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Abstract. Non-linear waves occur in various physical, chemical and bio-
logical media. One of the most important examples is electrical excitation
waves in the myocardium, which initiate contraction of the heart. Abnor-
mal wave propagation in the heart, such as the formation of spiral waves,
causes dangerous arrhythmias, and thus methods of elimination of such
waves are of great interest. One of the most promising methods is so-
called low-voltage cardioversion and defibrillation, which is believed to
be achieved by inducing the drift and disappearance of spiral waves using
external high-frequency electrical stimulation of the heart. In this paper,
we perform a computational analysis of the interaction of spiral waves
and trains of high-frequency plane waves in 2D models of cardiac tissue.
We investigate the effectiveness and safety of the treatment. We also
identify the dependency of drift velocity on the period of plane waves.
The simulations were carried out using a parallel computing system with
OpenMP technology.

Keywords: Anisotropy · Spiral wave · Overdrive pacing
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1 Introduction

Mechanical contraction of the heart is caused by electrical excitation of myocar-
dial cells. The electrical waves propagate through the entire myocardium and
initiate coordinated cardiac contraction. In normal conditions, such waves orig-
inate at the natural pacemaker of the heart, the sinus node, located in the right
atrium, and propagate through all cardiac tissue. However, in some cases abnor-
mal cardiac excitation sources can occur. One source is rotating spiral waves,
which can appear in the myocardium as a result of special conditions, such as
the formation of a regional block for the propagating excitation wave. A spiral
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wave is a vortex that rotates at abnormally high frequency. It causes danger-
ous cardiac arrhythmias, such as paroxysmal tachycardia or fibrillation. In some
cases, spiral waves can disappear spontaneously, and arrhythmia stops by itself.
However, if this does not occur, an urgent medical intervention is necessary. In
this regard, it is very important to develop effective ways to control the dynamics
and position of the spiral waves in the heart, as it will result in the development
of better ways of managing these diseases.

There are three classical methods of treatment of such rhythm disturbances:
anti-arrhythmic drugs, surgery and electrical therapy. Electrotherapy is called
‘defibrillation’ or ‘cardioversion’. There are three kinds of electrotherapy devices:
external (electrodes are applied on the skin of the chest or the back of the
patient), surgical (the paddles placed directly on the heart; it is mostly used
in the operating room) and implantable (small devices under the skin whose
electrodes are inserted into myocardium). These methods have serious disad-
vantages, as defibrillation and cardioversion require huge voltages (up to several
kilovolts), which can damage the heart. Therefore, there is a long-standing inter-
est in development of low-voltage cardioversion-defibrillation (LVCD). The idea
of LVCD is to overdrive spiral waves using trains of plane waves induced by
external stimulation from one or multiple electrodes. This method uses low volt-
age (≈10 V) and does not damage the heart and is much more tolerable by the
patients. The LVCD methods were proposed on the basis of theoretical studies
of waves in active media. Previously, the theory of LVCD has been developed for
the case of isotropic 2D medium [4,6]. The LVCD method also has been tested
in clinical settings [21,24].

A spiral wave can rotate around an unexcitable obstacle, for example, around
a scar after myocardial infarction. There are theoretical results in 2D and 1D
models of the anchored spirals [20]. Stimulation from a point electrode is one
method of LVCD. Another method is based on the effect of application of an
external electric field to the entire myocardium [2,7,8]. In such case, spiral waves
unpin from unexcitable obstacles and start moving toward the boundary. It is
known that the stimulation is more effective if the electrode is placed near the
spiral wave core. This phenomenon was numerically studied in [6,27].

Spiral waves can appear not only in the myocardium but also in chemical
media. For example, the stabilization and destabilization of spiral waves in the
Belousov–Zhabotinsky reaction has been studied [9]. Control of spiral waves in
confined media was investigated in [28].

However, the aforementioned works considered control processes with sim-
plified models of excitable media and neglected some specific features of the
myocardium. In particular, there are no studies about the effects of anisotropy,
no research in realistic 3D heart models and no studies using biophysical models
of cardiac cells, which should include a description of ionic currents and intercel-
lular interaction. Moreover, electromechanical feedback was not studied, though
it strongly affects the spontaneous drift of spiral waves. These limitations can
explain the discrepancy between the theory and experimental studies [11,25].
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Previously, we studied the induced drift of spiral waves in the isotropic
myocardium using simple phenomenological Aliev–Panfilov models [18]. The
next step was to check how a simple anisotropic structure based on parallel
fibres influences the drift [3].

The speed of electrical excitation is 2–4 times larger along than across the
fibres, so the myocardium is highly anisotropic. Moreover, myocardial fibres in
the heart are not parallel and have different patterns. The present work is devoted
to studying LVCD in anisotropic myocardium models with curved fibres. We used
a biophysical ionic Luo–Rudy cell model [12]. After measuring the time of the
beginning and end of the spiral drift and determining the type of overall reaction
of the spiral on the stimulation, we compare our findings with the results for the
isotropic and parallel fibres-based anisotropic cases [3,18].

The implemented program was parallelised using OpenMP technology.
Since the heart simulation task is computationally intensive, we used a high-
performance computing system for simulations.

2 Materials and Methods

2.1 Electrophysiological Model

We used a well-known biophysical model of the cardiomyocyte ‘Luo–Rudy I’
LR-I [12]. Propagation of wave excitation in the tissue was modelled using mon-
odomain reaction–diffusion equations:

∂u

∂t
= div(D grad u) − Iion + Istim(r , t)

Cm
, (1)

Iion = IK + IKp + IK1 + INa + Ib + Isi, (2)

where u = u(r , t) is the transmembrane potential at the point r = (x, y) at
the time t, Iion is the sum of ionic currents, Cm is membrane capacitance and
Istim(r , t) is the external stimulation current.

The original LR-I model was modified as proposed in [22]. We used gK =
0.705 instead of gK = 0.282 and gsi = 0.045 instead of gsi = 0.09. This made it
easier to make a spiral wave in the 2D domain in comparison with the original
parameter set, which provided a spiral wave with a very irregular trajectory.

To model anisotropic conduction along cardiac myofibres, we used a uniax-
ially anisotropic diffusion tensor D with Cartesian components Dij = Daδij +
(Df −Da)w iw j , i, j = 1, 2, where δij is the Kronecker symbol and w = w(φ) =
(cos φ, sin φ) is the unit vector of the myofibre direction. Consequently, the dif-
fusion coefficient is maximal and equal to Df along w , and it is minimal and
equal to Da in the transverse direction. For the anisotropy, Df > Da, and for
the isotropy, Df = Da. Fibres were arcs of circles with the centre at (0, 0), so
the fibre direction angle was φ(x, y) = atan2(y, x) + π/2.

At the medium boundaries, no-flux conditions n ·D grad u = 0 were imposed
with the local normal vector n .
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The stimulation current Ist = 90µA/cm2 was applied on region Ωstim with
period Tstim by impulses with a duration tstim = 1.5 ms starting from the moment
τ0 = 600 ms when the spiral captured the entire computational space:

Istim(x, y, t) =

{
Ist, if (x, y) ∈ Ωstim, t � τ0,

{
t−τ0
Tstim

}
� tstim

Tstim
;

0, otherwise.

We found the minimal value Imin = 20µA/cm2 of the current which caused
action potential. Then, we set Ist := 4.5Imin. The stimulation was started when
the spiral wave ‘controlled’ the entire computational domain.

It is known that any spiral wave has a tip where the wavefront and waveback
meet. The spiral tip rotates around an area called the ‘core’. A spiral wave is
considered drifting if its core moves. Studying the dynamics of spiral waves is
usually simplified by exploring the trajectory of the tip. To find it, we specified a
certain level u∗ = −40 mV of the transmembrane potential, then the tip position
r tip was approximated by the following equations [5]:

u(r tip, t) = u∗, u(r tip, t + Δt) = u∗,

where Δt = 2 ms. The trajectory of the tip motion helps to determine the average
drift velocity of the spiral wave and the type of its dynamics.

2.2 Computational Experiments

As electrical signals in the heart propagate faster along myofibres than across
them, our model 2D square was anisotropic. The diffusion coefficients were
Df = 0.16 mm2/ms and Da = 0.04 mm2/ms. The reaction–diffusion system
was integrated using the finite difference and the explicit Euler methods with
time step dt = 0.005 ms, space step dr = 0.25 mm and a mesh size 100×100 mm.

The S1S2 protocol [15] was used to make spiral waves. First, the S1 stimulus
induces a plane wave, which propagates from one side of a square to another.
Then, S2 is given so that it crosses the back-front of the first plane wave. A
spiral wave appears near the intersection. Stimulus S1 was applied to the left
part of the square x < 50 mm. Stimulus S2 was applied to the bottom half of
the square y < 50 mm at the time 158 ms.

The LR-I model is one of the most widely used models in large-scale computa-
tional cardiology and reproduces cardiomyocyte excitation in various conditions.

In Table 1, we specify action potential durations APD-90, speeds of 1D waves,
temporal periods of spiral waves and filament tensions for LR and Ten Tusscher–
Panfilov (TP06) [23] biophysical models of the myocardium. The data on the
TP06 model are taken from [18]. The APD-90 is the duration of time of one
action potential when the cell potential u(t) relative to its resting state value
umin is higher than 10% of its range umax − umin:

u(t) − umin > 0.1(umax − umin).
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Table 1. Parameters and characteristics of the isotropic myocardial models

Model APD-90,
ms

1D wave speed
V1, mm/ms

Spiral wave
period Tsw, ms

Tension,
mm2/ms

LR-I 148 0.74 61 0.55

TP06 296 0.68 240 0.6

We see that the APD-90 and Tsw values in LR-I are smaller than in TP06, but
the spatial and 3D stability characteristics, V1 and tension, are the same.

An important characteristic of a spiral wave is its temporal period Tsw. It is
known that the period of a non-drifting wave is equal to the period of oscillations
of the model phase variables outside the core of the spiral. We calculated the
period of spiral waves as the time between the maxima of the transmembrane
potential averaged by ten periods, at a point outside the stimulation region and
outside the core of the wave. We set the period of external stimulation relatively
to Tsw: Tstim = p ·Tsw, where 0.85 ≤ p ≤ 1.04. Also, we measured the spiral wave
period in two anisotropic models, one with the straight fibres and one with the
curved fibres, and obtained the same values as in the isotropic model.

An example of a spiral wave for an arc-like fibre pattern is shown in Fig. 1.
Fibres are highlighted by black lines. We see that the spiral wave front does
not look like an Archimedean spiral but follows the fibre pattern to an extent.
A fragment of the spiral wave tip trajectory is presented in Fig. 2. We see no
distinct core shape, but the spiral seems to drift slowly enough to induce its drift
with a greater speed.

Fig. 1. Spiral wave and fibre directions (black curves) before the overdrive pacing
began. The black dot shows the position of the tip. X- and Y -axes are in mm.

We wrote our program in the C language (C99 version) and compiled it using
the Intel compiler icc. The most overloaded code sections were determined and
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Fig. 2. Spiral wave tip trajectory in the anisotropic myocardial model with curved
fibres. 0.25 s were simulated. X- and Y -axes are in mm.

accelerated using OpenMP, which decreased the simulation time significantly.
We used a computational node whose configuration is presented in Table 2. The
program has a nearly linear scalability (tested by simulation of 5000 ms and one
stimulation electrode at the left bottom square corner). Table 3 shows simulation
times with different numbers of cores. We achieved ≈21x time speedup on 32
cores. Such scalability is explained by the computational intensiveness of the
task and by the independence of each subtask delegated to the computing nodes.
The acceleration ratio is similar to the ratio for the Aliev–Panfilov (AP) model
because we used the same size of mesh (400 × 400 nodes), thus, each computing
node had a subtask of the same size. However, the overall calculation time in
the LR-I model is significantly greater than that in AP model since it is more
sophisticated.

All simulations were carried out on a single node of the Uran supercomputer
of the Krasovskii Institute of Mathematics and Mechanics.

Table 2. Configuration of the computational node

CPU 6 x Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz

RAM 252 GB

Operating system CentOS 7.3

Table 3. The simulation time and achieved speedup using OpenMP

Number of cores 1 2 4 8 16 32

Simulation time, s 42215 21716 10992 6155 3542 1973

Acceleration ratio 1 1.9 3.8 6.9 11.9 21.4
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3 Results

The anisotropic structure with curved fibres can cause spontaneous drift of spiral
waves. We simulated spiral wave dynamics for 60 s without the external stimula-
tion and plotted a spontaneous drift trajectory. The results are shown in Fig. 3.
The spiral wave was drifting along the fibres until it reached the boundary.

Fig. 3. Spontaneous drift of a spiral wave. No external stimulation. Fibres are shown
as blue curves. Arrows show drift directions. X- and Y -axes are in mm. (Color figure
online)

In our experiments, we used two electrode locations:

1. One point electrode at the left bottom square corner (Fig. 4, left).
2. One line electrode located at the left edge of the square (Fig. 4, right).

Point electrode, 2.7 s Long line electrode, 3 s

Fig. 4. Interaction of spiral waves with the trains of plane waves. Electrodes are shown
in black rectangles. X- and Y -axes are in mm.
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We use the following notations for response types of spiral waves.

A: spiral drifted from the electrode and disappeared at the boundary;
B: a drift to the boundary of the square, then along the boundary;
D: no effect;
E: a spiral wave breakup;

An: n new spirals arose and vanished whereas the main spiral response was A.

nAepyTAepyT

Type E Spontaneous and induced drift

Fig. 5. Spiral wave response types. Red points show tip trajectories. Rectangles display
positions of the electrodes. The electrodes were point (type A, type E, and spontaneous
and induced drift) and long line (type An). Relative stimulation periods are: 0.96 (type
A), 0.93 (type An), 0.85 (type E; multiple red regions represent cores of multiple spiral
waves which occur as a result of the spontaneous breakup) and 1.01 (spontaneous and
induced drift). Arrows show drift directions. X- and Y -axes are in mm. (Color figure
online)

In our previous work [18], we also observed a drift to the boundary and stop
(type C). However, we did not observe this type of dynamics in the current
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work. Figure 5 illustrates the wave types A, An and E. The fourth picture shows
spontaneous drift toward the left boundary and the drift induced by the point
electrode.

Results of the computational experiments are shown in Tables 4, 5 and 6.
For both electrode configurations, the relative period 0.85 caused spiral wave
breakup. When the periods exceeded 1.04, no effect was observed for the point
electrode, and breakup occured for the linear electrode.

Table 4. Response types of spiral wave

Relative Electrode
stimulation configuration

period Point electrode Long line electrode
0.85 E E
0.88 E An
0.905 A7 A2
0.93 A A3
0.96 A A1
0.985 A or B? A1
1.01 B B
1.04 D E

Table 5. Time when the spiral began and ended its drift, seconds

Relative stimulation period Electrode configuration

Point electrode Long line electrode

Start End Start End

0.85 — — — —

0.88 — — 2.1 3.2

0.905 4.8 5.7 2.6 4.2

0.93 6.4 8.4 3.2 5.6

0.96 10 13.3 4.9 7.5

0.985 27 >60 10.4 17.8

1.01 40 46 40.7 45.9

1.04 — — — —

The segment of effective relative periods for the point electrode was 0.905–
0.96. However, in case of Tstim = 0.905 · Tsw, seven spiral waves appeared near
the NW and SE corners (the electrode was at the SW corner), although they
disappeared before the end of the simulation. For the relative period Tstim =
1.04 · Tsw and the point electrode, there was a spontaneous spiral wave drift
toward the boundary, but no induced drift was observed. Hence, this case was
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Table 6. Spiral wave’s absolute and relative drift velocity components for the case of
one line electrode

Relative
stimulation
period

Total
Vx, mm/ms

Net
Vx, mm/ms

Net
V rel
x

Total
Vy , mm/ms

Net
Vy , mm/ms

Net
V rel
y

0.85 — — — — — —

0.88 0.007 0.0087 0.013 −0.045 −0.0455 −0.067

0.905 0.001 0.0027 0.004 −0.025 −0.0255 −0.038

0.93 −0.001 0.0007 0.001 −0.017 −0.0175 −0.026

0.96 −0.001 0.0007 0.001 −0.016 −0.0165 −0.024

0.985 −0.0016 0.0001 0.0001 −0.006 −0.0065 −0.010

1.01 0.0017 0.0034 0.005 0.0047 0.0042 0.006

1.04 — — — — — —

defined as D type. Stimulation with Tstim = 0.985 ·Tsw induced a very slow drift,
and the spiral still did not reach the boundary after 60 s, so we marked this case
as ‘A or B?’.

In the case of the long line electrode, we did not achieve pure A type. All spiral
wave drifts were followed by additional spiral waves, which also disappeared.
The segment of effective relative periods was 0.88–0.985. Type An for Tstim =
0.88 · Tsw means that multiple spiral waves arose, which shows a high chance of
breakup. In A cases, new spiral waves emerged near the long line electrode and
far from it.

We checked that the effective stimulation with the minimal relative period,
which was 0.88, worked without the Wenckebach/Mobitz pattern [26]. A plot
of transmembrane potential is shown in Fig. 6. We considered a point that was
initially controlled by the spiral wave and after 2.5 s started being influenced by
the external stimulation. The plot shows a period of 53.6 ms, which is equal to
the stimulation period. This precludes the possibility of the Wenckebach/Mobitz
pattern.

We also measured moments of time when the spiral started to drift, T1, and
when it approached the square boundary, T2 (Table 5). For both electrode loca-
tions, we see that the higher the stimulation period was, the later the spiral wave
answered to the external stimulation and came to the boundary. In addition, an
increase of the period led to a growth in the drift duration (which equals T2−T1)
in most of the cases. The only exception was the case Tstim = 0.985 · Tsw with the
point electrode, where the spontaneous drift lasted for a very short time and the
spiral was far from the boundaries when its induced drift began. The long line
electrode demonstrated better results in comparison with the point electrode –
the spiral wave began its drift earlier and approached the boundary faster.

The x- and y-components of spiral wave drift velocity were calculated for the
case of one line electrode. Total velocity included the spontaneous drift while net
velocity did not. We also computed net relative velocity components by dividing
the absolute net values by the 1D wave speed V1: V rel

x = Vx/V1, V rel
y = Vy/V1.
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Fig. 6. Transmembrane potential u at the point x = 25 mm, y = 40 mm. The stimula-
tion current was applied with 0.88 ·Tsw period from the long line electrode. Horizontal
axis is t, ms; vertical axis is u, mV.

This enabled us to assess dimensionless drift velocity. The results are displayed
in Table 6. Both velocities Vx and Vy decreased with an increase of stimulation
period. Moreover, spiral waves drifted faster in the y-direction than in the x-
direction. An increase in the stimulation period caused a change of the Vx sign
from positive to negative and, therefore, a turn of the drift direction toward the
electrode.

4 Related Work

Simulations of spiral wave dynamics require integration of the differential equa-
tions in time, which can be done using explicit or implicit numerical methods.
Explicit methods require very small timesteps, each of which is a computation-
ally easy task, and implicit methods are costly in one step. The drift of spiral
waves in 2D and 3D media can be a slow process, so it should be studied during
about one minute of model time or more. In any case, the total computational
cost of one program run is usually big enough to force researchers to utilise
parallel computers, libraries and software. The problem of parallel computation
of spiral wave dynamics and cardiac electrophysiology has been addressed in
several works (see, for example, [14,15,19]). Vectorisation can provide an x18
increase in the computation speed, and CPU-based parallelisation can afford an
x7 increase [15]. Results on 3D heart modelling obtained by our group previously
show that a GPU provided essential acceleration. One model minute of simula-
tions required one day if a GPU-based system was used [16] (TP06 model) and
about nine days if a CPU-based system was used [17] (EO model [13] without
mechanics; its computational cost is comparable to that of the TP06 model).

5 Discussion and Conclusions

Previously published results on the induced drift of spiral waves in isotropic
myocardial models [18] showed the following results. Effective drift occurred for
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relative stimulation periods between 0.8 and 0.97 if one point electrode or one
line electrode is used. The time when the induced drift begins and ends increases
with an increase in the period. The drift velocity component orthogonal to the
line electrode decreases linearly with an increase in the period. Our results from
the present study show a slightly narrower segment of the effective periods (0.88–
1.01) and the same dependence between the period and the velocity component.

The case of an anisotropic tissue model where fibres are straight and par-
allel was also studied [3] for a simple phenomenological model AP [1] of the
cardiac muscle. Results of those simulations are close to the results with the
isotropic medium and those of the present work. It was shown that the segment
of effective periods was the same; however, new spiral waves emerged in many
cases depending on the fibre direction and electrode configuration. Mathemati-
cally, introducing anisotropy with parallel fibre directions, if wave speed is less
across fibres, is similar to a compression of the isotropic medium in the direction
orthogonal to the fibres. Therefore, studying heart-specific anisotropy requires
research on media with curved fibres.

The present work investigates circular-shaped fibres. This pattern is similar
to that observed in the atria of the heart around the pulmonary vein region.
There are several such regions in the atria: four pulmonary veins (in the left
atrium) and two vena-cava regions (in the right atrium). Therefore, the atrial
wall has many regions that are topologically equivalent to obstacles (holes) in
the tissue. They can anchor spiral waves and result in arrhythmias, such as
atrial tachycardia and flutter. We think that the LVCD methodology, which we
study in this paper, could be a potential treatment approach for the re-entry
arrhythmias.

A theoretical investigation of the overdrive pacing was done in [10]. A for-
mula linking the relative stimulation period p = Tstim/Tsw and the relative drift
velocity component V rel

x = Vx/V1 was proposed for the case of a sole line elec-
trode in isotropic medium: V rel

x = 1 − p. Here, the electrode is located at the
left border x = 0 of the squared medium. We computed the velocity component
and compared our results with the theory. We see that theoretical V rel

x decreases
from 0.12 (p = 0.88) to 0.015 (p = 0.985), but simulated V rel

x is about 10–20
times less. This shows that the curved fibre-based anisotropy plays an impor-
tant role in the overdrive pacing. Generalising the theory of overdrive pacing in
anisotropic media would be an interesting topic for future research.

Another theory of overdrive pacing was proposed in [6] for waves with a
circular core and for an isotropic medium. Unfortunately, it is not applicable in
our case because the wave tip followed a complex trajectory even in isotropy,
and our medium is essentially anisotropic.

Recently, we performed studies on spiral wave drift in an isotropic square
(non-published). Those simulations used the same Luo–Rudy I model and one
long line electrode. The results show that limits of the effective relative stimula-
tion period are 0.87–0.97. We see that our limit of 0.88–1.01 is comparable with
that segment, which means that anisotropy with curved fibres almost does not
affect the effectiveness of the low-voltage cardioversion.
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Limitations of this research are connected with the fact that we did not con-
sider thickness, heterogeneity and curvature of the heart wall. Also, we neglect
mechano-electrical feedback, which can play a significant role in spiral wave drift
and therefore in overdrive pacing. Our future work will be devoted to overcoming
these limitations and to using a more detailed ionic myocardial model, such as
TP06, which describes more ionic currents.

Our mesh was large, and the main calculation task involved computation
of the right-hand parts of the reaction-diffusion system. An increase of task
complexity amplifies the amount of calculations per computing node. We believe
that the use of MPI technology will speed up our simulations significantly.
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