
Insider Threat Detection with Deep Neural
Network

Fangfang Yuan1,2,3, Yanan Cao1,3, Yanmin Shang1,3,
Yanbing Liu1,3(&), Jianlong Tan1,3, and Binxing Fang4

1 Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{yuanfangfang,caoyanan,shangyanmin,

liuyanbing,tanjianlong}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China
3 National Engineering Laboratory for Information Security Technologies,

Beijing, China
4 Institute of Electronic and Information Engineering of UESTC in Guangdong,

Dongguan, Guangdong, China
fangbx@cae.cn

Abstract. Insider threat detection has attracted a considerable attention from
the researchers and industries. Existing work mainly focused on applying
machine-learning techniques to detecting insider threat. However, this work
requires “feature engineering” which is difficult and time-consuming. As we
know, the deep learning technique can automatically learn powerful features. In
this paper, we present a novel insider threat detection method with Deep Neural
Network (DNN) based on user behavior. Specifically, we use the LSTM-CNN
framework to find user’s anomalous behavior. First, similar to natural language
modeling, we use the Long Short Term Memory (LSTM) to learn the language
of user behavior through user actions and extract abstracted temporal features.
Second, the extracted features are converted to the fixed-size feature matrices
and the Convolutional Neural Network (CNN) use these fixed-size feature
matrices to detect insider threat. We conduct experiments on a public dataset of
insider threats. Experimental results show that our method can successfully
detect insider threat and we obtained AUC = 0.9449 in best case.

Keywords: Insider threat � Anomaly detection � Deep learning
Network security

1 Introduction

Insider threat is becoming a serious security challenge for many organizations. It is
generally defined as malicious actions performed by an insider in a secure environment,
often causing system sabotage, electronic fraud and information theft. Hence, it is
potentially harmful to individuals, organizations and state security. Recently, insider
threat detection has attracted considerable attention in both academic and industrial
community.

© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 43–54, 2018.
https://doi.org/10.1007/978-3-319-93698-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_4&domain=pdf

Insider threat detection becomes an extremely complex and challenging task. The
reasons are as follows. First, insiders do unauthorized things by the use of their trusted
access. Hence, external network security devices (intrusion detection, firewalls, and
anti-virus) cannot detect them. Second, insider attack manifests in various forms, such
as a disgruntled employee planting a logic bomb to disrupt systems, stealing intel-
lectual property for personal gain, etc. The diversity of insider attack increases the
complexity of insider threat detection. The last but not the least, insider threat often
performed by insiders during working hours, causing insider’s anomalous behaviors
scattered in large amounts of normal working behaviors. Therefore, it increases the
difficulty of insider threat detection.

The key of insider threat detection is to model a user’s normal behavior to detect
anomalous behavior. Much work has been proposed to address the issue [1, 2]. They
aggregate all the actions of a user in one day to represent the user’s behavior in the
same day. However, the anomalous behavior happening within one day may be missed.
For example, a user logs on to his assigned computer after hours and uploads data to
wikileaks.org. We argue that using user action sequences for each user is very
important in detecting insider threat.

To address this problem, we propose a novel insider threat detection method to
detect whether user behavior is normal or anomalous. Specifically, it is not efficient that
we directly use the LSTM to classify the user action sequence, because the output of
the LSTM only contains a single bit of information for every sequence. Instead, we use
the trained LSTM to predict next user action, and use a series of hidden states of the
LSTM model to generate a fixed-size feature matrix that is given to the CNN classifier.
The LSTM can better capture the long term temporal dependencies on user action
sequence, because hidden units of the LSTM potentially record temporal behavior
patterns.

To summarize, in this paper, we make the following contributions:

(1) We present a novel insider threat detection method with LSTM and CNN based
on user behavior.

(2) We use the LSTM to learn the language of user behavior through user actions and
extract abstracted temporal features which are the input of the CNN classifier.

(3) Experimental results on a public dataset of insider threats show that our proposal
can successfully detect insider threat and we obtained AUC = 0.9449 in best case.

The rest of this paper is organized as follows. We summarize the related work in
Sect. 2, and give a detailed description of our insider threat detection method in Sect. 3.
Implementation details and experimental results for this work are shown in Sect. 4.
Finally, we conclude the paper’s work in Sect. 5.

2 Related Work

Related work falls into two main categories, insider threat detection and deep neural
network.

44 F. Yuan et al.

Insider Threat Detection: The problem of insider threat detection is usually framed
as an anomaly detection task. A comprehensive and structured overview of anomaly
detection techniques was provided by Chandola et al. [3]. They defined that the purpose
of anomaly detection is finding patterns in data which did not conform to the expected
behavior. The key problem of anomaly detection is how to model a user’s normal
behavior profile. A lot of research work has been proposed to develop anomaly
detection, especially machine learning.

Early work on anomaly detection based on user command proposed by Davison
and Hirsh [4] and Lane and Brodley [5]. They examine user command sequences and
compute the match degree of a current command pattern with the historical command
pattern to classify user behavior as normal or anomalous.

After that, anomaly detection begins to take advantage of machine learning tech-
niques, such as Naive Bayes [6], Eigen Co-occurrence Matrix (ECM) [7], One-Class
Support Vector Machine (OC-SVM) [8] and Hidden Markov [9]. Schonlau et al.
compared the performance of six masquerade-detection algorithms on the data set of
“truncated” UNIX shell commands for 70 users and experimental results revealed that
no single method completely dominated any other. Maxion and Townsend [6] applied
the Naive Bayes classifier to the same data set [17], inspired by Naive Bayes text
classification. They also provided a thorough and detailed investigation of classification
errors of the classifier in [18]. Oka et al. [7] argued that the causal relationship
embedded in sequences of events should be considered when modeling a user’s profile.
They developed the layered networks approach based on the Eigen Co-occurrence
Matrix (ECM) and extracted the causal relationships embedded in sequences of
commands to supplement user behavior model. Salem et al. [19] evaluated the accuracy
performance of the nine methods mentioned above using the Schonlau dataset, but the
results revealed that their detection rates were not high. Szymanski and Zhang [8] used
an OC-SVM classifier for insider threat detection. However, the approach needed
mixing user data and it was hard to implement in a real-world setting. Rashid et al. [9]
proposed an approach to insider threat detection by the use of Hidden Markov. They
used Hidden Markov to model user’s normal behavior via user actions and regarded
deviations from the normal behavior as anomalous behavior. The effectiveness of the
method is highly impacted by the number of the states. However, the computational
cost of the Hidden Markov model increases as the number of states increases.

The works mentioned above make use of machine learning techniques to build a
classifier. On one hand, machine learning requires “feature engineering” which is
time-consuming and difficult. On the other hand, the classifier is too simple, resulting in
a low detection rate.

Deep Neural Network: Recently, deep neural network that can automatically learn
powerful features has led to new ideas for anomaly detection. Tang et al. [10] applied
the deep learning methodology to build up an anomaly detection system, but the
experimental results in the testing phase were not good enough. Veeramachananeni
et al. [11] used a neural network auto-encoder to detect insider threat. They aggregated
a number of numeric features over a time window and fed these features to an ensemble
of anomaly detection methods: Principal Component Analysis, neural networks, and a
probabilistic model. However, individual user activity was not explicitly modeled over

Insider Threat Detection with Deep Neural Network 45

time. Tuor et al. [2] proposed a deep learning approach to detect anomalous network
activity from system logs. They trained Recurrent Neural Networks (RNNs) to rec-
ognize characteristic of each user on a network and concurrently assessed whether user
behavior is normal or anomalous. While this method aggregates features over one day
for individual users, it is possible to miss anomalous behavior happening within one
day. Instead, our model is trained using user action sequences with DNN. The actions
that a user takes over a period of time on a system can be modeled as a sequence. The
action sequences of user’s normal behavior are seen often or on a usual basis. Observed
action sequences deviated from those normal action sequences are regarded as
anomalous behavior. Therefore, our model can detect anomalous behavior through user
actions and even can detect anomalous behavior happening within one day.

3 Proposed Method

In this section, we introduce the details of our insider threat detection method. The
proposal applies DNN in two stages. The first stage extracts the abstracted temporal
features of user behavior by the LSTM and outputs feature vectors. Then the feature
vectors are transformed into fixed-size feature matrices. In the second stage, these
fixed-size feature matrices are fed to the CNN to classify them as normal or anomaly.

3.1 Overview

The overview of our insider threat detection method is shown in Fig. 1. The individual
action (e.g., logging onto an assigned computer afterhours) represents the operation of
a user; actions taken by a user in one day represent user behavior. Similar to natural
language modeling, an action is corresponding to a word and an action sequence is

Trained
LSTM

Trained
CNN

Feature extract Fixed-size feature
matrices Classification

User k
(k=1, ,K)

K users

For each user

Sequences of user actions
Variable length sequences

A sequence of user actions

User k
(k=1, ,K)

Day 1: logon,web visit,email,

Day 2: logon,web visit,email,

Day J: logon,web visit,file,

LSTM CNN

Training the
LSTM
model

Training the
CNN
model

Fixed-size
feature matrices

The probability
of anomalous

behaviour

Training

Testing

Day j: logon,web visit,file,email,

Fig. 1. Overview of proposed method

46 F. Yuan et al.

corresponding to a sentence. For that reason, we attempt to learn the language of user
behavior as a new method for detecting insider threat. The LSTM is used to extract the
features of user behavior. The CNN uses these features to find anomalous behavior.

Let U ¼ u1; u2; � � � ; uKf g be the set of K users. For a user uk 1� k�Kð Þ, we can
obtain his action sequences over J days, S ¼ suk;1 ; suk;2 ; � � � ; suk;J

� �
, where suk;j 1� j� Jð Þ

is a vector which denotes the action sequence on the day indexed by j. In the training
phase, we first obtain an action sequence suk;j that user uk has performed within the day
indexed by j. Second, the action sequence suk;j is then fed into the LSTM and the LSTM
is trained to construct a feature extractor to obtain the abstracted feature vectors in the
deep layer. Third, the feature vectors are transformed into a fixed-size matrix Muk;j . The
fixed-size feature matrix potentially contains various abstracted temporal features that
represent user behavior. Finally, we use these fixed-size matrices annotated with nor-
mal or anomalous to train the CNN. In the testing phase, we evaluate the approach with
the trained LSTM and the trained CNN. The detail of each step is described in the
following subsections.

3.2 Training LSTM for Feature Extraction

Based on the user action sequences, we construct a feature extractor which can auto-
matically extract abstracted temporal features from each input action sequence.
The LSTM consists of an input layer, an embedding layer, three LSTM layers, and an
output layer. The flow of the LSTM is shown in Fig. 2.

For user uk on the day indexed by j, let T be the length of the action sequence,
suk;j ¼ xuk;j1 ; xuk;j2 ; � � � ; xuk;jT

� �
. xuk;jt 1 � t � Tð Þ represents an individual action at time

instance t. huk;jl;t 0 � l � 3; 1 � t � Tð Þ denotes the hidden state of hidden layer l at

time instance t. yuk;jt 1 � t � Tð Þ denotes the output at time instance t. Here we use

x1

LSTM Layer 1

LSTM Layer 2

LSTM Layer 3

y1

x2

x2

LSTM Layer 1

LSTM Layer 2

LSTM Layer 3

y2

x3

……

……

……

xL

LSTM Layer 1

LSTM Layer 2

LSTM Layer 3

yL

$

Action

Embedding

Prediction

Next actionForward
Dropout

Backward

3,0h

2,0h

1,0h

3,1h

2,1h

1,1h

3, 1h L

1 0,1e h 2 0,2e h 0,e hL L

2, 1h L

1, 1h L

A user action sequence

……

Fig. 2. Flow of LSTM training

Insider Threat Detection with Deep Neural Network 47

one-hot encoding to embed the input xuk;jt as a vector euk;jt 1 � t � Tð Þ. The one-hot
encoding is performed as follows:

1. Creating a dictionary in which IDs and actions are associated with each other, such
as logging on an assigned PC after hours is denoted as 1, logging off an assigned PC
after hours is denoted as 2, etc.

2. Converting actions to one-hot vectors, which is 1 at the action ID position, and 0
elsewhere.

The LSTM with three hidden layers (l ¼ 1; 2; 3) is described by the following
equations:

iuk;jl;t ¼ r W i;xð Þ
l huk;jl�1;t þW i;hð Þ

l huk;jl;t�1 þ bil
� �

ð1Þ

fuk;jl;t ¼ r W f ;xð Þ
l huk;jl�1;t þW f ;hð Þ

l huk;jl;t�1 þ b f
l

� �
ð2Þ

ouk;jl;t ¼ r W o;xð Þ
l huk;jl�1;t þW o;hð Þ

l huk;jl;t�1 þ bol
� �

ð3Þ

guk;jl;t ¼ tanh W g;xð Þ
l huk;jl�1;t þW g;hð Þ

l huk;jl;t�1 þ bgl
� �

ð4Þ

cuk;jl;t ¼ fuk;jl;t � cuk;jl;t�1 þ iuk;jl;t � guk;jl;t ð5Þ

huk;jl;t ¼ ouk;jl;t � tanh cuk;jl;t

� �
ð6Þ

Where huk;j0;t ¼ euk;jt , and cuk;jl;0 , h
uk;j
l;0 are set to zero vector for all 1 � l � 3. r �ð Þ is the

sigmoid function and � denotes element-wise multiplication. Vector guk;jl;t is a hidden

representation, vector iuk;jl;t decides which values to update, vector fuk;jl;t decides which

things to forget, vector ouk;jl;t decides what to be outputted. 24 weight matrices (W) and
12 bias vectors (b) are learned parameters.

The LSTM is repeatedly trained using user action sequences. First, we take an input
series of user uk as a vector Auk;j ¼ xuk;j1 ; xuk;j2 ; � � � ; xuk;jT

� �
. Second, the embedding layer

converts the series of actions Auk;j to one-hot vectors Euk;j ¼ euk;j1 ; euk;j2 ; � � � ; euk;jT

� �
. Third,

we sequentially input each one-hot vector euk;jt to the LSTM and the LSTM outputs
prediction yuk;jt . Finally, we calculate the cross-entropy loss function by comparing
prediction yuk;jt with answer xuk;jtþ 1.

In training phase, we apply Dropout [12] to the LSTM in a way that can reduce
overfitting. The dropout operator is only applied to the non-recurrent connections. One
epoch means that all training user action sequences are inputted to the LSTM. The
order of user action sequences is randomized in every epoch. The LSTM training is
executed for multiple epochs. After training, we obtain the trained feature extractor.
Then we extract the hidden state of the last hidden layer (the third layer in Fig. 2) for

every input and obtain a series of feature vectors Huk;j ¼ huk;j3;1; h
uk;j
3;2; � � � ; huk;j3;T

h i
.

48 F. Yuan et al.

3.3 Fixed-Size Feature Representations

As the designed classifier accepts fixed-size representations and the number of actions
differs between user action sequences, we need to construct a fixed-size feature matrix
for the series of feature vectors which is provided as input of the CNN.

To deal with this, we decided on a maximal length Nuk and a minimal length nuk for
any action sequence for user uk. We ignore all sequences whose length are shorter than
nuk . For all sequences with more than Nuk steps, we keep only the first Nuk actions. For
all sequences whose length T is between nuk and Nuk , we pad them with zeros until their

lengths reach Nuk . By this way, we can convert the series of feature vectors Huk;j ¼
huk;j3;1; h

uk;j
3;2; � � � ; huk;j3;T

h i
into a fixed-size feature matrix Muk;j of dimensions Nuk � Vuk ,

where Vuk is the dimension of the last hidden layer. We map each element of Muk;j to
the [0,1] space by sigmoid function. Finally, we obtain the fixed-size feature matrix
Muk;j of dimensions Nuk � Vuk .

3.4 Training CNN for Detecting Insider Threat

The final component of our approach is the classification stage. We use the CNN to
classify the fixed-size feature matrices of user behavior into normal behavior and
anomalous behavior. The CNN consists of an input layer, two convolution-pooling
layers, a fully-connected layer, and an output layer. For user uk, the dimension of the
input layer is Nuk � Vuk and the dimension of the output layer is two. Figure 3 shows
the structure of the CNN.

We first train the CNN by using fixed-size feature matrices annotated with normal
or anomaly. Also the softmax function is applied to the output of the CNN. After
training, we use the trained CNN to calculate anomalous probability of a user action
sequence.

Input Conv1 Pool1 Conv2 Pool2
Fully

Connection

Convolution
Pooling
Full Connection

Output

V ku

N ku 1W

1H

1W
2

1H
2

2W

2H

2W
2

2H
2

Fig. 3. Structure of the CNN

Insider Threat Detection with Deep Neural Network 49

4 Experiments

This section reports the experimental validation of the proposed method. We apply our
method to the CMU-CERT insider threat dataset [13], which provides a synthetic
dataset describing a user’s computer based activity. The dataset consists of information
on several different activities over a period of 17 months. Next, we first describe details
of the dataset and evaluation method. Then we present the experimental results of our
approach.

Table 1. Enumeration of user actions

Time Computer Activities ID Action Description

In hour Action
(8am and 5pm) or
After hour Action
(5pm and 8am)

On an assigned PC or
an unassigned PC

Logon/Logoff
activity

1 Logon User logged on a
computer

2 Logoff User logged on a
computer

File activity 3 Copy exe file A exe file copy to a
removable media device

4 Copy doc file A doc file copy to a
removable media device

5 Copy pdf file A pdf file copy to a
removable media device

6 Copy txt file A txt file copy to a
removable media device

7 Copy jpg file A jpg file copy to a
removable media device

8 Copy zip file A zip file copy to a
removable media device

HTTP activity 9 Neutral
website

User visited a neutral
website

10 Hacktivist
website

User visited a hacktivist
website

11 CloudStorage
website

User visited a
cloudstorage website

12 JobHunting
website

User visited a
jobhunting website

Email activity 13 Internal email All recipients are
company email
addresses

14 External email There is an external
address

Device
activity

15 Connect User inserted a
removable media device

16 Disconnect User removed a
removable media device

50 F. Yuan et al.

4.1 Dataset

We perform experiments on the CERT insider threat dataset V4.2, because it contains
more instances of insider threats compared to the other version of datasets. The dataset
captures the 17 months of activity logs of the 1000 users (with 70 insiders) in an
organization, which consists of five different types of activities: logon/logoff, email,
device, file and http. Each log line is parsed to obtain details like a timestamp, user ID,
PC ID, action details etc. We choose a comprehensive set of 64 actions over the five
types of activities and build 1000 user specific profiles based on user action sequences.
An example of a user action is visiting a job-hunting website between the hours of 8:00
am and 5:00 pm on an assigned computer. The enumeration of user actions is listed in
Table 1.

Over the course of 17 months, 1000 users generate 32,770,227 log lines. Among
these are 7323 anomalous activity instances manually injected by domain expert,
representing three insider threat scenarios taking place.

We split the dataset into two subsets: training and testing. The former subset
(*70% of the data) is used for model selection and hyper-parameter tuning. The latter
subset (*30% of the data) is used for evaluating the performance of the model. Our
classifications are made at the granularity of user-day. One note is that we removed the
weekends of the data when we classify at the granularity of user-day, because the user
behavior is qualitatively different for weekdays and weekends.

4.2 Evaluation Method

The dataset used for experiment is unbalanced, so we choose the Receiver Operating
Characteristics Curves (ROC) and Area-Under-Curve (AUC) measure for evaluating
the proposed method. On one hand, we can visualize the relation between TPR and
FPR of a classifier. On the other hand, the accuracy with two or more classifiers can be
compared.

Table 2. Parameters of the LSTM

Model Dimension of three hidden layers Mini-batch size Epoch num

LSTM1 60 20 10
LSTM2 40 20 10
LSTM3 20 20 10

Table 3. Parameters of the CNN

Model Conv1 Conv2 Activate function Mini-batch size Epoch num

CNN1 32(4) 64(4) tanh 20 500
CNN2 32(5) 64(5) tanh 20 500
CNN3 32(6) 64(6) tanh 20 500
CNN4 32(4) 64(4) relu 20 500

Insider Threat Detection with Deep Neural Network 51

4.3 Results

To compare the performance of the model with different parameters, we train our
model with several parameters. When setting the parameters of the LSTM, we refer the
setting of [14] which uses the LSTM in language modeling. In addition, the LSTM is
trained using the ADAM [15] variant of gradient descent. The parameter settings of the
LSTM are shown in Table 2.

The parameters of the CNN were set by referring the setting of LeNet [16], which is
used for recognizing hand written digit. Let a(b) denotes the number of filters (the
shape of each filter) per convolutional layer. Max-pooling reduces the size of the input
into 1/2 with stride of 2. The parameter settings of the CNN are shown in Table 3.

We evaluated the ROC curves for each of these CNNs, and later we compare the
best performing CNN against the logistic regression classifier-based architectures (see
Fig. 5). Figure 4(a), (b), (c) and (d) show the ROC curves when CNN1, CNN2, CNN3
and CNN4, respectively, are used for classification. We can see that the different
parameter settings differ only slightly. The performance of relu activation function is
similar to the tanh activation function, using the same parameter settings. The LSTM2
with CNN3 provides better result than the other CNNs and gets the best result
AUC = 0.9449.

(a) ROC curves for CNN1 (b) ROC curves for CNN2

(c) ROC curves for CNN3 (d) ROC curves for CNN4

Fig. 4. ROC curves for CNNs

52 F. Yuan et al.

Figure 5 compares the ROC curves of the best performing CNN3 plus the logistic
regression classifier-based architectures. The ROC results for the CNN classifier based
architectures are better than the Logistic Regression version with the same language
model (LSTM2).

5 Conclusion

In this paper, we proposed the insider threat detection method with deep neural net-
work. Because insider threat manifest in various forms, it is not practical to explicitly
model it. We frame insider threat detection as an anomaly detection task and use
anomalous behavior of a user as indicative of insider threat. The LSTM extracts user
behavior features from sequences of user actions and generates fixed-size feature
matrices. The CNN classifies fixed-size feature matrices as normal or anomaly. We
evaluated the proposed method using the CERT Insider Threat dataset V4.2. Experi-
mental results show that our method can successfully detect insider threat and we
obtained AUC = 0.9449 in best case.

Acknowledgement. This work was partly supported by the National Key R&D Program of
China under Grant No. 2016YFB0800300, Xinjiang Uygur Autonomous Region Science and
Technology Project under Grant No. 2016A030007-4, the National Natural Science Foundation
of China under grant No. 61602466.

References

1. Gavai, G., Sricharan, K., Gunning, D., Hanley, J., Singhal, M., Rolleston, R.: Supervised
and unsupervised methods to detect insider threat from enterprise social and online activity
data. JoWUA 6(4), 47–63 (2015)

2. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., Robinson, S.: Deep learning for
unsupervised insider threat detection in structured cybersecurity data streams. arXiv preprint
arXiv:1710.00811(2017)

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv.
(CSUR) 41(3), 1–58 (2009)

Fig. 5. ROC curves for CNN3 and logistic regression

Insider Threat Detection with Deep Neural Network 53

http://arxiv.org/abs/1710.00811

4. Davison, B.D., Hirsh, H.: Predicting sequences of user actions. In: AAAI/ICML 1998
Workshop on Predicting the Future: AI Approaches to Time-Series Analysis, pp. 5–12
(1998)

5. Lane, T., Brodley, C.E.: Sequence matching and learning in anomaly detection for computer
security. In: AAAI Workshop: AI Approaches to Fraud Detection and Risk Management,
pp. 43–49 (1997)

6. Maxion, R.A., Townsend,T.N.: Masquerade detection using truncated command lines. In:
DSN 2002 Proceedings of the 2002 International Conference on Dependable Systems and
Networks, pp. 219–228 (2002)

7. Oka, M., Oyama, Y., Kato, K.: Eigen co-occurrence matrix method for masquerade
detection. Publications of the Japan Society for Software Science and Technology(2004)

8. Szymanski, B.K., Zhang, Y.: Recursive data mining for masquerade detection and author
identification. In: Information Assurance Workshop, pp. 424–431 (2004)

9. Rashid, T., Agrafiotis, I., Nurse, J.R.: A new take on detecting insider threats: exploring the
use of hidden markov models. In: Proceedings of the 2016 International Workshop on
Managing Insider Security Threats, pp. 47–56 (2016)

10. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach
for network intrusion detection in software defined networking. In: Wireless Networks and
Mobile Communications (WINCOM), pp. 258–263 (2016)

11. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: AI2: training a big data
machine to defend. In: IEEE International Conference on Big Data Security on Cloud HPSC,
and IEEE International Conference on IDS, pp. 49–54 (2016)

12. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.
0580 (2012)

13. Glasser, J., Lindauer, B.: Bridging the gap: a pragmatic approach to generating insider threat
data. In: Security and Privacy Workshops (SPW), pp. 98–104 (2013)

14. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 (2014)

15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.
6980 (2014)

16. Theano Development Team, “Convolutional Neural Networks (LeNet)”. http://deeplearning.
net/tutorial/lenet.html

17. Maxion, R.A., Townsend, T.N.: Masquerade detection using truncated command lines. In:
International Conference on Dependable Systems and Networks, pp. 219–228 (2002)

18. Maxion, R.A., Townsend, T.N.: Masquerade detection augmented with error analysis. IEEE
Trans. Reliab. 53(1), 124–147 (2004)

19. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research. In:
Insider Attack and Cyber Security, pp. 69–90 (2008)

54 F. Yuan et al.

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html

	Insider Threat Detection with Deep Neural Network
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Overview
	3.2 Training LSTM for Feature Extraction
	3.3 Fixed-Size Feature Representations
	3.4 Training CNN for Detecting Insider Threat

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Method
	4.3 Results

	5 Conclusion
	Acknowledgement
	References

