
Design of Parallel BEM Analyses
Framework for SIMD Processors

Tetsuya Hoshino(B), Akihiro Ida, Toshihiro Hanawa, and Kengo Nakajima

Information Technology Center, The University of Tokyo, Tokyo, Japan
{hoshino,ida,hanawa,nakajima}@cc.u-tokyo.ac.jp

Abstract. Parallel Boundary Element Method (BEM) analyses are typ-
ically conducted using a purpose-built software framework called BEM-
BB. This framework requires a user-defined function program that cal-
culates the i-th row and the j-th column of the coefficient matrix arising
from the convolution integral term in the fundamental BEM equation.
Owing to this feature, the framework can encapsulate MPI and OpenMP
hybrid parallelization with H-matrix approximation. Therefore, users
can focus on implementing a fundamental solution or a Green’s func-
tion, which is the most important element in BEM and depends on the
targeted physical phenomenon, as a user-defined function. However, the
framework does not consider single instruction multiple data (SIMD)
vectorization, which is important for high-performance computing and
is supported by the majority of existing processors. Performing SIMD
vectorization of a user-defined function is difficult because SIMD exploits
instruction-level parallelization and is closely associated with the user-
defined function. In this paper, a conceptual framework for enhancing
SIMD vectorization is proposed. The proposed framework is evaluated
using two BEM problems, namely, static electric field analysis with a
perfect conductor and static electric field analysis with a dielectric, on
Intel Broadwell (BDW) processor and Intel Xeon Phi Knights Landing
(KNL) processor. It offers good vectorization performance with limited
SIMD knowledge, as can be verified from the numerical results obtained
herein. Specifically, in perfect conductor analyses conducted using the
H-matrix, the framework achieved performance improvements of 2.22x
and 4.34x compared to the original BEM-BB framework for the BDW
processor and KNL, respectively.

1 Introduction

The boundary element method (BEM) has several scientific applications. This
method requires fewer unknowns and has a lower meshing cost compared to
other volume discretization methods because it requires only the surface of the
target objects for analysis. However, the computational cost and memory foot-
print of BEM analysis are significantly high because a dense coefficient matrix is
generated during the analysis. To overcome these problems, parallel computing
and approximation techniques, such as hierarchical matrices (H-matrices) [1–3],
H2-matrices [4], and the fast multipole method (FMM) [5] are often used for
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 601–613, 2018.
https://doi.org/10.1007/978-3-319-93698-7_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_46&domain=pdf

602 T. Hoshino et al.

BEM analysis. Although these techniques have huge programming costs, BEM-
BB [6], an open-source software framework for parallel BEM analysis, is useful
to for reducing these costs. The framework employs H-matrices to approximate
the dense coefficient matrix, and it is parallelized using the MPI and OpenMP
models. The BEM-BB framework allows for faster BEM analysis on parallel
computers by simply preparing programs to calculate the integrals of boundary
elements, settings of boundary conditions, and analysis output. In addition, the
parallelization and the approximation programs are encapsulated in the frame-
work. Thus, users can concentrate on developing the most important aspects of
BEM analysis, namely, a user-defined function for calculating the i-th row and
the j-th column of the coefficient matrix. Furthermore, the user-defined function
may vary depending on the targeted physical phenomena.

However, this framework does not consider single instruction multiple data
(SIMD) vectorization, which is important for achieving high-performance com-
puting on existing processors. For example, the most recent Intel processors, such
as Skylake EP/EX and Xeon Phi Knights Landing (KNL), support AVX-512,
that is, a 512-bit SIMD instruction set. SIMD vectorization cannot be separated
from user-defined functions, unlike in MPI and OpenMP parallelization, because
SIMD vectorization is instruction-level parallelization and because user-defined
functions can vary. However, SIMD vectorization is difficult for application pro-
grammers because it requires knowledge of the compiler and the target processor
architecture.

In this paper, we present a framework design based on BEM-BB for SIMD
vectorization. A design to encapsulate SIMD-related aspects is proposed. In addi-
tion, we evaluate the performance of the proposed framework by solving two
problems, namely, static electric field analysis with a perfect conductor and static
electric field analysis with a dielectric, which contain different user-defined func-
tions, on Intel Broadwell processor (BDW) and Intel Xeon Phi Knights Landing
(KNL). We compare the performance of the proposed framework with the orig-
inal framework and that of hand-tuned user functions. The results show that
the proposed framework offers performance improvements of 2.22x and 4.34x
compared to the original framework for the BDW processor and the KNL pro-
cessor, respectively. Furthermore, the experimental results demonstrate that the
performance of the framework is comparable to that achieved using the hand-
tuned programs

The remainder of this paper is organized as follows. In Sect. 2, we provide an
overview of the BEM-BB framework. The proposed framework is described in
Sect. 3. Numerical experiments involving electric field analysis are described in
Sect. 4, and a few conclusions and suggestions for future work are presented in
Sect. 6.

2 BEM-BB Framework

In this section, the BEM-BB framework, which is the baseline implementation in
this study, is introduced. The BEM-BB software framework is used for parallel

Design of Parallel BEM Analyses Framework for SIMD Processors 603

BEM analysis. It is implemented in the Fortran90 programming environment and
parallelized using the OpenMP + MPI hybrid programming model. To reduce
the computational cost of parallel programming, the framework supports model
data input, assembly of the coefficient matrix, and solution of linear systems,
steps that are generally required in BEM analysis. When employing this frame-
work, users are required to generate user-defined functions that calculate each
element of the coefficient matrix. In other words, users are required to implement
a program to calculate the integrals of boundary elements, which depend on the
governing target of BEM analysis. The target integral equation of the BEM-BB
framework is described as follows. For f ∈ H ′, u ∈ H and a kernel function of a
convolution operator g : R

d × Ω → R,∫
Ω

g(x, y)u(y)dy = f (1)

where Ω ⊂ R
d denotes a (d − 1)-dimensional domain, H the Hilbert space of

functions on a Ω, and H ′ dual space of H. To numerically calculate Eq. (1),
we divide the domain, Ω, into the elements Ωh = {ωj : j ∈ J}, where J is
an index set. In weighted residual methods, such as the Ritz-Galerkin method
and the collocation method, the function u is approximated from a n-dimensional
subspace Hh ⊂ H. Given a basis (ϕi)i∈� of Hh for an index set � := {1, . . . , N},
the approximant uh ∈ Hh-u can be expressed using a coefficient vector φ =
(φi)i∈� that satisfies uh =

∑
i∈�

φiϕi. Note that the supports of the basis Ωh
ϕi

:=
supp ϕ are assembled from the sets ωj . Equation (1) is then reduced to the
following system of linear equations.

Aφ = b (2)

Aij =
∫

Ω

ϕi(x)
∫

Ω

g(x, y)ϕ(y)dydx (3)

bi =
∫

Ω

ϕi(x)fdx (4)

Here, i, j ∈ �. The user-defined function required to calculate the elements of
the i-th row and the j-th column of the coefficient matrix is expressed as Eq. (3).

There are two versions of the implementation: one based on dense matrix
computations and the other based on H-matrix computations. Although
the H-matrix version depends on the distributed parallel H-matrix library
HACApK [7], the problems of vectorization are similar. As shown in Fig. 1, the
proposed framework consists of three components: model data input, coefficient
matrix generation, and linear solver. In this study, the objective is to interface
coefficient matrix generation with user-defined function. Therefore, we focus on
the coefficient matrix generation component.

Figure 2 shows the coefficient matrix generation part. The target coefficient
matrix is distributed to multiple thread and each thread sequentially calcu-
lates the i-th row and the j-th column element by using user-defined function.
The coefficient matrices generated using the dense matrix version and the H-
matrix version are a dense matrix and an H-matrix, respectively. A H-matrix

604 T. Hoshino et al.

Fig. 1. The design of BEM-BB framework

Fig. 2. Parallel generation of coefficient dense matrix and H-matrix.

is also called a hierarchical matrix. H-matrices are among the techniques used
to approximate dense matrices. An H-matrix is a set of low-rank approximated
sub-matrices and small dense sub-matrices as shown in Fig. 2. HACApK gener-
ates the coefficient H-matrix by exploiting the user-defined function according
to the Adaptive Cross Approximation (ACA) algorithm [9]. The ACA algorithm
is an approximation technique used to generate a low-rank approximated matrix
of a dense matrix without generating the target dense matrix.

The interface of the user-defined function is shown in Fig. 3. In both versions,
the function is called from each thread concurrently. To vectorize the user-defined
function, the caller of the function, too, is important. Figures 4 and 5 show the
callers of the user-defined functions of the dense matrix version and the H-
matrix version, respectively. Both programs call the user-defined function in loop
structures. These loops are the target of SIMD vectorization. In the following
sections, we treat the implementation shown in Fig. 4 as the baseline.

Design of Parallel BEM Analyses Framework for SIMD Processors 605

1 real (8) function ppohBEM_matrix_element_ij(i,j,nond ,nofc ,nond_on_fc ,np,
intpara_fc ,nint_para_fc ,dble_para_fc ,ndble_para_fc ,face2node)

2 !$omp declare simd
3 type :: coordinate
4 real (8) :: x,y,z
5 end type coordinate
6 integer ,intent(in) :: i,j,nond ,nofc ,nond_on_fc ,nint_para_fc ,

ndble_para_fc
7 type(coordinate),intent(in) :: np(*)
8 integer , intent(in) :: face2node (3,*),int_para_fc(nint_para_fc ,*)
9 real (8), intent(in) :: dble_para_fc(ndble_para_fc ,*)

10

11 ! User defined calculations for the i-th row and the j-th column
element

12

13 end function ppohBEM_matrix_element_ij

Fig. 3. An interface of a user-defined function to calculate the i-th row and the j-th
column element of the coefficient matrix. The function arguments after i and j are
used as input variable of the calculation.

1 do i=lhp , ltp
2 !$omp simd
3 do j=j_st , j_en
4 a(j,i) = ppohBEM_matrix_element_ij(i, j, nond , nofc , &
5 nond_on_fc , np, intpara_fc , &
6 nint_para_fc , dble_para_fc , &
7 ndble_para_fc , face2node)
8 enddo
9 enddo

Fig. 4. User-defined function caller for dense matrix. Here, a(j,i) is a coefficient dense
matrix. The ranges of i and j are assigned to each thread adequately.

3 Framework Design for SIMD Vectorization
with OpenMP SIMD Directives

In general, three methods are used to perform SIMD vectorization: (1) relying on
compiler auto-vectorization, (2) using compiler directives, and (3) using intrin-
sic functions. However, vectorization using intrinsic functions is cumbersome
job, and the required intrinsic functions depend completely on the user-defined
function. In this study, we employ compiler auto-vectorization and the directive
method. To use SIMD instructions efficiently, there are two constraints on the
SIMD target vectors.

– There should be no data dependency among the elements of the target vector.
– Vector elements should be stored contiguously.

In addition, to generate efficient code by using compiler vectorizations, the code
should be obviously vectorizable from the compiler’s view point. Any new frame-
work design should consider the above points. Furthermore, the design should
be user-friendly. Efficiently vectorized SIMD code should be generated if users
are unaware of compiler requirements.

606 T. Hoshino et al.

1 if(column vector calculation)
2 i = ip + nstrtl -1
3 !$omp simd private(j)
4 do ii=1,s_m
5 if(colmsk(ii)==0) then
6 j = ii + nstrtt -1
7 colvec(ii)=HACApK_entry_ij(i,j,st_bemv)
8 endif
9 enddo

10 else if(row vector calculation)
11 j = ip + nstrtt -1
12 !$omp simd private(i)
13 do ii=1,t_m
14 if(rowmsk(ii)==0) then
15 i = ii + nstrtl -1
16 rowvec(ii)=HACApK_entry_ij(i,j,st_bemv)
17 endif
18 enddo
19 endif

Fig. 5. User-defined function caller for sub-matrix of H-matrix. Here,
HACApK entry ij is a wrapper function of ppohBEM matrix element ij. The
structure st bemv contains the variables required as arguments of the user-defined
function.

3.1 New Interface Definition for Compiler Vectorization

According to the two compiler requirements, the main problem associated with
vectorization pertains to data access. Even though the computations associated
with a user-defined function can be executed independently, if a compiler detects
possibilities of data dependency, it conservatively generates instructions that are
not fully vectorized. Therefore, we propose to handle data access and computa-
tion separately in the proposed framework design. We introduce two new inter-
faces set args (Fig. 6) and vectorize func (Fig. 7) for data access and com-
putation, respectively. Figure 8 shows the function caller based on Fig. 4. The
variables SIMDLENGTH, which appear in Figs. 7 and 8 and are defined by users,
represent the SIMD length of the target processor. For example, the recom-
mended SIMDLENGTH for KNL, which has a 512-bit (= sizeof(double) ×8) wide
SIMD unit, is 8. From the compiler’s viewpoint, the !$omp simd loop (Fig. 8
line 14) has no data dependency because the arguments and the return values of
vector func have no alias and are accessed independently for each iteration of
the loop. In addition, the arguments and return values are stored contiguously.
At this point, if the SIMD interface of the vectorize func corresponds to the
SIMD length, the loop (Fig. 8 lines 13–17) is vectorized similarly to a vector
function.

To safely vectorize vectorize func, we constrain the function such that
it cannot contain globally accessible variables, allocatable arrays, or save vari-
ables. In addition, the SIMD interfaces of all functions or subroutines called from
vectorize func should correspond to the SIMD length. This parallelization
method is similar to the Single Program Multiple Data (SPMD) programming
model because each SIMD element executes a single program simultaneously.

Design of Parallel BEM Analyses Framework for SIMD Processors 607

1 subroutine set_args(i,j,nond ,nofc ,nond_on_fc ,np,intpara_fc ,nint_para_fc ,
dble_para_fc ,ndble_para_fc ,face2node ,darg1 ,darg2 ,...,dargN ,iarg1 ,
iarg2 ,..., iargM)

2 real (8), intent(out) :: darg1 ,darg2 ,..., dargN
3 integer , intent(out) :: iarg1 ,iarg2 ,..., iargM
4

5 ! User defined data access for calculating an element of the i-th row
and the j-th column from arrays to scalar args

6

7 end subroutine set_args

Fig. 6. New interface for data access. The former arguments are the same as ppo-
hBEM matrix element ij. The latter arguments are the scalar variables used in vector-
ize func. The number of arguments depends on the target application.

To reduce the data access cost, we introduce a pair of interfaces set args i
and set args j. In BEM analysis, the required data such as coordinate of the
i-th element and the j-th element usually depends only on the variables i and
j, respectively. Therefore, the subroutines set args i and set args j are used
to set arguments depending only on i and j, respectively. The pair of interfaces
work effectively in the H-matrix version. As shown in Fig. 5, i and j are constants
in the lines 4–9 loop and lines 13–18 loop, respectively.

3.2 Using the Framework

The new interfaces are easy to vectorize for compilers, but they are not user-
friendly. Specifically, the numbers of arguments of the set args subroutine and
the vectorize func function depend on the target application, which means
users are required to modify the framework program in order to add variable
declarations and correspond to the interface. In addition, users must vectorize the
user-defined functions by using !$omp declare simd pragma. Furthermore, if
users insert a wrong directive, the compiler generates a correct but unvectorized
slow executable, which is often more cumbersome compared to a bug.

To minimize these difficulties, we require users to prepare the followings.

– Implement include files.
– Implement the set args, set args i, set args j and the vectorize

func without the SIMD directives in the file “user func.f90”.
– Correctly implement the dummy function ppohBEM matrix element
ij dummy (Fig. 9) without modifying the dummy function itself.

– Provide SIMDLENGTH of the target processor by using the -D compiler flag.

The include files that appear in the dummy function are used in the
subroutine call interface. First, users of the framework must implement
the include files as a fill-in-the-blank puzzle to correct the dummy func-
tion. In other words, the return value of the dummy function should be
equal to ppohBEM matrix ele-ment ij. At this point, users need not con-
sider SIMD vectorization. Notably, users cannot modify the dummy function
itself. If users do not need the set args function, they must create an empty

608 T. Hoshino et al.

1 real (8) function vectorize_func(darg1 ,darg2 ,...,dargN ,iarg1 ,iarg2 ,...,
iargM)

2 !$omp declare simd simdlen(SIMDLENGTH)
3 real (8), intent(in) :: darg1 ,darg2 ,..., dargN
4 integer , intent(in) :: iarg1 ,iarg2 ,..., iargM
5

6 ! User defined calculations for an element of the i-th row and j-th
column

7

8 end function vectorize_func

Fig. 7. New calculation interface. This function should be called after the set args sub-
routine and vectorized. All arguments of this function should have intent(in) attribute.

“call set args.inc” file. Second, the users must implement the user-defined func-
tions in “user func.f90.” Notably, users need not consider SIMD vectorization
as well. Finally, users must define the variable SIMDLENGTH by using a compiler
option. During compiling, the compile script automatically inserts SIMD direc-
tives into the user-defined functions implemented in user func.f90 and automat-
ically transforms the include files to adjust the framework, as shown in Fig. 10.
Based on the results of the auto-transformation, we succeeded in separating
almost all aspects related to SIMD vectorization from the user-defined function.
Therefore, users are required to set only the SIMDLENGTH of the target processor.

4 Numerical Evaluations

4.1 Test Model and Processors

In this section, we evaluated the proposed framework by performing BEM analy-
sis of two electrostatic field problems. We assumed a perfectly conductive sphere
and a dielectric sphere. The electric potentials of the perfect conductor and the
dielectric are given by the following functionals P and D, respectively:

P[u](x) :=
∫

Ω

1
4π||x − y||u(y)dy, x ∈ Ω (5)

D[u](x) :=
∫

Ω

〈x − y, n(y)〉
4π||x − y||3 u(y)dy, x ∈ Ω (6)

where Ω is the domain surface. Equations (5) and (6) correspond to Eq. (1) and
the details of them are described in [3]. The spheres were set at a distance of
0.25 m from the ground with zero electric potential. The radius of the spheres
was 0.25 m, and the electric potential of the spheres was 1 V.

For the numerical evaluations, we used the BDW and the KNL processors,
which have a 256-bit SIMD unit and a 512-bit SIMD unit, respectively. The pro-
cessor specifications are summarized in Table 1. For both processors, Intel For-
tran compiler ver. 18.0.1 was used. The compiler options for BDW were -align
array64byte -xAVX2 -qopenmp -O3 -fpp -ipo -lm -qopt-report=5
-DSIMDLENGTH=4, and those for KNL were -align array64byte -xMIC-AVX512
-qopenmp -O3 -fpp -ipo -lm -qopt-report=5 -DSIMDLENGTH=8.

Design of Parallel BEM Analyses Framework for SIMD Processors 609

1 real (8),dimension(SIMDLENGTH) :: ans
2 real (8),dimension(SIMDLENGTH) :: darg1 ,darg2 ,..., dargN
3 integer ,dimension(SIMDLENGTH) :: iarg1 ,iarg2 ,..., iargM
4 ...
5 do i=lhp , ltp
6 do jj=j_st , j_en , SIMDLENGTH
7 ii = 1
8 do j=jj,min(jj+SIMDLENGTH -1,j_en)
9 call set_args(i,j,..., darg1(ii),darg2(ii) ,...,dargN(ii) &

10 ,iarg1(ii),iarg2(ii) ,...,iargM(ii))
11 ii = ii+1
12 end do
13 !$omp simd
14 do ii = 1, SIMDLENGTH
15 ans(ii) = vectorize_func(darg1(ii),darg2(ii) ,...,dargN(ii) &
16 ,iarg1(ii),iarg2(ii) ,...,iargM(ii))
17 end do
18 ii = 1
19 do j=jj,min(jj+SIMDLENGTH -1,j_en)
20 a(j,i) = ans(ii)
21 ii = ii+1
22 end do
23 enddo
24 enddo

Fig. 8. User-defined function using new interface caller for dense matrix.

4.2 Hand Tuning Using OpenMP SIMD Directives

To test the compiler vectorizations, we refactored and evaluated two user-defined
functions. Vectorization with compiler directives often requires users to converse
with the compiler. We tried to vectorize the user-defined functions by preparing
the following series of implementations.

H1: Original implementation without compiler directives.
H2: !$omp simd directives are inserted above the SIMD target loops of H1.
H3: !$omp declare simd directives are inserted in the function shown in Fig. 3

and all user-defined functions called from the function of H2 shown in Fig. 3.
H4: A simdlen(SIMDLENGTH) clause is attached to each !$omp simd and

!$omp declare simd directive of H3.
H5: Replace the user-defined functions of H4 with the set args and

vectorize func interfaces.
H6: The interfaces set args i and set args j are used as alternatives to

set args of H5.
H7: linear clauses are attached to a !$omp declare simd directive of

vectorize func of H6.
H8: uniform clauses are used as constant variables instead of linear clauses

of H7.

Implementations H1-H4 are based on the original framework. The differ-
ences among these implementations are only in terms of the OpenMP direc-
tives. Therefore, users familiar with SIMD can implement H1-H4 with relative
ease. Implementations H5-H8 are based on the proposed framework. Specifically,
implementation H7 corresponds to the automatically generated program. Note

610 T. Hoshino et al.

1 real (8) function ppohBEM_matrix_element_ij_dummy(i,j,nond ,nofc ,nond_on_fc
,np ,intpara_fc ,nint_para_fc ,dble_para_fc ,ndble_para_fc ,face2node)

2 implicit none
3 type :: coordinate
4 real (8) :: x,y,z
5 end type coordinate
6 integer ,intent(in) :: i,j,nond ,nofc ,nond_on_fc ,nint_para_fc ,

ndble_para_fc
7 type(coordinate),intent(in) :: np(*)
8 integer , intent(in) :: face2node (3,*),int_para_fc(nint_para_fc ,*)
9 real (8), intent(in) :: dble_para_fc(ndble_para_fc ,*)

10 integer :: ii ,jj,j_st ,j_en ,lhp ,ltp
11 real (8) :: ans
12 #include "declaration.inc"
13 #include "call_set_args_i.inc"
14 #include "call_set_args_j.inc"
15 #include "call_set_args.inc"
16 #include "vectorize_func.inc"
17 ppohBEM_matrix_element_ij_dummy = ans
18

19 end function ppohBEM_matrix_element_ij_dummy

Fig. 9. Dummy function of user-defined function. Although the function is not used in
the framework, users are required to implement this function correctly.

Table 1. Processor specifications

Processor name Number of cores Peak per-
formance

Length of
SIMD
unit

BDW Intel Xeon E5-2695 v4 18 605 GFlops 256 bit

KNL Intel Xeon Phi 7250 68 3,046 GFlops 512 bit

that implementation H8 is more optimized than implementation H7. However, to
automatically generate implementation H8, syntactic analysis is required. This
will be realized in the future.

Figures 11, 12, 13 and 14 show the increase in speed compared to the speed
of implementation H1, and Table 2 summarizes the elapsed times of implemen-
tations H1 and H7. The results discussed in this section are the averages of 10
measurements. As summarized in Table 2, although we recommend the BEM-
BB H-matrix version, we evaluated the dense matrix version, the performance
of which depends to a greater extent on the user-defined function. The main dif-
ference between the two functions from the viewpoint of SIMD vectorization is
whether the function has a branch. Although the increase in speed in case of the
dielectric problem shows a trend similar to that in case of the perfect conductor
problem, it is slightly worse owing to the branch divergence caused by the dielec-
tric function. The results obtained by solving the perfect conductor problem on
a machine with the KNL processor (Fig. 11) show that the proposed implemen-
tation (H7) achieved performance improvements of 4.34x and 6.62x compared
to implementation H0 for the H-matrix and the dense matrix versions, respec-
tively. The theoretical speedup with SIMD vectorization equals SIMDLENGTH,

Design of Parallel BEM Analyses Framework for SIMD Processors 611

Fig. 10. The users program automatically transformed at the compile time.

Fig. 11. Solving perfect conductor
problem using KNL processor

Fig. 12. Solving dielectric problem
using KNL proccesor

Fig. 13. Solving perfect conductor
problem using BDW processor

Fig. 14. Solving dielectric problem
using BDW processor

612 T. Hoshino et al.

and the results of the dense matrix version demonstrate that the framework
improves SIMD vectorization performance considerably. In the results obtained
on a machine with the BDW processor (Fig. 13), implementation H7 achieved
performance improvements of 2.22x and 2.44x compared to implementation H0
for the H- matrix and the dense matrix versions, respectively.

5 Related Work

The literature contains many studies about software frameworks for parallel PDE
solvers of the finite element method, such as GeoFEM [10] and Free FEM++ [11].
Moreover, H-matrices have been used in a few BEM applications [8,9,12], and
parallelized in their application. Although many frameworks allow for MPI +
OpenMP hybrid parallelization, few frameworks support SIMD vectorization,
which highly depends on user-defined functions. The main contribution of this
study is a SPMD-like SIMD vectorization method that handles data access and
computation separately, and hides SIMD-related aspects in the framework. The
method uses the characteristics of BEM analysis: the kernel function is rela-
tively computationally intensive, and there exists no data dependency among
the calculations of elements of coefficient matrix.

Table 2. The elapsed times of coefficient generation component of original implemen-
tation (H1) and implementation of proposed framework (H7)

Perfect conductor Dielectric

KNL BDW KNL BDW

H-matrix Dense H-matrix Dense H-matrix Dense H-matrix Dense

H1 10.00 215.0 10.51 233.2 13.07 249.5 13.53 265.5

H7 2.307 32.47 4.728 95.61 3.167 44.11 7.140 126.10

6 Conclusion

We refined the open-source framework for parallel BEM analysis to enhance
SIMD vectorizations, which is important for realizing high-performance com-
puting. By using the refined framework design, we could successfully separate
SIMD-related aspects from the user-defined function, which depends on target
applications. We evaluated the proposed framework by solving two static electric
field analysis problems containing different user-defined functions on a BDW pro-
cessor and a KNL processor. The numerical results demonstrated the improved
performance of the framework. Specifically, in solving the perfect conductor prob-
lem by using the KNL processor, we achieved performance improvements of 4.34x
and 6.62x in the H-matrix case and the dense matrix cases, respectively.

The main contribution of this paper is separating the SIMD-related aspects
from the user-defined function and hiding them to minimize the difficulties

Design of Parallel BEM Analyses Framework for SIMD Processors 613

associated with SIMD. This SPMD-like SIMD vectorization technique can be
used for other applications. In the proposed framework, the arguments of the
vectorize func must be scalar variable. This specification is not user-friendly
but compiler-friendly. For example, to adjust the user-defined functions in the
proposed framework, we separated the vector argument coordinate(3) to
scalars x, y, and z. This type of transformation is a typical Array of Struc-
ture (AoS) to Structure of Array (SoA) transformation. To improve the not
user-friendly specification, we will challenge to support the AoS to SoA trans-
formation in future.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number
16H06679 and 17H01749.

References

1. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: introduc-
tion to H-matrices. Computing 62(2), 89–108 (1999)

2. Hackbusch, W., Khoromskij, B.N.: A sparse H-matrix arithmetic. Part II: appli-
cation to multi-dimensional problems. Computing 64(1), 21–47 (2000)

3. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Technical report,
Max Planck Institute for Mathematics in the Sciences (2003)

4. Börm, S., Bendoraityte, J.: Distributed h2-matrices for non-local operators. Com-
put. Vis. Sci. 11(4), 237–249 (2008)

5. Yokota, R., Barba, L.A., Narumi, T., Yasuoka, K.: Petascale turbulence simulation
using a highly parallel fast multipole method on GPUs. Comput. Phys. Commun.
184(3), 445–455 (2013)

6. ppOpen-HPC: Open Source Infrastructure for Development and Execution of
Large-Scale Scientific Applications on Post-Peta-Scale Supercomputers with Auto-
matic Tuning (AT). http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/

7. Ida, A., Iwashita, T., Mifune, T., Takahashi, Y.: Parallel hierarchical matrices
with adaptive cross approximation on symmetric multiprocessing clusters. J. Inf.
Process. 22(4), 642–650 (2014)

8. Iwashita, T., Ida, A., Mifune, T., Takahashi, Y.: Software framework for parallel
BEM analyses with H-matrices using MPI and OpenMP. Procedia Comput. Sci.
108, 2200–2209 (2017)

9. Kurz, S., Rain, O., Rjasanow, S.: The adaptive cross-approximation technique for
the 3D boundary-element method. IEEE Trans. Magn. 38(2), 421–424 (2002)

10. Okuda, H., Nakajima, K., Iizuka, M., Chen, L., Nakamura, H.: Parallel finite
element analysis platform for the earth simulator: GeoFEM. In: Sloot, P.M.A.,
Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y.
(eds.) ICCS 2003. LNCS, vol. 2659, pp. 773–780. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44863-2 75

11. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265
(2012)

12. Ohtani, M., Hirahara, K., Takahashi, Y., Hori, T., Hyodo, M., Nakashima, H.,
Iwashita, T.: Fast computation of quasi-dynamic earthquake cycle simulation with
hierarchical matrices. Procedia Comput. Sci. 4, 1456–1465 (2011)

http://ppopenhpc.cc.u-tokyo.ac.jp/ppopenhpc/
https://doi.org/10.1007/3-540-44863-2_75

	Design of Parallel BEM Analyses Framework for SIMD Processors
	1 Introduction
	2 BEM-BB Framework
	3 Framework Design for SIMD Vectorization with OpenMP SIMD Directives
	3.1 New Interface Definition for Compiler Vectorization
	3.2 Using the Framework

	4 Numerical Evaluations
	4.1 Test Model and Processors
	4.2 Hand Tuning Using OpenMP SIMD Directives

	5 Related Work
	6 Conclusion
	References

