2009)

2. Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge

(2004)
4. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for

collaborative filtering. In: Proceedings of Fourteenth Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann (1998)

5. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix
completion. SIAM J. Optim. 20(4), 1956–1982 (2008)

6. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput.
Math. 9, 717–772 (2008)

7. Candès, E.J.: Compressive sampling. In: Proceedings of the International Congress of
Mathematicians, Madrid, Spain (2006)

8. Chen, P.-Y., Wu, S.-Y., Yoon, J.: The impact of online recommendations and consumer
feedback on sales. In: Proceedings of the 25th International Conference on Information
Systems, pp. 711–724 (2004)

9. Cho, Y.H., Kim, J.K., Kim, S.H.: A personalized recommender system based on web usage
mining and decision tree induction. Expert Syst. Appl. 23, 329–342 (2002)

10. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin M.: Combining
content-based and collaborative filters in an online newspaper. In: Proceedings of the
ACM SIGIR 1999 Workshop on Recommender Systems (1999)

11. Çoba, L., Zanker, M.: rrecsys: an R-package for prototyping recommendation algorithms. In:
RecSys 2016 Poster Proceedings (2016)

12. Data, Abalone. https://archive.ics.uci.edu/ml/datasets/abalone
13. Data, Air Quality. https://archive.ics.uci.edu/ml/datasets/Air+Quality
14. Data, Batting. http://www.tgfantasybaseball.com/baseball/stats.cfm
15. Data, Bike. https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
16. Data, Boston. https://archive.ics.uci.edu/ml/datasets/housing
17. Data, CASP. https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein

+Tertiary+Structure
18. Data, Census: Click on the “Compare Large Cities and Towns for Population, Housing,

Area, and Density” link on Census 2000. https://factfinder.census.gov/faces/nav/jsf/pages/
community_facts.xhtml

19. Data, Concrete. https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
20. Data, Data_akb. https://archive.ics.uci.edu/ml/dtasets/ISTANBUL+STOCK+EXCHANGE#
21. Data, Parkinsons. https://archive.ics.uci.edu/ml/datasets/parkinsons
22. Data, S&P. http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-

index-options/s-p-500-index/spx-historical-data
23. Data, Seeds. http://archive.ics.uci.edu/ml/datasets/seeds

An Efficient Deep Learning Model for Recommender Systems 231

https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/ml/datasets/Air%2bQuality
http://www.tgfantasybaseball.com/baseball/stats.cfm
https://archive.ics.uci.edu/ml/datasets/bike%2bsharing%2bdataset
https://archive.ics.uci.edu/ml/datasets/housing
https://archive.ics.uci.edu/ml/datasets/Physicochemical%2bProperties%2bof%2bProtein%2bTertiary%2bStructure
https://archive.ics.uci.edu/ml/datasets/Physicochemical%2bProperties%2bof%2bProtein%2bTertiary%2bStructure
https://factfinder.census.gov/faces/nav/jsf/pages/community_facts.xhtml
https://factfinder.census.gov/faces/nav/jsf/pages/community_facts.xhtml
https://archive.ics.uci.edu/ml/datasets/Concrete%2bCompressive%2bStrength
https://archive.ics.uci.edu/ml/dtasets/ISTANBUL+STOCK+EXCHANGE
https://archive.ics.uci.edu/ml/datasets/parkinsons
http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-index-options/s-p-500-index/spx-historical-data
http://www.cboe.com/products/stock-index-options-spx-rut-msci-ftse/s-p-500-index-options/s-p-500-index/spx-historical-data
http://archive.ics.uci.edu/ml/datasets/seeds

24. Data, Waveform. https://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+
(Version+2)

25. Data, Wdbc. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognos
tic%29

26. Data, Yacht. http://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
27. d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.G.: A direct formulation for

sparse PCA using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)
28. Davies, A.R., Hassan, M.F.: Optimality in the regularization of ill-posed inverse problems.

In: Sabatier, P.C. (ed.) Inverse Problems: An Interdisciplinary Study. Academic Press,
London (1987)

29. DeMoor, B., Golub, G.H.: The restricted singular value decomposition: properties and
applications. SIAM J. Matrix Anal. Appl. 12(3), 401–425 (1991)

30. Donoho, D.L., Tanner, J.: Sparse nonnegative solutions of underdetermined linear equations
by linear programming. Proc. Natl. Acad. Sci. 102(27), 9446–9451 (2005)

31. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–
499 (2004)

32. Elden, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT
17, 134–145 (1977)

33. Elden, L.: A note on the computation of the generalized cross-validation function for
ill-conditioned least squares problems. BIT 24, 467–472 (1984)

34. Engl, H.W., Hanke, M., Neubauer, A.: Regularization methods for the stable solution of
inverse problems. Surv. Math. Ind. 3, 71–143 (1993)

35. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer,
Dordrecht (1996)

36. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularisation of
non-linear ill-posed problems. Inverse Prob. 5, 523–540 (1998)

37. Engl, H.W., Groetsch, C.W. (eds.): Inverse and Ill-Posed Problems. Academic Press, London
(1987)

38. Gander, W.: On the linear least squares problem with a quadratic Constraint. Technical report
STAN-CS-78–697, Stanford University (1978)

39. Golub, G.H., Van Loan, C.F.: Matrix Computations. Computer Assisted Mechanics and
Engineering Sciences, 4th edn. Johns Hopkins University Press, US, (2013)

40. Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer.
Anal. 17, 883–893 (1980)

41. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix.
SIAM J. Numer. Anal. Ser. B 2, 205–224 (1965)

42. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a
good ridge parameter. Technometrics 21, 215–223 (1979)

43. Guo, S., Wang, M., Leskovec, J.: The role of social networks in online shopping: information
passing, price of trust, and consumer choice. In: ACM Conference on Electronic Commerce
(EC) (2011)

44. Häubl, G., Trifts, V.: Consumer decision making in online shopping environments: the
effectsof interactive decision aids 19, 4–21 (2000)

45. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning; Data mining,
Inference and Prediction. Springer, New York (2001). https://doi.org/10.1007/978-0-387-
84858-7

46. Hastie, T.J., Tibshirani, R.: Handwritten Digit Recognition via Deformable Prototypes.
AT&T Bell Laboratories Technical report (1994)

47. Hastie, T., Tibshirani, R., Eisen, M., Brown, P., Ross, D., Scherf, U., Weinstein, J., Alizadeh,
A., Staudt, L., Botstein, D.: ‘Gene Shaving’ as a method for identifying distinct sets of genes
with similar expression patterns. Genome Biol. 1, 1–21 (2000)

232 K. Modarresi and J. Diner

https://archive.ics.uci.edu/ml/datasets/Waveform%2bDatabase%2bGenerator%2b(Version%2b2)
https://archive.ics.uci.edu/ml/datasets/Waveform%2bDatabase%2bGenerator%2b(Version%2b2)
https://archive.ics.uci.edu/ml/datasets/Breast%2bCancer%2bWisconsin%2b%2528Prognostic%2529
https://archive.ics.uci.edu/ml/datasets/Breast%2bCancer%2bWisconsin%2b%2528Prognostic%2529
http://archive.ics.uci.edu/ml/datasets/yacht%2bhydrodynamics
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7

48. Hastie, T., Mazumder, R.: Matrix Completion via Iterative Soft-Thresholded SVD (2015)
49. Hastie, T., Tibshirani, R., Narasimhan, B., Chu, G.: Package ‘impute’. CRAN (2017)
50. Hofmann, B.: Regularization for Applied Inverse and Ill-Posed problems. Teubner, Stuttgart,

Germany (1986)
51. Honaker, J., King, G., Blackwell, M.: Amelia II: A program for Missing Data (2012)
52. Anger, G., Gorenflo, R., Jochum, H., Moritz, H., Webers, W. (eds.): Inverse Problems:

principles and Applications in Geophysics, Technology, and Medicine. Akademic Verlag,
Berlin (1993)

53. Hua, T.A., Gunst, R.F.: Generalized ridge regression: a note on negative ridge parameters.
Commun. Stat. Theory Methods 12, 37–45 (1983)

54. Iyengar, V.S., Zhang, T.: Empirical study of recommender systems using linear classifiers.
In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035,
pp. 16–27. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45357-1_5

55. Jeffers, J.: Two case studies in the application of principal component. Appl. Stat. 16, 225–
236 (1967)

56. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986). https://doi.org/10.
1007/978-1-4757-1904-8

57. Jolliffe, I.T.: Rotation of principal components: choice of normalization constraints. J. Appl.
Stat. 22, 29–35 (1995)

58. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based
on the LASSO. J. Comput. Graph. Stat. 12(3), 531–547 (2003)

59. Josse, J., Husson, F.: missMDA: a package for handling missing values in multivariate data
analysis. J. Stat. Softw. 70(1) (2016)

60. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative
filtering. Internet Comput. 7(1), 76–80 (2003)

61. Mazumder, R., Hastie, T., Tibshirani, R.: Spectral regularization algorithms for learning
large incomplete matrices. JMLR 2010(11), 2287–2322 (2010)

62. McCabe, G.: Principal variables. Technometrics 26, 137–144 (1984)
63. Modarresi, K., Golub, G.H.: An adaptive solution of linear inverse problems. In:

Proceedings of Inverse Problems Design and Optimization Symposium (IPDO2007), 16–
18 April 2007, Miami Beach, Florida, pp. 333–340 (2007)

64. Modarresi, K.: A Local Regularization Method Using Multiple Regularization Levels,
Stanford, April 2007

65. Modarresi, K., Golub, G.H.: An efficient algorithm for the determination of multiple
regularization parameters. In: Proceedings of Inverse Problems Design and Optimization
Symposium (IPDO), 16–18 April 2007, Miami Beach, Florida, pp. 395–402 (2007)

66. Modarresi, K.: Recommendation system based on complete personalization. Procedia
Comput. Sci. 80C (2016)

67. Modarresi, K.: Computation of recommender system using localized regularization. Procedia
Comput. Sci. 51C (2015)

68. Modarresi, K.: Algorithmic Approach for Learning a Comprehensive View of Online Users.
Procedia Comput. Sci. 80C (2016)

69. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: AutoRec: autoencoders meet collaborative.
In: WWW 2015 (2015)

70. Stekhoven, D.: Using the missForest Package. CRAN (2012)
71. Strub, F., Mary, J., Gaudel, R.: Hybrid Collaborative Filtering with Autoencoders (2016)
72. Van Buuren, S., Groothuis-Oudshoorn, K.: MICE: multivariate imputation by chained

equations in R. J. Stat. Softw. 45(3), 1–67 (2011)

An Efficient Deep Learning Model for Recommender Systems 233

http://dx.doi.org/10.1007/3-540-45357-1_5
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://dx.doi.org/10.1007/978-1-4757-1904-8

	An Efficient Deep Learning Model for Recommender Systems
	Abstract
	1 Introduction
	1.1 An Overview of Matrix Completion Approach
	1.2 The State of the Art

	2 Our Deep Learning Model
	2.1 The General Framework
	2.2 The Step of Pre-process the Dataset
	2.3 Training the Autoencoder
	2.4 The Cost Functions
	2.5 The Post-processing of the Dataset

	3 The Results and Conclusion
	3.1 The Data Set and the Results

	References

