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Abstract. Currently available datasets still have a large unexplored
potential for interlinking. Ranking techniques contribute to this task by
scoring datasets according to the likelihood of finding entities related
to those of a target dataset. Ranked datasets can be either manually
selected for standalone linking discovery tasks or automatically inspected
by programs that would go through the ranking looking for entity links.
This work presents empirical comparisons between different ranking
models and argues that different algorithms could be used depending
on whether the ranking is manually or automatically handled and, also,
depending on the available metadata of the datasets. Experiments indi-
cate that ranking algorithms that performed best with nDCG do not
always have the best Recall at Position k, for high recall levels. The best
ranking model for the manual use case (with respect to nDCG) may need
13% more datasets for 90% of recall, i.e., instead of just a slice of 34%
of the datasets at the top of the ranking, reached by the best model for
the automatic use case (with respect to recall@k), it would need almost
47% of the ranking.

Keywords: Linked Data · Entity linking · Recommendation
Dataset · Ranking · Empirical evaluation

1 Introduction

The Web of Data (WoD) has been growing fast and is facing the challenge of
increasing the links between entities from distinct datasets. The more interlinked
they are, the greater intrinsic value of their underlying knowledge base will be,
which allows the development of more innovative applications.
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The entity linking task with respect to the entities of a target dataset con-
sists of: (1) selecting other so-called relevant datasets that would contain related
entities; (2) inspecting their content to infer entity relationships, i.e., infer links;
and (3) making the relationships explicit by adding new RDF statements to the
target dataset. One of the most popular relationships is the equivalence relation
(owl:sameAs) addressed in [13,15,16,18].

Statistics about the WoD [1] show that more than 70% of the datasets are
linked with entities of at most two other datasets, and that the vast majority
of them are linked only with popular ones, such as DBpedia, Geonames, W3C
and Quitter. This scenario can be explained by at least two main reasons. First,
the available datasets vary greatly in their quality. So developers have been
choosing to search for links in more reliable and comprehensive datasets, such
as DBpedia. This may be a safer strategy, but it narrows the potential of the
WoD, as it avoids exploring less known, but more specialized datasets that could
aggregate more detailed and important knowledge. The second reason refers to
dataset selection, since selecting datasets with related entities is a very error-
prone, arduous and time-consuming task. Several search techniques have been
proposed in the literature [3,5–7,10,12] to reduce the effort and increase the
selection accuracy, however none of them has been widely adopted by the WoD
community.

Selecting the most relevant datasets can be cast as a ranking problem, i.e.,
the task of ranking existing datasets di ∈ D according to the likelihood of finding
entities in di that could be linked with the entities in dt. Thus, it is at the user’s
discretion to decide which datasets to inspect or which slice of the ranking to
automatically scan with a program in searching for entity links. More precisely,
the problem we address is:

Given a target dataset dt, compute a rank score score(dt, di) for each
dataset di ∈ D, which induces a ranking (d1, d2, . . . , d|D|) of the datasets in
D such that score(dt, d1) ≥ score(dt, d2) ≥ . . . ≥ score(dt, d|D|). The rank
score should favor those datasets with the highest probabilities of containing
entities that could be linked with entities of dt.

The two use cases are possible in the context of WoD, i.e., either the ranked
datasets would be manually selected and sent as input for further entity link-
ing tasks or automated processes would scan the content of each dataset in an
upper slice of the rank to find links, and the experiments indicated that different
algorithms better suits each case.

Indeed, it is reasonable to propose an adaptable dataset search application
that would deal with the two use cases differently, using distinct ranking mod-
els. By means of content negotiation, like IRI dereferencing mechanisms, human
users can be distinguished from automated processes by the preferred data for-
mats (Accept field) sent in HTTP request headers.

One can come up with three different strategies for dataset ranking: similar-
ity ranking [3,10]; using known dataset links and their metadata to learn linking
rules [3,5–7,10,12]; and identifying relevant hubs [4]. Intuitively, the first strat-
egy suggests that the more similar two dataset descriptions are, the more likely it
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will be that their contents will be similar as well. The second strategy, frequently
used by recommender systems, is the collaborative filtering. It is assumed that
similar groups of people share the same behavior. Of course, the similarity cri-
terion interferes with the acknowledgement of such intuitions. For example, if
two datasets are similar in their update metadata, it does not mean that they
are similar in their content. The last strategy seeks highly referenced datasets,
which then become authorities in certain information domains. If it is possible
to identify to which information domains a dataset belongs to, hubs can be rec-
ommended as good opportunities of finding entity links. This paper examines
the first two strategies, since the last one would not rank all existing datasets,
but rather it would remove from the search results the non hub datasets, which
implies that rankings generated with this strategy will be non comparable with
the rankings of the first two strategies.

The metadata used by ranking strategies vary, but the most used are linksets,
topic categories and vocabularies. They can be harvested from catalogs, such
as DataHub, VoID descriptions and even from the datasets themselves. Some
techniques use known linksets as features of target datasets for ranking. It can
be a problem, however, if the target datasets are not yet interlinked with others.
Deciding the best set of metadata for ranking is still an open problem. This
paper argues that this choice will also influence the ranking model. Indeed, the
experiments based on known linksets indicated that Bayesian models perform
better; on the other hand, based on topic categories, rule-based classifiers would
outperform Bayesian models. The performance gap can reach up to 10% at
the accumulated gain (nDCG). An alternate ranking model, based on social
networks, would have comparable performance to these two models, with the
drawback of requiring the computation of dataset similarities. Moreover, if a
dataset is already linked to others, it is better to use linksets instead of topic
categories to rank them.

The contributions of this paper are an empirical analysis of five dataset rank-
ing models, using three types of features, and a strategy to use different ranking
models for the two use cases. For the first use case, the experiments indicated
that the best models are those based on Bayesian and JRip classifiers and that
one can use either linksets or topic categories as dataset features. Using at least
5 linksets of a dataset, the best model can improve nDCG by at least 5%, after
40% of top datasets, and even more before 40%. In the case of datasets for which
no linkset is known, JRip with topic categories as dataset features would be the
best choice. For the second use case, JRip would be the best model with a rank
slice of 22%, 27%, and 34% at the recall levels of 70%, 80%, and 90%, respec-
tively. The best ranking model for the first use case (with respect to nDCG) may
need 13% more datasets for 90% of recall, i.e., instead of just a slice of 34% of
the datasets at the top of the ranking, reached by the best model (with respect
to recall@k), it would need almost 47% of the ranking.

The rest of this paper is organized as follows. Section 2 introduces the basic
concepts used throughout the paper. Section 4 describes the ranking models.
Section 5 addresses the preparation of the test data. Section 6 presents the exper-



Empirical Analysis of Ranking Models for an Adaptable Dataset Search 53

iments for assessing the ranking models. Section 3 discusses related work. Finally,
Sect. 7 concludes the paper.

2 Background Knowledge

In this section we briefly present some background definitions used through-
out this paper regarding entity linking, dataset search and ranking evaluation
metrics.

RDF Dataset – An RDF dataset, or a dataset for short, is a set d of RDF
triples of the form (s, p, o) maintained by a single provider. The subject s of the
triple is a global identifier (IRI), which denotes an entity of the real world, the
predicate p is an attribute of the entity and the object o is an attribute value
of the entity. One says that the subject s is an entity of d, denoted s ∈ d. An
object can be either a literal value or an entity IRI. Triples can be accessed
on the Web through IRI dereferencing (Linked Data) or via SPARQL queries,
and can be stored in triplestores, relational databases, data files, or even HTML
pages, thanks to RDF serialization schemes, such as RDFa.

Linksets – A linkset ls of a dataset d is a subset of RDF triples of d that link
entities from two distinct datasets through a particular predicate, i.e., it is a set
of triples (s, p, o) that have the same predicate p, s ∈ d, o ∈ d′, and d �= d′.
One says that (s, p, o) is an entity link, ls is a linkset of d, d′ is the target of ls,
denoted target(ls), and d is linked with d′. We denote the set of all linkset targets
of a dataset d by Ld, and the set of all linkset targets of a set of datasets D by
LD =

⋃
di∈D Ldi

. For the sake of simplicity, from here on, we refer to linkset
targets simply as linksets.

Let ls be a linkset and dfreq(ls) be the number of datasets in D that have ls
as linkset. We define tf-idf(ls) as follows.

tf-idf(ls) =
|ls|

max({|lsi|/lsi ∈ Ld})
· log

( |D|
dfreq(ls)

)

(1)

Topic categories – The set of topic categories of a dataset d, denoted Cd, is the
set of topic IRIs from a particular knowledge base, e.g. DBpedia, that describe
the information content of the dataset.

It can be inferred from literal values or extracted from VoID descriptions.
In the case of inference, literal values are scanned with named entity recog-
nition tools, such as DBpedia Spotlight, as proposed by Caraballo et al. [4],
the recognized entities are matched with entities of a knowledge base and
the topic categories associated with the entities are harvested. DBpedia, for
example, associates a list of topic categories to entities through the predicate
dcterms:subject and each category can be subsumed by others through the
predicate skos:broader. We say that a category c is in Cd iff there exists a
property path [8] {e dcterms:subject/skos:broader* c.} from a named entity e
to c in DBpedia. The set of topic categories of a set of datasets di ∈ D is
CD =

⋃
di∈D Cdi

.
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Topic categories can also be extracted from VoID descriptions. Accord-
ing to the VoID vocabulary, datasets can be partitioned by subject such
that one can describe subsets of triples whose subjects are associated with
a given category. In the code snippet of an example VoID file of Fig. 1, the
dataset d has 100 triples containing entities associated with the topic category
dbc:Information retrieval. The number of triples in each subset can be taken
as an estimate of the occurrence frequency of the topic category for the sake of
computing tf-idf(c) as follows.

@pref ix dcterms : <http :// pur l . org /dc/ terms/> .
@pre f ix void : <http :// r d f s . org /ns/ void#> .
@pre f ix dbc : <http :// dbpedia . org / r e sou r c e /Category :> .

<d> a void : Dataset ;
void : subset [ a void : Dataset ;

dcterms : sub j e c t dbc : I n f o rma t i o n r e t r i e v a l ;
void : t r i p l e s 1 0 0 ; ] .

Fig. 1. Code snippet of an example VoID file.

Let occurr(D, c) be the number of entity occurrences in D associated with a
topic category c. We define C ′

D and C ′
d as follows.

C ′
D = {c|c ∈ CD ∧ o1 ≤ occurr(D, c) ≤ o2} (2)

C ′
d = (Cd ∩ C ′

D) (3)

such that Δ = max({ocurr(D, ci)/ci ∈ CD}) − min({ocurr(D, ci)/ci ∈ CD}),
o1 = min({ocurr(D, ci)/ci ∈ CD}) + 0.1Δ and o2 = max({ocurr(D, ci)/ci ∈
CD}) − 0.1Δ. Cutting limits were empirically chosen. The reason for narrowing
category sets is that the very frequent or rare categories do not discriminate
datasets appropriately, like indexing terms in traditional Information Retrieval.

Let occurr(d,c) be the number of entity occurrences in a dataset d ∈ D
associated with c, dfreq(c) be the number of datasets d′ ∈ D that have category
c, c ∈ C ′

d, ci ∈ C ′
d. We define tf-idf(c) of a dataset d as follows.

tf-idf(c) =
ocurr(d, c)

max({ocurr(d, ci)/ci ∈ Cd})
· log

( |D|
dfreq(c)

)

(4)

Ranking evaluation – One of most commonly used metric for ranking evalua-
tion is the normalized Discounted Cumulative Gain (nDCG). It is a user-centric
measure which expresses the degree of novelty unveiled by rankings as users go
through their elements. It is computed by ranking datasets di ∈ D for a set of
target datasets dtj ∈ T , for each of which it is known the relevance degree of di.
Let rel(i) be the relevance degree of the ith dataset of the ranking for dt and
relI(i) be the relevance degree of an ideal ranking, which would arrange datasets
decreasingly by relevance degree. nDCG is defined as follows [2].
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DCG[i] =
rel(i)
log(i)

+ DCG[i − 1] (5)

IDCG[i] =
relI(i)
log(i)

+ IDCG[i − 1] (6)

nDCG[i] =
DCG[i]
IDCG[i]

(7)

such that DCG[i] and IDCG[i] are averages over all dt ∈ T and DCG[1] =
rel[1] and IDCG[1] = relI[1]. Ranking computing models are compared by the
area under the respective interpolated nDCG[i] curves. The best model has the
largest area.

A second metric is Recall at Position k (recall@k), intuitively defined as the
usual recall measure at each rank position. Let tp(i) be the number of relevant
datasets to dt in the first i rank positions and R be the total number of relevant
datasets to dt. Formally, recall@k is defined as follows.

recall[i] =
tp(i)
R

(8)

recall@k[i] = recall[i] (9)

such that recall[i] is the average over all dt ∈ T . Ranking computing models are
compared at each recall level by the size of ranking slice, the smaller the i at the
same recall level, the better the ranking will be.

In order to compare rankings with different sets D, we take i′ = i/|D| and
compute nDCG[i′] and recall@k[i′].

3 Related Work

Liu et al. [10] get inspiration from methods of social network analysis by comput-
ing several network measures, such as PageRank and Preferential Attachment,
and use them as features for the Random Forest algorithm to classify datasets
as relevant or not with respect to a given dataset. The links between datasets
are defined based on known linksets of each dataset that represent equivalence
links (owl:sameAS).

Martins et al. [12] adopts a content-based filtering approach based on the
tokens extracted from the labels of the entities. They define that if two datasets
have similar sets of tokens then it is likely that they will have related entities.

Ellefi et al. [6] propose a technique based on known linksets and topic profiles
to rank relevant datasets for a given target dataset. Topic profiles are generated
with the Latent Dirichlet Allocation algorithm and serve as descriptors of the
datasets. Two datasets are compared with a similarity measure proportional
to the amount of common linksets normalized by the total number of linksets
between them. Descriptors and similarities are combined such that to penalize
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datasets that resemble each other through very popular topics. Intuitively two
datasets sharing very popular features would likely be less related than if it was
through unpopular topics.

Emaldi et al. [7] propose a method based on comparing RDF subgraphs of
two datasets. Those pairs of datasets with a greater amount of similar subgraphs
were supposed to have a higher correlation of content and therefore a greater
chance of containing more correlated entities.

Ellefi et al. [5] use an intentional approach that compares profiles of differ-
ent datasets. The most similar profiles indicate that two datasets may contain
similar entities. The profiles are obtained by representing datasets as text doc-
uments composed of words extracted from textual descriptions of the classes of
their schemes (the objects of the predicates rdf :type) that are captured from
Linked Open Vocabularies. Very common or rare classes are filtered out because
they are little or very discriminatory. To reduce the set of comparisons between
profiles, only profiles that have at least two classes in common are compared.
The comparisons between classes are made with similarity functions applied to
the class labels.

4 Ranking Models Used in the Experiments

This section briefly defines five ranking models and the variations used in the
experiments. In what follows, let FD be the set of distinct features of a dataset
corpus D to be ranked and Fd be the set of distinct features of a single dataset, d.

4.1 Ranking by Cosine Similarity

The first ranking model scores datasets di ∈ D according to their similarities
with a target dataset dt. Intuitively, the more similar di and dt are, the greater
the likelihood that they will contain related entities. The similarity is estimated
by the cosine of the angle θ−→

dt
−→
di

between the vector representations of dt and di

denoted
−→
dt and

−→
di . Therefore, the score(dt, di) function is defined as follows

score(dt, di) = cos(θ−→
dt

−→
di

) (10)

The vector coordinates correspond to the distinct features fi ∈ FD and their
values can be either tf-idf(fi) or 0, if fi does not belong to Fd. Recall that tf-idf(·)
over linksets and topic categories were defined in Sect. 2. We tested three feature
sets: FD = LD, FD = C ′

D and FD = LD ∪C ′
D. The number of features of di had

no limit, since it depends only on the available metadata, while the number of
features of dt was limited to 5; i.e., five linksets (5L), five categories (5C) or five
linksets and five categories (5L5C), as summarized in Table 1. Other similarity
scores could have been used, but this was left for future work.
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Table 1. List of similarity-based computing ranking models.

Ranking model label FD score(dt, di)

cos-5L LD cos(θ−→
dt

−→
di

)

cos-5C C′
D

cos-5L5C LD

⋃
C′

D

4.2 Ranking by Preferential Attachment

The second ranking model comes from the domain of social network analysis
and it was previously proposed by Lopes et al. [11]. Taking friendship as dataset
links, one may transpose this approach to the context of dataset ranking, as
follows [11].

score(dt, di) = pa(dt, di) =
|Pdi

|
|D| ·

∑

dj∈Sdt∩Pdi

1
|Pdj

| (11)

where pa(·, ·) is the preferential attachment metric.
Equation 11 defines that the likelihood of di being relevant to dt is directly

proportional to the popularity of di and inversely proportional to the popularity
of those datasets that have di as one of their linksets. In this work, we defined
Sdt

, the similarity set of dt, as the set of all datasets in D that have at least 10%
of the features of dt in common. This similarity filtering was empirically defined.
Pdi

, the popularity set of di ∈ D, is the set of all datasets in D that have links
to di, and similarly Pdj

is the popularity set of dj ∈ D. A preprocessing step
computes Pdi

from LD, which must be given. We also tested different feature sets
and limited the number of features for dt to 5 or 12, as summarized in Table 2.
Similarly to the first ranking model, 5L means that dt has five linksets, 12C
means that dt has twelve categories and 5L12C means that dt has five linksets
and twelve categories.

Table 2. List of social-network-based computing ranking models.

Ranking model label FD score(di, dt)

sn-5L LD pa(di, dt)

sn-12C C′
D

sn-5L12C LD

⋃
C′

D

4.3 Ranking by Bayesian Probabilities

The third ranking model is inspired by Bayesian classifiers and was previously
proposed by Leme et al. [9]. It computes the probability that di is relevant to dt
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given that dt has features fi ∈ Fd. The naive assumption on the joint probability
of having multiple features induces the following score function.

score(dt, di) = P (di|dt) =

⎛

⎝
∑

j=1..n

log(P (fi|di))
⎞

⎠ + log(P (di)) (12)

P (fi|di) is the probability that a dataset has feature fi if it is linked to di,
and P (di) is the probability of di being a linkset. A preprocessing step computes
probabilities from LD ∪ C ′

D, which must be given. We also tested different fea-
ture sets as summarized in Table 3 with the same notation conventions used in
previous models.

Table 3. List of Bayesian computing ranking models.

Ranking model label FD score(di, dt)

bayesian-5L LD prob(di, dt)

bayesian-12C C′
D

bayesian-5L12C LD

⋃
C′

D

4.4 Ranking with Rule Classifiers

The last two ranking models use the machine learning algorithms C4.5 and RIP-
PERk through their respective Java implementations J48 an JRip in the Weka
Toolkit [19]. They are rule-based classification algorithms that learn conjunctive
rules from vector representations of di ∈ D. The algorithms differ in the pruning
heuristics of the decision tree, which may impact computing and classification
performances. Each learned rule RC

j for a class C has an associated probability
PRC

j
which estimates the confidence of classifying an instance as being of the

class C with RC
j . We trained a set of binary classifiers for the classes di and ¬di,

such that di ∈ D. Classifying a target dataset dt as an instance of a class di
means that dt may have entity links to di, i.e., di may be a linkset of dt, i.e., di
is the target of a linkset of dt. We defined score(dt, di) function as follows

score(dt, di) =

⎧
⎨

⎩

P
R

di
j

if dt ∈ di

1 − P
R

¬di
j

if dt ∈ ¬di
(13)

such that j is the rule index for which Rdi
j oR R¬di

j applies to dt and that has the
biggest PRC

j
. Classifiers were trained with sets of positive and negative examples

of each class. Positive examples of the class di are datasets that have di as one
of their linksets and negative examples are the opposite. The feature sets are
summarized in Table 4 with the same notation conventions for model labels.
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Table 4. List of rule-based computing ranking models.

Ranking model label FD score(di, dt)

j48-5L LD

jrip-5L

j48-12C C′
D pRule(di, dt)

jrip-12C

j48-5L12C LD

⋃
C′

D

jrip-5L12C

5 Data Preparation and Methodology

The data for the experiments [14] is a collection of VoID descriptions of the
datasets in the LOD Cloud.

DataHub is a catalog of open data used by the Linked Data community to
disseminate metadata about the datasets available in the LOD Cloud. This cat-
alog is built on top of the Comprehensive Knowledge Archive Network (CKAN)
platform that has a RESTful API through which one can browse the content
of the catalog. Datasets that do not belong to the LOD Cloud have been dis-
regarded in this paper. Among others, the available metadata on the catalog
are linksets, SPARQL endpoints and dumps. The CKAN adopts DCAT as the
standard metadata scheme, but some conventions allowed to record particular-
ities of RDF datasets. The following example of an HTTP request returns a
JSON document doc with metadata of the Association for Computing Machin-
ery (ACM) dataset, where m = doc['result' ][ ' results ' ][0] is a dictionary with
the metadata itself.

https://datahub.ckan.io/api/3/action/package search?fq=name:rkb-explorer-
acm

Linksets can be identified in m with two structures of different formats,
but with similar contents, which are ls1 = m [' relationships as subject ' ] and
ls2 = m['extras']. In ls1, the target dataset of a linkset is identified by its local
ID ls1 [ i ][ ' id ' ] , where i is an index of the linksets’ vector, and the number
of triples is ls1 [ i ][ 'comment']. In ls2, the target dataset is ls2 [ 'key' ] and the
number of triples is ls2 [ 'value ' ] .

The metadata of each dataset was enriched with topic categories as follows.
Let e be a named entity recognized in literal values of the dataset. A topic
category c should be associated with the dataset if and only if there exists a
path {e dcterms:subject/skos:broader* c.} between e and c in DBpedia. Named
entities recognition was performed with DBpedia Spotlight, which is also avail-
able through a RESTful API. Topic categories were annotated as subsets of the
datasets according to the pattern in Fig. 1.

Datasets without available dumps were not annotated with topic categories.
Both linksets and datasets were annotated with their respective number of
triples.

https://datahub.ckan.io/api/3/action/package_search?fq=name:rkb-explorer-acm
https://datahub.ckan.io/api/3/action/package_search?fq=name:rkb-explorer-acm
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There is a total of 1,113 datasets with at least one linkset, from which 348
datasets have more than 8 linksets and 153 have more than 8 linksets and some
topic category. This filtering was necessary to select appropriate datasets for
the ranking models. The usable sets of datasets were randomly partitioned into
three groups for a 3-fold cross validation.

The set of 1,113 datasets was divided into three equal parts P1, P2 and P3

and, in a 3-fold cross validation process, the datasets in two parts Pi and Pj were
ranked for each dataset of the third part Pk, which was taken as the set T of
target datasets. Recall from Sect. 2 that nDCG and recall@ can be computed for
a set of target datasets Pk as the mean of these measures for the datasets in Pk.
The consolidated cross-validation result is the mean of nDCG and recall@ for
k ∈ 1, 2, 3. This process was repeated for each of the proposed ranking models.

For each dataset in Pk, it was created a representation based on its available
characteristics which was used as input for the ranking algorithms. Remember
from Sect. 4 that these representations can be based on linksets, categories, and
a combination of the two.

Notice that DataHub stores a list of known linksets for each dataset in the
LOD Cloud. The targets of these linksets (objectsTarget - VoID) are, by defi-
nition, datasets with which there are links and, therefore, are the datasets that
one would wish to find in higher ranking positions, i.e., they are the set of rel-
evant datasets, denoted R. Only when a representation of a target dataset (dt)
includes a linkset, the objectsTarget of that linkset must be removed from R.

6 Experiments

We refer the reader to Neves et al. [17] for the full set of ranking evaluations.
This section presents results for the best ranking models.

Recall from Sect. 4 that we consider two use cases for dataset rankings. In the
first use case, datasets are manually selected and users intuitively focus on the
initial ranking positions. Comparing ranking models with nDCG would unveil
models with the highest gain rate of relevance. In order to compute nDCG, it is
necessary, however, to define the degree of relevance of each entry of the ranking.
Let

– D be a dataset corpus to be ranked
– Ldt

the linksets of a target dataset as extracted from DataHub
– Fdt

the feature set of dt
– R = (D ∩ Ldt

) − Fdt
, be the datasets relevant to dt in D

– triples(ri) be the number of triples of the linkset ls of dt that has
target(ls) = ri

– T1 = min(triples(ri)/ri ∈ R)
– T2 = max({triples(ri)/ri ∈ R})
– Δ = (T2 − T1)/3

Notice that R is the set of datasets which are taken as unknown linksets and
that must be better positioned in the ranking. The degree of relevance of di ∈ D
to dt is defined as follows.
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rel(di) = 0, di /∈ R

rel(di) = 1, di ∈ R ∧ T1 ≤ triples(ri) < T1 + Δ

rel(di) = 2, di ∈ R ∧ T1 + Δ ≤ triples(ri) < T1 + 2Δ

rel(di) = 3, di ∈ R ∧ T1 + 2Δ ≤ triples(ri) ≤ T2

In the second use case, programs would scan a slice of the ranking in search
of entity links. In such cases, the best models would be those that would provide
the best recall@k for the same ranking size.

The use of different feature sets causes D to have different sizes depending
on the ranking model, that is, not all datasets have all possible feature sets. To
compare rankings with different sizes we compute nDCG(i′) and recall@k(i′),
where i′ = i/|D|, we call i′ as the normalized rank position.

Figure 2 shows that the best models for the first use case, based on nDCG.
Traditional use of rankings are those based on Bayesian classifiers, Social Net-
work and JRip classifiers. One can see that knowing at least 5 linksets of a
dataset can improve at least 5%, after 40% of top datasets (normalized rank
position = 0.4), and even more before 40%. In the case of datasets for which no
linkset is known, the best it can be done is to use topic categories with JRip
or Social Network ranking models. Ranking models with a mixed set of features
(Linksets and Topic Categories) did not achieved comparable performances [17].
This is an important outcome of the experiments. Moreover, as Bayesian and
JRip approaches have ranking performances very similar to that of the Social
Network (SN), one can avoid computational cost of the similarity calculations
needed for SN.

Fig. 2. nDCG of the best ranking computing models.

Figure 3 shows the best models for the second use case, based on recall@k.
Note that, after 20% of the top datasets, the rankings start diverging in perfor-
mance. As the average size of the ranking is 143, it means that the divergence
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starts at the 28th position, on average. For a recall of 70%, bayesian-12C would
need 28% of the top datasets, while jrip-12C would need 22%. For a recall level
of 80%, the bayesian-12C would need 40% of top datasets, while the jrip-12C
would require just 27%. The difference would be even greater at 90% of recall:
the bayesian-12C would need 65% of the top ranking, while jrip-12C would need
just 34%. The best ranking model for the first use case (with respect to nDCG)
may need 13% more datasets for 90% of recall, i.e., instead of just a slice of
34% of the datasets at the top of the ranking, reached by the best model (with
respect to recall@k), it would need almost 47% of the ranking.

Fig. 3. Recall@k of the best ranking computing models.

We can then conclude that if one wants to exhaustively examine rankings
looking for entity links, one would better use jrip-12C as the ranking model.
Besides better performance, JRip with topic categories has the advantage that it
does not depend on the assumption that all datasets would have known linksets,
but only on the existence of topic categories, which can be frequently provided
for a dataset. Moreover, the results pose empirical limits for sizing the slice of
the ranking depending on the desired recall level, for example, if one wants to
find 80% of the linksets of a target dataset, Fig. 3 shows that a program can be
coded to scan only the top 27% of the ranking, for a recall of 70% it would scan
just 22%, and so on.

7 Conclusions and Future Work

The growth of the Web of Data strongly depends on entity interlinking, as the
traditional Web depends on hyperlinks. Current strategies, which focus only on
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well known datasets, although safe, overlook important opportunities for entity
interlinking. The dataset ranking techniques discussed in this paper strongly
facilitate this task, since they can reduce the computational effort of searching
links and unveiling important datasets.

This paper presented an empirical comparison of several ranking models in
order to identify the conditions in which they are best applied. The first conclu-
sion is that, for human interactions with a dataset search tool, the best ranking
models (with respect to nDCG) are based on Bayesian classifiers and JRip.
Bayesian is preferable when one knows linksets, since it can have the nDCG at
least 5% greater, otherwise JRip is the best choice. Secondly, the similarity com-
putation of social network approach can be avoided, since Bayesian and JRip
have similar performances. Thirdly, we can conclude that models with the JRip
classifier and topic categories are always desirable, when one wants to automati-
cally scan rankings. Besides better performance (with respect to recall@k), 13%
less datasets for 90% of recall, JRip with topic categories has the advantage
that it does not depend on the assumption that all datasets would have known
linksets, but only on the existence of topic categories, which can be frequently
provided a dataset. Finally, The experiments also indicated the ranking size to
be traversed for each desired level of recall, which may be taken as input of the
search. For a recall level of 70% scan 22% of the ranking, for a recall level of
80% scan 27%, for a recall level of 90% scan 34%, and so on.

One limitation of the experiments was the amount of data available. The
lack of availability of dataset samples (dumps) did not allow the use of all data
obtained from DataHub. Expanding this availability and comparing other pro-
posed methods may bring new conclusions to the design of dataset ranking meth-
ods with the purpose of entity interlinking.
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