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Abstract. Mobile hardware improvements have opened the door for deploying
rule systems on ubiquitous, mobile platforms. By executing rule-based tasks
locally, less remote (cloud) resources are needed, bandwidth usage is reduced,
and local, time-sensitive tasks are no longer influenced by network conditions.
Further, with data being increasingly published in semantic format, an oppor-
tunity arises for rule systems to leverage the embedded semantics of semantic,
ontology-based data. To support this kind of ontology-based reasoning in rule
systems, rule-based axiomatizations of ontology semantics can be utilized (e.g.,
OWL 2 RL). Nonetheless, recent benchmarks have found that any kind of
semantic reasoning on mobile platforms still lacks scalability, at least when
directly re-using existing (PC- or server-based) technologies. To create a tailored
solution for resource-constrained platforms, we propose changes to RETE, the
mainstay algorithm for production rule systems. In particular, we present an
adapted algorithm that, by selectively pooling RETE memories, aims to better
balance memory usage with performance. We show that this algorithm is
well-suited towards many typical Semantic Web scenarios. Using our custom
algorithm, we perform an extensive evaluation of semantic, ontology-based
reasoning, using our custom RETE algorithm and an OWL2 RL ruleset, both on
the PC and mobile platform.

Keywords: RETE � OWL2 RL � Rule-based reasoning � OWL reasoning
Reasoning optimization

1 Introduction

Using structured domain knowledge, production rule systems realize a diversity of
tasks in domains such as business, science and healthcare. Knowledge is formulated as
a set of productions (i.e., if-then rules) together with a set of assertions. In the
healthcare domain, production rule systems are often at the core of Clinical Decision
Support Systems (CDSS), which aid in diagnosis, prognosis and treatment tasks [1, 2].
To semantically structure health data, a variety of biomedical ontologies (e.g., see
BioPortal [3]) and clinical health terminologies (e.g., SNOMED-CT [4]) are available.
In order to improve decision support accuracy, a CDSS can leverage the embedded
semantics of semantic health data, such as subclass, transitive and symmetric relations
between drugs, illnesses and treatments. Performing this kind of ontology-based,
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semantic reasoning in (production) rule systems requires a rule-based axiomatization of
ontology semantics. The W3C OWL2 RL profile [5] is highly relevant, since it partially
axiomatizes the OWL2 RDF-based semantics as a set of high-level, abstract IF-THEN
rules.

There is a growing demand to deploy production rule systems, such as clinical
decision support systems, directly on mobile, resource-constrained platforms. Exam-
ples include clinical, time-sensitive tasks to be performed directly on mobile consumer
devices [6], and sensor networks pushing reasoning down to the device layer to cope
with unstable communication [7]. However, recent benchmarks [8] show that the
mobile performance of existing, desktop- or server-based reasoners still leaves much to
be desired. It may be noted that, although modern mobile consumer devices are out-
fitted with 2 GB of RAM or more, single apps are only assigned max. 192 MB on
Android; whereas devices in sensor networks may even feature much less memory.

To optimize semantic, ontology-based reasoning in rule systems, we propose a novel
version of the RETE algorithm, a well-known algorithm for production rule systems,
which aims to better balance memory usage with performance. The RETE algorithm
uses alpha nodes to represent rule premises, with alpha memories keeping matching
premise facts (tokens). Our proposed RETEpool algorithm is based on the observation
that generic rule premises, which occur frequently in OWL2 RL, result in a large
duplication of data in alpha memories. For instance, the same set of tokens can match
OWL2 RL premises <?x ?p ?y>, <?c owl:unionOf ?x> and <?c rdf:type owl:Class>.
An extreme example is a “wildcard” premise, i.e., with variables at all positions, which
will effectively duplicate the data from all other premises. By pooling a selection of
alpha memories into a single shared memory, the RETEpool algorithm aims to reduce
duplication of data in RETE. We note that RETEpool is well-suited towards Semantic
Web settings that typically involve an existing, multi-purpose RDF store. We integrated
this algorithm into Apache Jena [9] and AndroJena [10], a port of Apache Jena for
mobile (Android) platforms. We present an extensive evaluation of semantic reasoning,
using a rule system featuring the RETEpool algorithm and an OWL2 RL ruleset, both on
PC and mobile platform (Android). This work is motivated by our previous work, where
we (1) developed a mobile patient diary with built-in local decision support [6] based on
rule-based reasoning; and (2) presented a set of mobile benchmarks, together with a
mobile benchmark framework, using existing reasoners [11].

The paper is structured as follows. First, Sect. 2 summarizes our OWL2 RL ruleset,
which implements the OWL2 RL specification and is used to realize semantic rea-
soning. In Sect. 3, we summarize and exemplify the RETE algorithm. Section 4 pre-
sents the RETEpool algorithm. In Sect. 5, we extensively evaluate semantic reasoning
using RETEpool and our OWL2 RL ruleset. In Sect. 6, we discuss relevant state of the
art, and Sect. 7 presents conclusions and future work.

2 OWL2 RL Ruleset

To realize semantic reasoning on mobile, resource-constrained platforms, we rely on
the W3C OWL2 RL profile. The OWL2 Web Ontology Language Profiles document
[5] introduces three distinct OWL2 profiles, which are optimized to handle specific
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application scenarios. The OWL2 RL profile is aimed at balancing expressivity with
reasoning scalability, and presents a partial, rule-based axiomatization of OWL2
RDF-Based Semantics [12]. As only a partial axiomatization, OWL2 RL guarantees
completeness for ABox reasoning but not for TBox reasoning [13]; and places syn-
tactic restrictions on ontologies to ensure all correct inferences. Nevertheless, this
trade-off seems acceptable when targeting scalable reasoning on resource-constrained
platforms.

Based on the OWL2 RL specification, we created a concrete OWL2 RL ruleset that
is re-usable by any arbitrary rule engine, which means no particular internal support
(e.g., for datatypes or lists) was assumed. Below, we focus on 3 non-trivial issues that
occur when attempting to create an OWL2 RL ruleset:

(1) A pair of rules (#dt-type2 and #dt-not-type) support RDF datatype semantics by
inferring datatypes (e.g., typing integer “42” with xsd:int) and flagging datatype
inconsistencies. Two other rules (#dt-eq and #dt-diff) infer equality and inequality
of literals, which requires differentiating literals from URIs (to avoid these rules
firing for URI resources as well). As such, these rules require built-in support for
RDF datatypes and literals, which cannot be assumed for arbitrary systems; hence,
we chose to leave out these rules. We note that related work, including DLEJena
[14] and the SPIN [15] and OWLIM [16] OWL2 RL rulesets, also do not include
datatype rules. Others opted to leave out datatype rules due to their significant
performance issues [17].

(2) Another set of rules lacks an antecedent and are thus always applicable. Some of
these rules lack variables (e.g., specifying that owl:Thing has type owl:Class), and
were represented as axiomatic triples accompanying the ruleset. Other rules
comprise “quantified” variables in the consequent; e.g., stating that each anno-
tation property has type owl:AnnotationProperty. Similarly, these were imple-
mented by creating an axiom for each annotation (OWL2 [18]) and datatype
property (OWL2 RL [5]).

(3) N-ary rules refer to a finite list of elements. A first subset (L1) places restrictions
on a limited number of list elements; e.g., #eq-diff2 flags an inconsistency if two
members of an owl:AllDifferent instance are defined as equivalent. A second
subset (L2) places restrictions on all elements; e.g., #cls-int1 will type a resource
with an intersection class only when the resource is typed by all of the intersection
member classes. A third ruleset (L3) yields inferences for all list elements; e.g.,
#scm-uni will infer subclass relations for all classes that are members of a union
class.

Rulesets (L1) and (L3) can be supported by adding two auxiliary list-membership
rules (Rule 1), which link each list element to all preceding list cells; meaning the first
cell will be directly linked to all elements.

Rule 1. Two rules for inferring list membership.
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E.g., using these rules, #scm-uni (L3) may be formulated as follows (Rule 2; note
that Rule 3 similarly belongs to (L3)):

Multiple solutions are possible for n-ary rules from (L2). We chose a solution that
replaces each (L2) rule by a set of auxiliary rules [16], which infer intermediary
assertions for each list cell ið0� i\nÞ, and, based on these inferences, finally generates
the n-ary inference if the first cell is related to an (L2) assertion. We note that this is the
only solution that does not require pre-processing the ruleset or ontology for per
ontology update, compared to e.g., instantiating (L2) rules based on n-ary assertions
[19], or “binarizing” (i.e., converting all n-ary assertions to binary ones). For details on
these solutions, we refer to the online documentation [20].

Based on these considerations, we created an OWL2 RL ruleset written in the
SPARQL Inferencing Notation (SPIN) based on an initial ruleset created by Knublauch
[15]. This initial ruleset did not specify axioms, and relied on built-in Apache Jena
functions to implement n-ary rules. Our final ruleset contains 78 rules and 43 sup-
porting axioms, and can be found online [20]. We checked the conformance of the
OWL2 RL ruleset using the OWL2 RL conformance test suite by Schneider and
Mainzer [21]. We note that some of these tests had to be left out, either due to the
limitations of our OWL2 RL ruleset or difficulties testing conformance. We detail these
cases online [20].

3 Using RETE for Reasoning on RDF

Production rule systems operate by matching production conditions to a set of asser-
tions, and then adding/removing assertions based on the production’s actions [22]. For
this purpose, the RETE algorithm sets up a network consisting of alpha nodes for each
condition (i.e., intra-condition check), and beta nodes to join shared variables between
these conditions (i.e., inter-condition check). Each alpha node, and all but the last beta
node, is linked to a memory keeping the results of these checks. A rule ends with a
terminal node, which represents the actions. To create a RETE network, the right input
of each beta node is linked to an alpha node, and its left input to the previous beta node,
or if none exists, the first alpha node (cfr. Ishida [23]). When reasoning over RDF data,
an intra-condition check matches a triple pattern (or FILTER expression) to an RDF
triple token [7, 24]. Below, we show the RETE network for the #cls-int2 OWL2 RL
rule to be applied on an RDF dataset described using an OWL2 RL ontology; and
describe the reasoning process when new facts (tokens) enter the network.

Rule 2. Rule inferring subclasses based on union membership (#scm-uni).

Rule 3. Rule inferring resource types based on intersection members (#cls-int2).
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At time t1, triple tokens A2 and A3 enter the network, which are matched by alpha
nodes a2 and a3 and inserted into their memories. At time t2, incoming token A1 is
matched to alpha node a1, and inserted into its memory. Since nodes a1 and a2 are
connected by beta node b1, the new token triggers a join attempt between the left-input
A1 token and the right-input A2 token. As shown in the token table, tokens A1 and A2

have the same value for shared variable ?x (i.e., <lst-A>), leading to a successfully
joined token A12 that is added to the b1 memory. With this new token at its left input,
node b2 attempts a join with right input token A3. Both tokens have the same value for
shared variable ?c (i.e., <cls-A>), leading to a successfully joined token A123. This
token reaches the terminal node, which will use the instantiated variables to infer a new
fact, i.e., <inst-1> rdf:type <cls-C1>.

A standard RETE optimization is to re-use alpha nodes (and memories) when the
same premise occurs multiple times, and beta nodes in case rules share the first two or
more premises (else, the contents of the beta memories may differ). Re-using nodes and
memories reduces the number of match and join operations, and avoids duplicate
storage of tokens. To speed up the joining process, the most restrictive conditions (i.e.,
alpha nodes) are often placed first, and Cartesian products are avoided [7, 23]. Alpha
and beta memories are typically indexed to allow for hashed joins [9, 25].

4 The RETEpool Algorithm

A default RETE optimization involves re-using alpha memories for identical premises
(Sect. 3), which reduces data duplication. Nevertheless, we observe that generic rule
premises (i.e., with more than 1 variable) typically still lead to large duplications of
data in alpha memories. For instance, the memory related to premise <?x ?p ?y> will
effectively duplicate all data from the memory of <?p rdf:type owl:ObjectProperty>;
and both memories will overlap with the memory of <?y rdf:type ?c>. This is espe-
cially apparent in the OWL2 RL ruleset with its many generic premises. An extreme
example are wildcard premises, which are found in the OWL2 RL ruleset and match all

?c ?x ?ci ?y
A1 <cls-A> <lst-A> null null
A2 null <lst-A> <cls-C1> null
A12 <cls-A> <lst-A> <cls-C1> null
A3 <cls-A> null null <inst-1>
A123 <cls-A> <lst-A> <cls-C1> <inst-1>

RETE network tokens

Fig. 1. Example RETE structure (rule #cls-int2).
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tokens. As such, they effectively duplicate data from all other alpha memories. Fur-
thermore, we note that many Semantic Web applications involve an existing RDF
store, which is used to load data into the rule system but for other purposes as well
(e.g., querying). Alpha memories will always duplicate (parts of) this RDF store, thus
presenting a second, orthogonal level of data duplication.

We present the RETEpool algorithm, which pools alpha memories into a single
shared memory. As a result, duplicate tokens, i.e., tokens occurring in multiple alpha
memories, are only stored once in a single memory. In doing so, data duplication in
alpha memories is effectively avoided. In scenarios with an existing RDF datastore,
RETEpool can directly re-use this store as the shared memory; thus avoiding both
internal duplication, as well as duplication between the RETE structure and RDF store.
Below, we discuss the implementation of the RETEpool algorithm.

4.1 Implementation of RETEpool

The RETEpool algorithm utilizes virtual alpha memories (cfr. Hanson [26]) in the RETE
network, which keep a mask on the single, shared memory that represents the related
premise (e.g., <?c rdf:type ?t>). For instance, an RDF store may be used as the shared
memory, as is done in our evaluation (Sect. 5).

New tokens are added to the shared memory, and injected at suitable alpha nodes
into the network (see Fig. 1). In this process, a beta node will attempt to join the new
token with other tokens from its input alpha memory. Joining two tokens implies they
have the same value(s) for the shared variable(s). Hence, join operations can be per-
formed by searching the alpha memory for tokens matching the shared variable(s)
value(s). In our case, the virtual memory’s mask is extended with these values, and then
used as a search constraint on the shared memory. By extending the mask, only tokens
that match the alpha node premise will be returned. This is illustrated in Fig. 2. At time
t3, token A12 is used to extend the virtual memory mask with the token’s value of
shared variable ?c, leading to search constraint S = ?, P = rdf:type, O = <cls-A>.

Fig. 2. Usage of the shared memory in RETEpool.
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Since each join involves accessing a (very) large shared memory, instead of a
relatively small alpha memory, it is clear that this algorithm optimizes memory at the
cost of performance. This is confirmed by our evaluation (Sect. 5). We note that the
issue that RETEpool aims to solve, i.e., data duplication in alpha memories, clearly
depends on premise selectivity. By only utilizing a virtual alpha memory for overly
generic, non-restrictive premises, we may thus better balance memory usage with
runtime performance. To that end, RETEpool allows configuring a selectivity threshold
tsð0\ts � 1Þ. In case the premise selectivity (i.e., number of matching facts) equals or
exceeds ts, a virtual memory will be utilized, otherwise a regular memory. Our eval-
uation studies the effects of different values for ts on memory and performance.

Below, we discuss an additional issue that arises when an existing, pre-loaded RDF
store is being re-used.

4.2 Reciprocal Join Issue

Many Semantic Web applications will start out with a pre-loaded RDF datastore, which
will be used to inject data into the rule system. When utilizing RETEpool, an opportunity
exists to re-use this datastore as a single shared memory. In this case, each virtual alpha
memory will initially be fully “populated”, since it references the pre-loaded RDF
dataset (Sect. 4.1). This is illustrated in Fig. 3.

At time t0, token A1 is injected into the network, and joins with token A2 from node a2
(already present in its virtual memory). At time t1, token A2 is injected and similarly joins
with token A1 (also present) – thus performing a second, redundant (“reciprocal”) join.
Later on, in case token A12was stored twice inmemory b1, four joins with tokenA3would
take place: one for each of the two A12 tokens at times t0 and t1; and when token A3 is
injected at time t2, again once for each A12 token. A single successful rule firing requires
an exponential joins, with the set of alpha nodes in network
(for any rule r). In case duplicate tokens are not stored (e.g., duplicate checking takes
place), a single rule firing would still require joins.Without reciprocal joins,
a single successful rule firing requires only joins.

Fig. 3. Example where the reciprocal-join issue occurs in RETEpool.
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Since this issue only occurs during the first reasoning cycle, we introduced a
custom reasoning process for this cycle. In this process, only tokens are injected that
match the first alpha node a1. As the token travels through the network, all possible
joins will be attempted, since all tokens are already at their virtual alpha memories –
while avoiding reciprocal joins. In Fig. 3, by only injecting token A1, a second,
redundant join with A2 will be avoided, which in turn avoids redundant joins later on in
the network.

5 Semantic Reasoning Benchmarks

This section presents benchmark results for ontology-based reasoning, using a rule
system and an OWL2 RL ruleset. For the rule system, we benchmarked multiple
configurations of the RETEpool algorithm, and compared the results to a baseline RETE
algorithm. To test the performance impact on resource-constrained platforms, we ran
each benchmark on a PC as well as on a mobile device.

Below, we discuss the setup (Sect. 5.1) and present the benchmarks (Sect. 5.2).

5.1 Benchmark Setup

5.1.1 Baseline System
We extended the original Apache Jena RETE implementation [27] with standard
optimizations, including the re-use of RETE nodes and memories, memory indexing
and join ordering (see Sect. 3). These optimizations are considered standard-practice in
modern RETE systems [7, 25, 28], making the extended system an appropriate base-
line. We also copied these extensions to Jena’s Android port, i.e., AndroJena [10]. In
the benchmark results, this baseline system is referred to as RETEbase. We implemented
the RETEpool algorithm on top of this baseline implementation.

5.1.2 OWL2 RL Ontologies and Ruleset
Our benchmarks were executed on the BioPortal ontologies from the OWL 2 RL
Benchmark Corpus [29]. On PC, reasoning over 3 of the 45 ontologies took longer than
10 min (our cut-off time) for any configuration, so these were left out. For the 42
remaining ontologies, the number of statements range from 246 to 57310 (avg. 6684),
and their file sizes (N3 format) range from 24 KB to 5852 KB (avg. 642 KB). For the
mobile benchmarks, we considered a subset of 34 BioPortal ontologies, since the other
11 ontologies either caused out-of-memory exceptions, or ran longer than 10 min. For
these ontologies, the number of statements range from 246 to 7291 (avg. 2199) and
their file sizes (N3 format) from 24 KB to 838 KB (avg. 210 KB). As a result, we note
that average performance times for PC and mobile are not directly comparable. We
detail each set of ontologies in our online documentation [20]).

As the benchmark ruleset, we utilized the OWL2 RL ruleset introduced in Sect. 2.
This ruleset contains 78 rules and 43 supporting axioms, and can be found online [20].
As mentioned, we checked the conformance of this ruleset using the OWL2 RL con-
formance test suite by Schneider and Mainzer [21], and detail the results online [20].
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5.1.3 Benchmark Platforms
Benchmarks were performed on two platforms:

(1) PC: Lenovo ThinkPad T530, with a dual-core Intel Core i7-3520 M CPU
(2.9 Ghz), 8 GB RAM and a 64 bit infrastructure, running Windows 7.0 (Service
Pack 1).

(2) Mobile: LG Nexus 5 (model LG-D820), with a 2.26 GHz Quad-Core Processor
and 2 GB RAM. This device runs Android 6, which grants apps 192 MB of heap
space.

During the benchmarks, both devices were connected to a power supply.

5.1.4 RETEpool Configurations
We benchmarked the following algorithms and configurations (regular memories are
utilized for beta nodes).

(A:i) RETEbase: a regular memory is utilized for each alpha node.
(A:ii) RETEfull-pool: a virtual alpha memory is utilized for each alpha node.
(A:iii) RETEpart-pool: a virtual alpha memory is only utilized in case its premise

selectivity exceeds the configured threshold: 0.1 − 0.25 − 0.5 − 0.75 − 1.

Further, we consider two orthogonal scenarios for RETEpool:

(S:i) A shared memory is introduced for the sole purpose of supporting RETEpool;
(S:ii) An existing RDF store is re-used as the shared memory pool.

We utilized the Apache Jena RDF store as the shared memory. Each configuration
was benchmarked in a one-shot reasoning scenario, i.e., with a single reasoning cycle
over each of the benchmark ontologies. For RETEX-pool configurations, the shared RDF
store was pre-loaded with the ontology, after which a custom reasoning process took
place (see Sect. 4.2). This allowed us to estimate premise selectivity by using the
number of matched tokens from the actual benchmark ontology.

5.1.5 Benchmark Metrics
We measure the following performance metrics:

(P:1) Network compilation time: time needed to compile the network, including
selecting memory indices and deciding the best join order.

(P:2) Reading time: time needed for the system to read and parse the data.
(P:3) Reasoning time: time needed to complete the first reasoning cycle.
(P:4) Initialization time: time needed to load the ontology into the shared memory.

As mentioned, for RETEX-pool configurations, the shared memory was
pre-loaded with the ontology, after which reasoning took place (Sect. 5.1.4).

In addition, we collect the following memory-related metrics:

(M:1) Number of alpha memories: the total number of alpha memories, differenti-
ating between different types (i.e., regular vs. virtual memories).

(M:2) Alpha memory size: the total size (KB) taken up by the set of alpha memories.
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(M:3) Total memory size: the total size (KB) taken up by the set of alpha memories
and the shared memory pool.

(M:4) RDF nodes size: the total size (KB) taken up by RDF node data. The contents
of an RDF graph are kept in RDF node objects. By considering this memory
size separately, these are not accidentally counted towards only (M.2) or
(M.3).

(M:5) Shared memory size: the total size (KB) taken up by the shared memory, if
any.

For evaluating the (Z.ii) shared memory pool setup, we also measure the following:

(M:6) Memory operations: the number and performance overhead of memory
operations, including updating the shared memory and individual RETE
memories.

To obtain actual memory usage (KB), we performed heap dumps on PC and
Android. Per configuration, a heap dump was taken after reasoning over the ontology
that yielded the min., median and max. number of alpha memory tokens, respectively.

5.2 Benchmark Results

Table 1 shows the memory usage for RETEbase (i.e., the baseline system) and the
RETEpool configurations. In particular, it shows the memory usage for the min., median
and max. ontology (see Sect. 5.1.5). The table lists the number of alpha memories
(M.1), alpha memory sizes (M.2), and (for ease of reference) the total memory size,
which includes alpha memories and the shared memory (if any) (M.3). Further, the
table shows the reasoning performances (P.3).

The following memory metrics are identical for all configurations (KB): (M.4) RDF
nodes size: 5.1.5 median: 800 (min: 203 – max: 26760); (M.5) Shared memory size:
median: 562 (min: 98 – max: 26070). Further, the following performance metrics
(ms) are identical: (P.1) Network compilation time: avg. ca. 5 (PC), 71 (mobile); (P.2)
Reading time: avg. ca. 73 (PC), 696 (mobile). As mentioned, a separate data loading
step took place for RETEX-pool configurations (P.4). This amounts to 11 ms for median
(min: 3 ms – max: 670 ms) on PC, and 99 ms for median (min: 15 ms – max:
1034 ms).

Note that RETEpart-pool configurations with ts ¼ 0:1 and ts ¼ 0:25; and ts ¼ 0:75
and ts ¼ 1 are pairwise identical, so we only present ts ¼ 0:1 and ts ¼ 1.

We first observe that only 46 alpha memories are required for a total of 78
OWL2 RL rules, due to the re-use of alpha (and beta) nodes and memories where
possible (Sect. 3). Memory savings for RETEpool depend on the concrete application
scenario: i.e., whether (S.i) a separate shared memory needs to be introduced, or (S.ii)
an existing, multi-purpose RDF store can be re-used for this purpose.

Scenario (S.i)
Even in scenario (S.i), we expect significantmemory savings since duplication of data

in alpha memories is either avoided entirely (RETEfull-pool) or partially (RETEpart-pool).
Indeed, memory savings for RETEfull-pool are huge, with a ca. 60% for the median
ontology (min: 55%, max: 50%). As expected, the number of regular alpha memories
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(M.1) increases together with threshold ts. This causes data duplication among individual
memories, as well as with the shared memory; thus increasing the total memory usage
(M.3). For RETEpart-pool (0.1), memory savings drop to ca. 30% for median (min: 25%,
max: 25%); for RETEpart-pool (0.5), ca. 4% (min: 1%, max: 23%); and for RETEpart-pool

(1), memory usage is similar for median and min., and increases for max.
At the same time, we observe that RETEfull-pool greatly reduces performance; by

factors of avg. ca. 3,3 and 2,8 for PC and mobile, respectively1. We expect RETEpart-pool

to strike a better memory/performance balance, with performance improving as
threshold ts increases. Indeed, performance improves greatly on mobile (e.g., ts ¼ 0:1:
avg. ca. 58%), and approaches RETEbase as ts increases. On PC, we observe the same
effect (e.g., ts ¼ 0:1: avg. ca. 69%) at least until ts � 0:5, after which performance
(slightly) worsens. This is likely due to excessive garbage collection; when leaving out
the 7 most memory-intensive ontologies, RETEpart-pool performance is constant for all ts
at avg. ca. 1,25 s (RETEbase = 1.15 s, RETEfull-pool = 3.3 s).

We conclude that RETEpart-pool (0.1) effects the best memory/performance balance.
Compared to RETEbase, its saves memory by 30% for median (min: 25%, max: 25%)
whereas it is ca. 4.3 s slower on mobile and 0.6 s slower on PC. While RETEpart-pool

(0.5) only incurs a penalty of ca. 1.5 s on mobile and 0.8 s on PC, its memory savings
are significantly lower, i.e., 4% for median (min: 1%, max: 23%). At the same time, we
note that an extra initialization time is incurred for all RETEX-pool configurations (P.4).

Table 1. Memory usage (KB) and reasoning performance (ms) *: RETEpart-pool tsð Þ,
†: r = regular, v = virtual, **: median (min – max), ***: average (min – max).

Version* Memory usage (KB)** Reasoning
performance***
(ms) (P.3)

# a mem.
(M.1)†

a mem. size
(M.2)

Total mem. size
(M.3)

PC Mobile

RETEbase #r: 46
#v: 0

1487
(263–52789)

1487
(263–52789)

15705
(18–
322352)

24968
(1051–
199974)

RETEfull-pool #r: 0
#v: 46

20
(20–20)

582
(118–26090)

51905
(51–
1187570)

69573
(2903–
542670)

RETEpart-pool

(0.1)
#r: 42
#v: 4

482
(100–13757)

1044
(198–39874)

16303
(27–
340194)

29287
(1526–
212573)

RETEpart-pool

(0.5)
#r: 43
#v: 3

859
(161–14675)

1421
(259–40745)

16475
(23–
338109)

26444
(1145–
202646)

RETEpart-pool

(1)
#r: 44
#v: 2

891
(166–30067)

1453
(264–56137)

17715
(25–
365843)

25203
(1115–
198404)

1 Note that performance times for PC and mobile are not directly comparable (Sect. 5.1.2).
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Scenario (S.ii)
In scenario (S.ii), since we are re-using an RDF store that is utilized for other

purposes as well, the size of the shared memory is not counted towards our total
memory usage. In that case, memory savings by RETEfull-pool are tremendous, using
only ca. 0,04% (max) to ca. 7,6% (min) compared to RETEbase. In fact, RETEpart-pool

(1), which utilizes the most memory, still only takes up avg. ca. 57% of RETEbase.
For RETEpart-pool (0.1): memory savings include 68% for median (min: 62%, max:

74%); for RETEpart-pool (0.5), savings constitute 42% for median (min: 39%, max:
72%); for RETEpart-pool (1), savings include 40% for median (min: 37%, max: 43%).

In this case, we conclude that RETEpart-pool (0.5) is preferable: it greatly improves
performance (ca. 65%) on mobile (PC is only slightly slower), while, in this scenario,
memory savings are significant as well. Further, the performance gains by RETEpart-pool

(1) do not seem comparable to its increased memory usage. As before, we note that any
RETEX-pool configuration also incurs an extra initialization time (P.4).

6 Related Work

To realize ontology-based reasoning, many mobile reasoners, i.e., targeting
resource-constrained platforms, utilize rule-based OWL axiomatizations; such as cus-
tom entailment rulesets [30, 31] or OWL2 RL rulesets [7, 13]. For instance, MiR-
E4OWL [32] and lOR [31] apply a custom entailment ruleset; Seitz et al. [17] load the
CLIPS engine with the OWL2 RL ruleset; and Tai et al. [7] and BaseVISor [33] rely on
rules implementing pD* semantics. In general, by focusing on subsets of rule axioms,
rule-based axiomatizations allow easily adjusting reasoning complexity to the appli-
cation scenario [7], or avoiding resource-heavy inferences [16, 17]. In contrast,
transformation rules used in tableau-based DL reasoning are often hardcoded, making it
hard to de-select them at runtime [7]. Also, most classic DL optimizations improve
performance at the cost of memory, which is limited in mobile devices [8].

To deal with data duplication caused by generic rule premises in OWL2 RL, we
presented the RETEpool algorithm, which utilizes virtual alpha memories that act as
masks (or views) on a large, shared dataset. This concept was first introduced by
Hanson for the Ariel system [26]. Later on, Hanson et al. [34] presented a set of
optimizers that choose an efficient Gator network (see below), possibly including
virtual alpha memories, based on database size, predicate selectivity and update fre-
quency distribution, among others. In this paper, we implemented this concept to
realize more memory-efficient, semantic ontology-based reasoning on mobile plat-
forms. We further consider typical Semantic Web scenarios, where an RDF store is
already available and possibly pre-loaded with data, as well as the issues ensuing from
such a setup. As opposed to Hanson et al., our evaluation focuses in particular on how
memory and performance may be balanced by using different selectivity thresholds ts.

Some approaches [13, 14] support a different solution for dealing with generic rule
premises, as they occur in rule-based axiomatizations such as OWL2 RL. In these
solutions, a first step materializes all schema-related inferences in the ontology (e.g.,
using a separate OWL reasoner), which is then followed by a rule instantiation
step. Based on the materialized schema, the second step creates multiple concrete rules
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for each generic rule by replacing schema variables by concrete schema references.
This kind of approach deals poorly with ontology schema updates, and is thus only
suitable for scenarios where such updates do not occur (or occur very infrequently). As
a different solution to optimizing mobile, semantic reasoning, Tai et al. [7] present a
selective rule loading algorithm, which composes a pD* ruleset based on ontology
expressivity; and a two-phase RETE construction process, which utilizes selectivity
information from the first phase to optimize join sequences in the second phase.
Komazec and Cerri [35] integrated a special e network into RETE to optimize RDFS
entailments.

We note that other production rule algorithms aside from RETE exist. Miranker
[22] proposed the TREAT algorithm, which, instead of storing join results,
re-calculates results of intermediate joins when required. In doing so, TREAT avoids
the memory and maintenance overhead of beta memories. The Gator [36] and RETE*
[37] algorithms generalize RETE and TREAT, treating both as special cases. The more
recent PHREAK algorithm, introduced by the well-known Drools production system
[25], is based on RETE but incorporates lazy and goal-oriented aspects. As our work
focuses on reducing data duplication in alpha memories, which is an issue that, to the
best of our knowledge, potentially affects all these approaches and algorithms, it can be
considered complementary to these efforts.

7 Conclusions and Future Work

In this paper, we presented the RETEpool algorithm which, by pooling a particular
selection of RETE alpha memories, aims to balance memory usage with performance.
We illustrated how this algorithm is well-suited for many typical Semantic Web sce-
narios, which typically utilize an existing, multi-purpose RDF store. We performed an
extensive set of benchmarks, which evaluated semantic, ontology-based reasoning
using our OWL2 RL ruleset and multiple configurations of the algorithm, both on PC
and mobile platforms. In line with expectations, the RETEpool algorithm drastically
reduces memory usage. By configuring selectivity thresholds, i.e., where virtual alpha
memories are only used in case estimated selectivity exceeds a threshold, we were
better able to balance memory savings with performance overhead.

Our evaluation has a number of limitations. Firstly, our solution and evaluation
focuses specifically on semantic reasoning using the OWL2 RL ruleset, which includes
many generic rule premises. For other rulesets with more concrete premises, utilizing
RETEpool will likely lead to smaller memory savings. Hence, future work includes
running additional benchmarks to test the usefulness of this approach for other types of
rulesets. Secondly, premise selectivity was estimated based on the actual number of
tokens matched from the benchmark ontology. Clearly, this will not be possible in
incremental reasoning scenarios, where only a very limited amount of initial data is
available. As a result, future work involves utilizing other kinds of selectivity estimates
(e.g., based on SPO position). Thirdly, our goal was to establish to what extent the
proposed optimization reduces memory usage and impacts performance – which can
only be done by comparisons with the baseline system. When we arrive at a more
mature, fully-fledged rule system, future work will involve comparisons to other rule
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systems. Finally, to avoid the main pitfall of RETEpool – i.e., accessing a large shared
memory for each join attempt – future work involves creating a more fine-grained
memory strategy. We observe that alpha memories will often completely subsume
other memories, depending on premise structure: e.g., premise <?c rdf:type ?t> sub-
sumes premise <?c rdf:type owl:Class>. By constructing a nested memory structure, a
subsuming memory could directly access the data of subsumed memories, while still
reducing duplication.
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