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Abstract. Important progress in computational sciences has been made
possible recently thanks to the increasing computing power of high per-
formance systems. Following this trend, larger scientific studies, like brain
tissue simulations, will continue to grow in the future. In addition to the
challenges of conducting these experiments, we foresee an explosion of
the amount of data generated and the consequent unfeasibility of ana-
lyzing and understanding the results with the current techniques.

This paper proposes Neurolytics, a new data analysis framework,
together with a new data layout. The implementation of Neurolytics
is mainly focused on simulation neuroscience, although we believe that
our design can be applied to other science domains. The framework relies
on big data technologies, like Apache Spark, to enable fast, reliable and
distributed analyses of brain simulation data in this case. Our experi-
mental evaluation on a cluster of 100 nodes shows that Neurolytics gets
up to 374x speed-up compared to a thread-parallel Python implementa-
tion and is on par with a highly optimized Spark code. This demonstrates
the suitability of our proposal to help scientists structure and understand
the results of their experiments in a fast and efficient way.
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1 Introduction

Since the 1950s, the use of computers has been adopted by many scientific fields
to help researchers advance in their areas [1,3,16]. Since then, the evolution of
computer technology has helped the progress in computational and simulation
science domains. Like many other fields, neuroscience is taking advantage of this
growing computational power, but the real progress is yet to come. Neurosci-
entists collect experimental data at the laboratory which is then used to create
models of the brain structure and its behavior. Later, these models are trans-
lated into computer programs that can digitally reproduce the neural activity
of brain regions. Finally, simulation results are interpreted and sometimes used
as an input to refine the computational models. In order to attempt to simulate
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the largest possible brain region, the use of high performance computing (HPC)
resources is needed. In the past, numerous studies could not have been possible
without the aid of computers, and especially HPC, such as [6,13,15,17–19].

The human brain has more than 86 billion neurons and they communicate to
each other through a type of connection called synapse. Each neuron can have
up to 10,000 synapses (in some cases even more) and the brain is able to create,
rewire or destroy these connections over time (synaptic plasticity). Many appli-
cations simulate the behavior of the brain in different ways. In general, most
simulations are divided into time steps and the state of neurons is recorded at
each step. The final result is that at the end of the simulation we obtain a set
of files that describe how the state of neurons evolved over time. The degree of
detail, precision and simulated parameters (e.g. electrical signals, neuron connec-
tivity, etc.) varies depending on the simulator and the purpose of the study. For
example, the degree of detail can vary from modeling neurons as points (point
neuron models), to modeling their tree structure (multi-compartment models),
to modeling their behavior at a molecular level (subcellular models).

While it is essential to continuously optimize and update simulation science
applications to exploit new software and hardware technologies, it is also impor-
tant to inspect the whole scientific workflow to detect potential bottlenecks. We
believe that understanding simulation results is as important as running the
simulation itself and, with the growing computational power, there is a grow-
ing trend of simulation output data from gigabytes to terabytes (or even more)
in the near future. Therefore, we focus our motivation and the work presented
in this paper on the post-processing of neural simulation output data. First, we
propose a new data layout to structure the information of simulation results that
works efficiently with most of the data post-processing tasks done by the scien-
tists. And second, we present Neurolytics, a parallel and distributed framework
for data analysis. The particularity of Neurolytics is that it has been designed
with domain-specific knowledge of simulation neuroscience. Hence, it is able to
better understand and efficiently handle simulation output data. However, we
believe that the logical structure of the framework can be easily adapted to other
computational science domains. Neurolytics provides two sets of functionalities:
one is oriented to users with little programming knowledge, with which they can
compute the most common analyses with only a few lines of code, whereas the
other one targets users with advanced programming skills and allows them to
construct their own analyses with the help of the framework.

The paper is structured as follows: Sect. 2 gives more background information
and the related work. Sections 3 and 4 describe our proposal and Sect. 5 contains
its experimental evaluation. Finally, Sect. 6 concludes the paper.

2 Background and Related Research

This section gives additional background information related to this paper and
explains previous and related work.
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2.1 Simulation Neuroscience

An important aspect of simulation neuroscience is to study brain activity by
running simulations on a computing system. Scientists often focus only on certain
brain regions, therefore it is more precise to refer to those simulations as brain
tissue simulations. Currently, even the most powerful supercomputers of the
world cannot fit certain detailed cellular models representing the full human
brain, and it will still take some time until we can fit realistic models.

In order to conduct brain tissue simulations, the first step needed is to create
a model from data collected during in vivo or in vitro experiments. Then, these
data are used to drive the in silico experiments (brain tissue simulations). Typ-
ically, we can divide in silico experiments into three phases: first, the user (the
scientist) sets up the desired parameters of the simulation, like the neural model
(brain region, number of neurons, neuronal connectivity, . . . ), the amount of bio-
logical time they want to simulate, the simulation time step, etc. Second, the
neural simulator starts the simulation and stores the results on persistent stor-
age (commonly hard disk). Usually, simulators alternate between advancing the
simulation phase and storing the results to disk in order to improve performance.
Thus, the generation of results has a direct impact on simulator execution time.
Finally, once the simulation finishes and all the results are generated, they are
processed by visualization or analysis tools that neuroscientists use to interpret
them. Sometimes, they are also used as an input to refine the computational
model. One of the challenges that scientists are currently facing is the complex-
ity of simulation data analysis: as simulation data grows in size, it becomes more
difficult for them to manage all the data, and sometimes it is even impossible
to analyze the whole dataset due to hardware restrictions (like memory capac-
ity) or programming complexity. In this context, we foresee an emerging need
for improving the analysis workflow as more powerful computing systems enable
larger or more detailed neural simulations. Consequently, we have detected the
need for scalable data analysis solutions applied to neural simulations and also
a redesigned data layout that suits the different analysis types.

2.2 Simulation Output Data

Even though different simulators (like NEST [12], NEURON [14] or STEPS [4])
generate different output results, we can find common points between them:
first, the identification of different entities, the neurons. Second, the sense of
evolution over time: neurons start in a certain state and they evolve to a poten-
tially different state as time advances. And third, simulators record some type of
information about neurons. If we look at specific frameworks, we will find many
combinations: some have subdivisions of neurons to better represent their state,
some will not record data at each time step, but every N time steps, and there is
a wide variety of the kind of information (the neuron state) they can collect. But
still, we can find the three aforementioned common points in most simulators.

Figure 1 illustrates an example of a simulation data layout and the differ-
ent access patterns of post-processing tools, that can be divided into two types:
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(a) Nrn1 Nrn2 Nrn3
TS 0

TS 1

(b)

... ...

(c)

...

Fig. 1. (a) Example of simulation data layout: organized by time steps (rows), each
time step (TS) contains information related to each neuron (Nrn). The contents of each
neuron depend on the simulator and its configuration; Different access patterns: (b)
sequential access: usually delivers good I/O performance and (c) random access: I/O
performance becomes oftentimes the bottleneck

sequential accesses or random accesses. Although Fig. 1 refers to simulation neu-
roscience data, we can find many other science fields that use the same data
structure to organize data in a 2-dimensional way.

2.3 Previous Research

There have been several efforts in the past years to improve the scientist work-
flow. Eilemann et al. [7] and Schürmann et al. [20] present a key/value store
approach combined with IBM BlueGene Active Storage (BGAS) technology [10].
Later on, this work has been followed by other experiments on database frame-
works, like Ceph, Cassandra or LevelDB, and flash-storage caching solutions [9].
What differentiates our proposal from these approaches is: (i) non-specialized
hardware: Neurolytics sits on top of a widely adopted software framework that
can be deployed on standard systems with no need for specialized hardware and
(ii) Neurolytics combines domain-specific knowledge with an efficient data layout
specially designed for neuroscience domains.

2.4 Related Work

Dask [5] is a flexible parallel computing library for analytic computing in Python.
It has two main components: a dynamic task scheduler optimized for computa-
tion and a set of data collections for big data. Dask supports NumPy, Pandas
and enables distributed computing by providing parallelized NP arrays and Pan-
das dataframes. Dask was initially designed for parallel numerical algorithms on
a single computer, although nowadays it can run on a distributed cluster as well.

Thunder [11] is a collection of tools to analyze images and time series data in
Python. It can run up to large scale clusters, using Spark underneath. Thunder
provides the base classes and methods to conduct the analysis of data coming
from a variety of fields, like neuroscience, video processing and climate analysis.

Dask and Thunder provide generic tools for data analysis that can be very
powerful for scientists with medium to advanced programming skills. The main
difference with Neurolytics is that while we also look for generality, we believe
that it is still important to provide domain-specific tools, specially designed for
those scientists with basic programming skills, or even with limited time, that
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look for straightforward solutions with low time investment. To the best of our
knowledge, such domain-specific tools have not been proposed to date.

BluePy [2] is a scientific library with a pythonic interface. It is developed
by the Blue Brain Project (BBP) [8] and provides support for accessing all the
entities involved in the ecosystem of BBP simulations. This includes, on the one
side, the circuit (neural network) data and, on the other, the simulation data.
Scientists use these entities for both circuit and simulation analyses. The main
difference between BluePy and our proposal is that BluePy has been designed
to run on limited computing resources (single node), like a scientist desktop
computer, while Neurolytics is designed to scale on big data computing facili-
ties. Nevertheless, BluePy benefits from the use of several tools underneath, like
NumPy, SQLAlchemy or other libraries developed by BBP. In the same way,
we believe that libraries like BluePy could be plugged on top of Neurolytics to
analyze large sets of data in a fast and easy way from the scientist point of view.

3 Data Organization

Data organization plays an important role at both the computing and post-
processing steps. However, sometimes these steps have completely opposite
needs. For example, usually, the file structure generated by the simulator is
designed to optimize how data is generated and written, but this does not meet
the requirements of efficient reading by some post-processing tools, like visu-
alization or data analysis. The latter tend to access data randomly, in small
chunks. For example, a typical use case is to access the data belonging to a sub-
set of neurons (whose 3D position in space falls into a certain brain region and is
completely unrelated to the order in which the simulator writes the data). This
means that only a small, non-contiguous subset of cells in each time step are
required, but the reality is that, due to hardware and software design, unneeded
adjacent data will also be loaded. In the end, on the one hand, we can find
some types of data analysis that are more efficient if data is structured by time
step, but on the other, there are other types of analyses that would benefit from
a neuron-major structured layout. Consequently, there is no consensus on how
simulation output data should be organized. For this reason, we think that there
is a need to redesign the data layout.

3.1 Data Layout Proposal

We believe that the best approach to organize data is a key/value layout where
the basic structure is a table with the following information: neuron ID (Nrn),
time step (TS), data source (Src) and simulation data (Data), that corresponds
to the state of each neuron at each time step. This table can be directly instan-
tiated by different types of frameworks, for example as a database table or a
dataframe. Figure 2a illustrates this layout. The coloring code matches the one
used in Fig. 1a to highlight how information can be redistributed. We leave this
design open, as other columns could be added in the future. For example, at the
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Fig. 2. (a) Proposed data layout, where the (Nrn, TS) key pair is used to access data;
(b) Interaction of internal Neurolytics components and scientist’s scripts

time of this table creation, certain precomputed analyses could also be added on-
the-fly while report data is loaded. This could be interesting if certain operations
are commonly computed by a large number of different analyses or users. Sim-
ilarly, the data field is open to hold any type of information that the simulator
generates, from a single value, to a struct, tuple or array of elements.

In addition to the minimum required data (Nrn, TS and Data), we propose to
add the data source to have a reference to where data comes from. This may be
useful for some types of analyses, but also for troubleshooting or data validation.

In the future, if proved necessary, other information related to simulation
parameters or the neural network could be added. In this case, depending on the
type of information, instead of creating a single, huge table, it may make more
sense to add other tables and create links between them.

4 Neurolytics Framework

In addition to the strictly technical requirements, there are other factors that
must be taken into account in our framework proposal.

Scalability. With the growing power of supercomputers, we expect simulations
to be either more detailed (finer grain of time steps) or include a wider brain
region (larger number of neurons). Therefore, reports will grow in terms of file
size as well, most likely exponentially in the near future. In this scenario, it is
only feasible to look for parallel, and preferably distributed, software solutions.

Python-Friendly. A large portion of the simulation neuroscience community
use Python in their daily work, so proposing a Python-friendly solution would
make the transition easier for them. In addition, there is the risk of low adop-
tion, or even rejection by the community, if our framework requires mastering
advanced programming skills or non-familiar programming languages.

SQL. Even if it is not a strong requirement, support of SQL-like queries would
be preferred, as it would reduce the complexity of some types of analyses.

For all these reasons, and after considering different options, we believe that
building Neurolytics on top of Spark is a promising approach for its maturity and
the ecosystem it provides. Spark is part of the Hadoop BigData suite, the leading
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open source project in big data. Also, Spark offers interesting features compared
to other considered frameworks, i.e., the creation of optimized execution plans.

Neurolytics is a pythonic framework built on top of Spark that offers different
types of functionalities classified into two categories: I/O and data analysis.

I/O. This category contains the components that interact with disk files and
storage. The loading component includes all the functionalities related to read-
ing simulation output files and loading its data into Spark distributed data
structures. The storage component offers different options to store Spark data
structures in Spark-supported formats. For example, once simulation data is
loaded, we can use this functionality to store it as Parquet files. In addition, any
data analysis computed after data loading can also be stored in any file format
directly supported by Spark. Alternatively, other file formats could be supported
as well, provided that the user implements the appropriate connector (plug-in).

Data Analysis. It consists of all the framework functionalities directly used for
data analysis (basic and advanced functions), for example, grouping data with
a certain criteria or doing some computation on report data.

Figure 2b shows the main components of Neurolytics and how they interact
with each other. On the left side, there is the user (scientist) code, usually a
Python script, that interacts with the interface of Neurolytics. Internally, our
framework is structured as a set of components that communicate with each
other (yellow arrows). Each component groups a different set of functionalities,
as mentioned above. And on the right side, there are the plug-in agents. We call
the plug-in agents all those components that are specific and implementation-
dependent on external factors. For example, most of the entities involved in data
loading and storage are considered plug-ins, because they need to understand
the specific file format they are loading and they completely depend on both the
format (binary, HDF5, Parquet, . . . ) and the internal layout (data structures,
offsets to access certain data, . . . ). At this point, we have not identified plug-ins
other than file readers and writers for Neurolytics.

We would like to highlight the convenience of Neurolytics design, as the core
components are completely independent from file data sources. Therefore, by
just adding the appropriate plug-in, the framework can immediately read data
coming from any neuroscience simulator. In the same way, our data layout is flex-
ible enough to adapt to many types of information as well. Our implementation
targets neural data analysis, so we propose a specialized framework that under-
stands the properties of neural simulation data and the relation between the
different entities involved. However, our design can be easily adapted to other
areas where data organization includes the sense of time evolution, and with
minor changes, the framework could support most of 2-D data organizations.

4.1 User Interaction

As we mentioned before, our user profile are scientists from basic to advanced
programming skills, therefore we have divided Neurolytics API into two groups.
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Basic Functions. Little programming knowledge is required to interact with
these functions. The main features offered by this group are: simulation data
loading into Spark distributed structures (RDDs/DataFrames), write simulation
data to a Spark-supported file format, aggregate data (by time step or by neu-
ron), compute aggregated average values, generate the corresponding histograms
and sample data. We expect advanced users to also use these operations.

Advanced Functions. We expect advanced users to use these functions in
order to customize or fine-tune their data analysis. In addition to the basic set,
we include here finer grain functions to get meta-information about simulation
data, functions to retrieve the internal Spark distributed data structures (to
enable custom distributed analysis and data manipulation) and generic functions
to operate on the distributed data (for example: filtering, grouping by, element-
to-element transformation). The latter accept user-defined functions and can be
composed together to form complex analyses.

In order to maximize compatibility with other common Python libraries, we
allow the user to choose the data structure returned by each function. In general,
we always offer four options: raw (the original data structures, usually loaded
from simulation output files), Python (basic Python data structures, like lists,
tuples, etc.), NumPy N-dimensional arrays and Pandas DataFrames.

Since the amount of simulation output data can be significantly large, it is
not uncommon to divide the information into several output files. This division
can either be done by the simulator automatically, or manually by the scientist.
In any case, grouping back together the information held in the resulting set of
files may be a complex task, or even sometimes impossible due to the limited
amount of dynamic memory (DRAM). Hence, Neurolytics adds an interesting
functionality: the ability to aggregate all these subsequent simulation result files
into a single data structure. Thanks to the Spark distributed data structures, we
avoid memory problems, and our framework allows scientists to have a broader
view of the simulation data at once, without any effort from their side.

4.2 Neurolytics Implementation Details

Spark offers two different distributed data structures: RDDs and DataFrames.
Even though DataFrames are recommended over RDDs whenever possible, after
a thorough evaluation, we realized that RDDs give several advantages in our
context. Most of the data loaded from simulation data can be stored as NumPy
arrays and scientists mainly use the NumPy library to do their analyses. There-
fore, the main benefit of using RDDs is that they support the storage of NumPy
arrays without conversions, as opposed to DataFrames, where NumPy arrays
must be converted to a supported data format (like binary data or Python
lists). However, the choice of NumPy arrays in the past was motivated for its
performance and easiness of use, but this could change in the future, so we do
not completely discard using DataFrames at some point.

During the process of loading data, there is a first step where simulation
output files are scanned to get their meta-data, like the list of neuron IDs and the
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time series. Then, this information is used to parallelize the loading of simulation
data with Spark. Nevertheless, special care is taken in order to read chunks of
data that are large enough to get good file I/O performance. Therefore, several
stages are performed until data loading is finished and simulation data is stored
following the layout described in Fig. 2a.

In order to proof the suitability of Neurolytics, we have chosen to implement
the support for NEURON simulator. NEURON simulates the electrical activity
of multi-compartment neurons. It receives different input parameters, like the
biological neural model and it generates the desired output data in a single,
potentially large file. We think that this use case is interesting and versatile
because even though NEURON generates the simulation output files in binary
format, a large number of scientists convert the result file into an HDF5 file
because it is easier for them to read this file format from their Python scripts. In
addition, during the conversion process from binary to HDF5, they also trans-
pose data to organize results by neuron instead of by time step. Consequently,
we have developed two different plug-ins to read both file formats with their
different internal organizations to demonstrate the flexibility of Neurolytics to
adapt to different formats and completely opposed data organization. Moreover,
Neurolytics design is open to accept additional plug-ins to support multiple file
formats generated by any simulation neuroscience framework.

Finally, Neurolytics adds the ability to store simulation data or, in general,
any DataFrame or RDD generated inside the framework into the Parquet file for-
mat. This can be particularly useful to convert data from one format to another,
or even to accelerate data loading if the same report files must be analyzed
in different occasions. As a proof of concept, we have implemented the Parquet
support, but this feature can be easily extended by adding other storage plug-ins.

5 Experimental Evaluation

In this section we evaluate the behavior of Neurolytics and compare its per-
formance to an equivalent thread-parallel Python implementation. In order to
conduct the evaluation, we have identified three common data analyses that
scientists use, along with the process of loading data. The rest of this section
explains these types of data analysis and presents the evaluation results.

5.1 Analysis Description

We identified three common types of data analysis. For simplicity we tag them
as Query 1 (Q1 ), Query 2 (Q2 ) and Query 3 (Q3 ).

The first analysis (Q1) consists of calculating the mean values of each neuron
over time. The following steps must be followed in order to get the result:

1. For each neuron, compute the mean value of its data at each time step.
2. Group the mean values by neuron to obtain its evolution over time.
3. Scientists usually create a Python dictionary with neuron IDs as dictionary’s

keys and values are arrays with the computed mean values per time step.
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In the second analysis (Q2), scientists want to generate a histogram for each
simulation time step. The procedure to compute Q2 is described as the following:

1. For each neuron, compute the mean value of its data at each time step.
2. Group the mean values by time step.
3. For each time step, generate a histogram of the mean values of each neuron.
4. Similarly to Q1, structure these data into a dictionary with time steps as keys

and values contain the computed histogram for each time step.

The third analysis consists of extracting a sample from the whole dataset.
In this case, the scientist wants to get all the data related to randomly chosen
neurons. Usually, the final result will include the data from tens to few hundreds
of neurons. In our evaluation, we have chosen to sample the data of 250 neurons.

We would like to emphasize the relevance of these three analyses to evaluate
our proposal. On the one hand, the first analysis requires data to be grouped
by neuron and the second analysis groups data by time step. As explained in
Sect. 3, some analysis access data per neuron, and thus, would benefit from a
neuron-major data layout; but some others access data per time frame, so there
is not a clear consensus on how data should be better structured. On the other
hand, Q3 requires to filter a small subset of data, so only small chunks of data
need to be read at randomly accessed locations. Thanks to the heterogeneity
of the three queries, they represent a large set of analyses. This also exposes a
challenge to our proposal, as it has to show its versatility against completely
opposite data organizations and access patterns.

5.2 Performance Results

The evaluation was performed on Cooley, an analysis and visualization cluster
at Argonne National Laboratory (ANL). The system has a total of 126 compute
nodes. Each node has 2x Intel Haswell E5-2620 v3 (12 cores) and 384 GB of
RAM. Nodes are connected through FDR Infiniband interconnect. Apache Spark
version 2.1.2 with Python 3.6.3 were used to run all benchmarks.

We present the scalability results of Neurolytics, running from 1 node up to
full scale (96 nodes). For each execution, we placed the Spark master process on
a different node than the ones running the Spark slave processes. In all cases we
had exclusive access to the computing nodes. The results shown in this paper
were computed as the arithmetic average of multiple runs (at least 10).

We ran the three types of data analyses explained in this section with Neu-
rolytics and we include as well the process of loading data from disk (GPFS). In
addition, we provide the results of the same actions performed in: (i) a thread-
parallel Python script, run on a single node (using 12 cores) and (ii) a Spark opti-
mized code, executed directly on the same Spark cluster. We refer to these three
runtime scenarios as Neurolytics, Python and Spark respectively. The Python
code tries to mimic the scientist environment and to show what would be the ben-
efits of using Neurolytics. It uses the NumPy library with NumPy structures for
computations and data is loaded in chunks as large as possible to favor file I/O
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reading performance. The optimized Spark code reproduces how an advanced
programmer would write these data analysis with Spark (using Python).

In order to make this evaluation more realistic, we have used real simulation
data generated by NEURON simulator. The activity of a somatosensory cortex
region with 31000 neurons was simulated for 7 min of biological time. The activity
was recorded (written to the simulation output files) every 100 ms (biological),
generating a total of 4200 time frames. In order to control file size, the simulation
was split into 14 runs, so 14 output files were created of 47 GB each (658 GB
in total). Furthermore, we artificially duplicated these data to obtain a larger
dataset of 1.3 TB. Both datasets were converted to the Parquet file format using
Neurolytics, so we then ran all the experiments with both datasets (650 GB and
1.3 TB) in both file formats (original binary and converted Parquet).
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Fig. 3. Wall clock time of Q1 (left) and Q2 (right); note the axis is cut in Q2 (Color
figure online)

First, we present the results of executing the three data analysis with the
different combinations of runtimes (Python, Spark and Neurolytics), dataset
sizes (650 GB and 1.3 TB) and file formats (binary and Parquet), followed by the
results of data loading. For simplicity, we do not show all possible combinations,
but only the relevant ones. All executions follow a strong scaling evaluation.

All charts presented in this section have the following conventions: (i) col-
ors: purple experiments were run with the binary dataset of 650 GB; orange
refers to the same dataset in Parquet format, and green refers to the dupli-
cated dataset of 1.3 TB in Parquet format; (ii) line shape: small dotted lines
refer to the thread-parallel Python executions; large dashed lines refer to the
Spark experiments and solid lines refer to the Neurolytics executions. Finally,
we would like to highlight that the Python data points (purple dotted lines)
show the Python execution on a single node, but, for readability, this line has
been extended along the charts.

Figure 3 (left) shows the time needed to perform the data analysis presented
as Query 1. Python’s dotted purple line, run on single node, has been extended
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for readability. We can see that the lines corresponding to Spark and Neurolytics
executions overlap almost perfectly, meaning that Neurolytics reaches an optimal
performance in this type of analysis. The executions scale properly according to
the number of nodes, and Neurolytics is always between 1.6–12x faster than the
Python version. We cannot expect perfect scaling because this type of query
requires data exchange between Spark slaves in both Spark and Neurolytics
versions. There is also a perfect scaling between the 650 GB and the 1.3 TB
datasets, as the latter takes at most twice the time (or sometimes even a bit
less). As we increase the number of nodes, there is less work to do per Spark
slave, reaching up to a point where the gain is minimal. However, these results
are encouraging, specially when, in the near future, simulation output data grows
even more in size. Finally, we would like to remark that thanks to the big DRAM
capacity of the system, the whole dataset can be loaded in memory to perform
the Python analysis. However, this is not the usual case, and it would lead to
longer execution times on clusters with less DRAM. In such situation, Spark and
Neurolytics would not be impacted, as data are stored in a distributed fashion.

Figure 3 (right) shows the time needed to perform the data analysis presented
as Q2. Note that the vertical axis has been split to better show the results. Spark
and Neurolytics present similar scalability compared to Q1. However, in this case,
the benefit of computing this analysis with Neurolytics is evident. The reason is
that the original data organization and the intrinsic operations of this query work
in opposite directions, making the Python analysis very inefficient. On the con-
trary, thanks to our proposed layout, Neurolytics is not affected by these issues
and offers good performance, reaching a maximum speed-up of 374x with respect
the Python code. Spark executions use the same data layout as Neurolytics, so
they also adapt well to different data organizations and operations. Similarly to
Q1, we would like to remark that the Python analysis was done with all data
loaded in memory, but this is only possible thanks to the hardware properties.
Otherwise, this analysis would have been more complex to program and slower
to execute. In addition, we observe different behavior depending on the file for-
mat: when data comes from Parquet files, which are part of the Spark ecosystem,
the behavior of both Spark and Neurolytics is more regular, as opposed to the
case when data comes from the original binary format, where we can see that in
some cases performance scales irregularly.

These two types of analyses clearly show that Neurolytics can perform analy-
ses requiring data in completely opposite formats. Moreover, performance is not
impacted by the data layout, as the execution time is very similar in both cases.

Figure 4 (left) shows the time needed to perform the data sampling presented
as Q3. Like in previous charts, the Python dotted line, run on single node, has
been extended for readability. This type of analysis done in Python is quite slow
due to the inefficiency of accessing simulation output files in random patterns
that hinder I/O performance. In the case of Spark and Neurolytics, our proposed
finer grain data layout favors a fastest execution. However, since the amount of
data sampled is relatively small, the scaling performance saturates when we use
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a large amount of nodes. In this query, Neurolytics reaches up to 18x speed-up
with respect to the Python execution.

Figure 4 (right) shows the time needed to load the simulation data with the
Python script and with Neurolytics (Spark RDD underneath). As in the other
cases, the Python dotted line has been extended for readability. Neurolytics
shows extremely good performance when loading Parquet data, as this file format
has been designed to work with Spark. However, if we load from binary data,
good performance is only achieved when using a few compute nodes; as we scale
to a larger number of nodes, performance degrades. This is because the original
simulation data files are not prepared nor structured to be read from massively
parallel processes and, therefore, the data reading collapses when all Spark slaves
are simultaneously accessing the same files through GPFS file system.
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Fig. 4. Wall clock time of Q3 data analysis (left) and data loading (right)

6 Conclusions

With the increasing power of supercomputers, scientists can run larger simula-
tions of their studies, but they also produce larger amounts of data that bring
new challenges at the time of analyzing the results. From our point of view, such
data analysis is as important as the simulation itself, and in some cases it is even
used to refine the computational model to make it more accurate. We present
in this paper Neurolytics, a Spark-based data analysis framework, together with
a data layout with domain-specific knowledge. The implementation is focused
on the field of simulation neuroscience and proves its suitability to process the
results of such simulations. However, the design is general enough to be applied
to other computational science areas.

In our evaluation, we used a real set of simulation output files (up to a few
terabytes) to compute several data analyses and compared the performance of
Neurolytics to a Spark optimized implementation (reference of maximum per-
formance) and to a thread-parallel Python implementation (similar to real neu-
roscientist scripts). We can then extract the following conclusions: first, the
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suitability of Neurolytics for large data analysis in computational science, spe-
cially in simulation neuroscience. Depending on the analysis, Neurolytics can
get up to 374x speed-up at full scale compared to the Python parallel code. Our
framework scales well up to full-scale executions (100 nodes) and is always on
par with the performance of the reference Spark code. Second, the suitability
of a new data layout with domain-specific knowledge for neural simulation data
analysis. Our proposal adapts well to the most common types of analysis pat-
terns (i.e. by neuron and by time step), one being completely opposite to the
other. Finally, the current simulation output file is not the optimal approach
for big data frameworks, like Neurolytics. However, low-impact changes, like a
file converter, would address this problem and significantly improve the overall
performance.

As future work, we would like to evaluate the viability of integrating our
proposal into the workflow of scientists, so that the most common data analyses
are automatically computed in-place (where the simulator runs) and the results
are immediately available to the scientist.
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