
Benchmarking of a Novel POS Tagging
Based Semantic Similarity Approach for
Job Description Similarity Computation

Joydeep Mondal(B), Sarthak Ahuja , Kushal Mukherjee,
Sudhanshu Shekhar Singh, and Gyana Parija

IBM Research Lab, New Delhi, India
jomondal@in.ibm.com

Abstract. Most solutions providing hiring analytics involve mapping
provided job descriptions to a standard job framework, thereby requiring
computation of a document similarity score between two job descriptions.
Finding semantic similarity between a pair of documents is a problem
that is yet to be solved satisfactorily over all possible domains/contexts.
Most document similarity calculation exercises require a large corpus of
data for training the underlying models. In this paper we compare three
methods of document similarity for job descriptions - topic modeling
(LDA), doc2vec, and a novel part-of-speech tagging based document sim-
ilarity (POSDC) calculation method. LDA and doc2vec require a large
corpus of data to train, while POSDC exploits a domain specific prop-
erty of descriptive documents (such as job descriptions) that enables us
to compare two documents in isolation. POSDC method is based on an
action-object-attribute representation of documents, that allows mean-
ingful comparisons. We use stanford Core NLP and NLTK Wordnet to
do a multilevel semantic match between the actions and corresponding
objects. We use sklearn for topic modeling and gensim for doc2vec. We
compare the results from these three methods based on IBM Kenexa
Talent frameworks job taxonomy.

1 Introduction

Several contexts require finding similarity between a pair of documents. The
problem of finding similarity between a pair of documents also lays groundwork
for the problem of clustering similar documents together. Most of the initial
research in this domain was based on cosine distance with tf-idf term vectors.
Topic modeling based techniques such as LSA and LDA learn an intuitive set
of topics from a given corpus of documents, and the topic distribution vectors
of documents can be used to find document similarities or cluster documents
together. More recently, word2vec and doc2vec based document similarity meth-
ods have been gaining popularity.

All the document clustering techniques group similar documents together,
while keeping dissimilar documents in different groups. Various document
c© Springer International Publishing AG, part of Springer Nature 2018
A. Gangemi et al. (Eds.): ESWC 2018, LNCS 10843, pp. 430–444, 2018.
https://doi.org/10.1007/978-3-319-93417-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93417-4_28&domain=pdf
http://orcid.org/0000-0003-1543-8454

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 431

similarity measures such as cosine similarity, Dice’s coefficient and Jaccard’s
coefficient [13] have been used in literature to evaluate document similarity.
However, the definition of a pair of documents being similar depends on the
problem context. For example, finding the same joke [10] told differently is a
vastly different problem from finding whether term paper submissions from two
students are the same. Irrespective of the clustering technique used, most doc-
ument similarity learning methods e.g. LDA [17], Doc2Vec [15] etc. require a
large corpus of data to learn document features well. No document similarity
computation methods work well if the corpus is small, or if only two documents
are to be compared.

In our work of enabling hiring solutions via cognitive collaboration, wherein
several agents/players such as job match, diversity champion, cultural assessment
agent come together to make holistic hiring decision, one problem that we have
faced many times is that of identifying which job requisitions are similar. This
problem arises in two contexts:

1. Grouping jobs together: A typical application of machine learning in hiring
is to learn success models for various jobs. To be meaningful, the models
need to be learned at a sufficient level of granularity. Thus, arises the need
to cluster jobs together. Grouping jobs together also arises necessity for a
cultural assessment agent as similar assessments can be used for alike jobs.

2. Candidates’ previous jobs need to be matched with the opening they apply to
(or to the openings that will be recommended to them). This requires com-
paring job description from their previous jobs to the job openings available
in the ATS (applicant tracking system).

Job requisitions typically consist of several well defined components: skill
and years of experience requirement, job location and a job description. With
the rest being structured fields, job title (covered in [8]) and job description,
which typically consists of roles and responsibilities the job entails, becomes the
primary component that needs to be matched across jobs. RISE [19] proposes a
method of job classification followed by similarity establishment processes that
leverages both structured and unstructured components of a job.

In this paper, we compare novel part-of-speech tagging based document simi-
larity (POSDC) calculation method with doc2vec and LDA based topic modeling
method. POSDC analyzes the actions (verbs), objects of each action (nouns) and
attributes of the objects (adjectives) that appear in the two job description to
be compared.

This paper is organized as follows. In the next section, we describe the liter-
ature on document similarity/clustering. Section 3 describes our job description
similarity computation methodology and experimental setup. Section 4 explains
the evaluation criteria. Section 5 concludes and discusses some future work.

2 Literature Survey

In typical text document classification and clustering tasks, the definition of a
distance or similarity measure is essential. The most common methods employ

432 J. Mondal et al.

keyword matching techniques. Methods such TFIDF [9] leverage the frequency
of words occurring in a document to infer on similarity. The assumption is that
if two documents have a similar distribution of words or have common keywords,
then they are similar. Researches have also extended this to N-gram based models
[16], where group of consecutive words are taken together to capture the context.
With large N gram models, typically large corpus of documents are required to
obtain sufficient statistical information.

[16,17] extended these approaches to include a probabilistic generative model
that would explain the frequency of occurrence of words. These methods include
PLSI (probabilistic latent semantic indexing) and LSA (latent semantic analy-
sis). The assumption is that there are an underlying latent set of topics (with
their individual distribution of words describing the topic) and each document
is generated from a mixture of these topics. The above described methods fall
in the category of bag-of words models. The major limitation of bag-of-words
models is that the text is essentially represent as an un-ordered set of words (or
n-words, for n gram models). The long-range word relations are not captured
leading to loss of information. Another issue with these techniques is that they
rely on the surface information of the words and not its semantics. That is, words
with two or more meaning (polysemy) are represented in the same way and two
or more words with the same meaning (synonymy) are denoted differently.

To alleviate the drawback of bag-of-words model, Le et al. [15] proposed
Paragraph to Vector, an unsupervised algorithm that learns feature represen-
tations from variable-length pieces of texts, such as paragraphs. The algorithm
represents each paragraph by a dense vector which may be used to predict words
in the paragraph. Its construction captures semantics and has the potential to
overcome the weaknesses of bag-of-words models. Paragraph Vectors outper-
form bag-of-words models as well as other techniques for text representations
and have achieved state-of-the-art results on text classification and sentiment
analysis tasks [15].

Another approach to document similarity is via concept modeling (Wikipedia
concepts [11], IBM watson natural language understanding service [4]). The main
idea is to use many concepts from Wikipedia or any other encyclopedia to con-
struct a reference space, where each document is mapped from a keyword vec-
tor to a concept vector. This captures the semantic information contained in
the document. [18] have demonstrated the effectiveness of concept matching to
overcome the semantic mismatch problem. However, the concepts themselves
are not independent. [12] extended Wikipedia matching to document cluster-
ing by enriching the feature vector of a text document by using the correlation
information between concept articles.

3 Methodology

Our proposed approach to generate a similarity score among two job description
D and D′ can be divided into four parts as illustrated in Fig. 1. In this section
we explain these steps alongside their system implementation in greater detail.

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 433

Fig. 1. Main flow describing the four steps for computation of job description similarity

3.1 Document Representation

Each document is treated as a collection of sentences setsent, with each sentence
sent being further represented as a collection of sets of triplets - action, object
and attributes. Consider the following illustrative example.

434 J. Mondal et al.

Fig. 2. Dictionary structure of keywords and their synonyms

Fig. 3. JSON structure of a dictionary entry

Job Description Document

Determines operational feasibility by evaluating analysis, problem definition,
requirements, solution development, and proposed solutions.

Representation of Job Description Document

1. Action : determines, Object : feasibility, Attributes: [operational]
2. Action : evaluating, Object : problem definition, Attributes: []
3. Action : evaluating, Object : requirements, Attributes: []
4. Action : evaluating, Object : solution development, Attributes: []
5. Action : evaluating, Object : solutions, Attributes: [proposed]

where action symbolizes the main activity described by that particular sent,
object represents the entity on which the activity has been acted upon and
attributes corresponds to the characteristics of the object. We will refer the
triplet as tPOS , set of triplets corresponding to a sen as senttPOS

and set of
triplets corresponding to a document D as DtPOS

. Our hypothesis is that these
sets of triplets can properly describe a job description document. To verify this
statement, we performed a small experiment. We chose five people (experts in
Job analytics domain) and gave them the generated set of triplets for 10 job
descriptions. Without seeing the original job description documents, they could
easily extract the actual essence out of these triplet sets.

As all the job description documents were in English, without loss of gen-
erality it can be said that the main activity of a sent i.e action is represented
by the non-auxiliary verb v. The entity on which the activity v has been acted
upon is generally the object noun corresponding to v in sent. Characteristics of
an entity are portrayed by the adjectives in English. So, we depicted attribute
of an object as the adjectives corresponding to the object noun present in sent.
We assume all the sentences in job description documents were in a particular
format from which we could extracted the triplet. In cases where an entity of

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 435

tPOS contains multiple elements, such as in the case of compound nouns, a list
of elements is created instead.

For faster computation we used Apache Spark [1] environment to paral-
lalize the sequential loop in Algorithm1. Apache Spark provides programmers
with an application programming interface centered on a data structure called
the resilient distributed dataset (RDD), a read-only multiset of data items
distributed over a cluster of machines, that is maintained in a fault-tolerant
way [2]. We modified Algorithm1 to Algorithm 3 to incorporate distributed sys-
tem capabilities.

3.2 Document Parsing and Dictionary Creation

Given a document D, it’s corresponding representation discussed in Sect. 3.1 is
obtained by parsing the output tree treedep generated by Stanford Dependency
Parser from the NLTK Library [3] for each sentence. Algorithm for creating
DtPOS

is described by below Algorithm 1.

Algorithm 1. Document Representation Algorithm-Sequential
1: procedure DocRepSeqProc
2: Input: D
3: Output: DtPOS

4: setsent ← sentence tokenizer (D)
5: DtPOS ← null
6: for each sent of setsent do
7: senttPOS ← SenRepProc(sent)
8: DtPOS ← DtPOS ∪ senttPOS

9: end for
10: end procedure

Algorithm 2. Sentence Representation Algorithm
1: procedure SenRepProc
2: Input: sent
3: Output: senttPOS

4: Treedep ← Stanford POS Dependency Tree (sent)
5: senttPOS ← modify Treedep � action, object and attributes are extracted

from the tree
6: end procedure

After obtaining the DtPOS we used memoization and precomputation tech-
niques to build a dictionary Dict of words present in the DtPOS

. The structure of
the dictionary is depicted as in Fig. 2. In the dictionary, every word w has been
stored with its synonym list synw. We used Wordnet dictionary from NLTK [5]
to get synw for a given w. We used cloudant Database to store this dictionary

436 J. Mondal et al.

Algorithm 3. Document Representation Algorithm- Parallel
1: procedure DocRepParProc
2: Input: D
3: Output: DtPOS

4: setsent ← sentence tokenizer (D)
5: DtPOS ← null
6: Mapsetsent(SenRepProc) � it is executed in cluster machines of Spark

environment in parallel for each sentence
7: end procedure

as JSONs. The structure of the JSON is in Fig. 3. synw for a w consists of only
the words which exist in Dict and cross a threshold of semantic similarity score
(simsem). Algorithm to update the dictionary is given in Algorithm5.

WordNet is a large lexical database of English language. Nouns, verbs, adjec-
tives and adverbs are grouped into sets of cognitive synonyms which is called
synsets. Each synsets expresses a distinct concept which interlinked by means of
conceptual-semantic and lexical relations. Wordnet provides synsets for a given
English word [6]. To calculate simsem between w1 and w2 we calculate wup
similarity score between two synsets corresponding to w1 and w2. Wu Palmer
Similarity or wup similarity provides a score denoting how similar two word
senses are, based on the depth of the two senses in the taxonomy and that of
their Least Common Subsumer (most specific ancestor node) [7]. After getting
the scores between each synset we took an average of the scores to get the seman-
tic similarity score between w1 and w2 and denoted it as simsemw1,w2

. Algorithm
to find simsem is described in Algorithm 4.

When Dict is empty and the algorithm encounters a new word it creates
Dict and stores an entry corresponding to the word. When Dict exists in the
cloudant database and algorithm encounters a w then it first checks whether
it is present in Dict or not. If w is not present in Dict then it will create an
entry for w and will generate a corresponding synw by calculating simsem with
every other words in Dict. The simsem of every other words of Dict will also
be updated accordingly. While processing each entry in DtPOS , we precompute
the semantic similarity scores among the words and store them in a database.
Processing of DtPOS is described in Algorithm 6.

3.3 Assignment Problem Formulation

After document parsing stage, the two documents, D and D′, are represented
as two sets of triplets, DtPOS and D′

tPOS , each with elements tPOS1 , tPOS2 , ...
tPOSn

and t′POS1
, t′POS2

, ... t′POSm
respectively. The similarity score between

the two job des can be now interpreted as the similarity score between these two
sets. The similarity function is explained in detail in the next subsection, and is
denoted by F for now. To calculate the similarity score between two sets, a naive
approach would be to calculate the similarity score between each pair of elements
from two sets (S and S′), greedily pick the pair with the highest similarity

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 437

Algorithm 4. Semantic Similarity Between Two Words
1: procedure SemSImProc
2: Input: w1, w2

3: Output: simsemw1,w2
4: simsemw1,w2

← 0
5: synSetsw1 ← null
6: synSetsw2 ← null
7: synSetsw1 ← synsets from Wordnet for w1

8: synSetsw2 ← synsets from Wordnet for w2

9: div ← 0
10: for each synSetw1 of synSetsw1 do
11: for each synSetw2 of synSetsw2 do
12: wupscore ← wup similarity between synSetw1 & synSetw2

13: if wupscore is not null then
14: simsemw1,w2

← simsemw1,w2
+ wupscore

15: div ← div + 1
16: end if
17: end for
18: end for

19: simsemw1,w2
← simsemw1,w2

div
20: end procedure

Algorithm 5. Dictionary Update Algorithm
1: procedure DictUpdateProc
2: Input: w, Dict
3: if w doesn’t exist in Dict then
4: synw ← null
5: for every word wi in Dict do
6: simsemw,wi

← SemSImProc(w, wi)
7: if simsemw,wi

> threshold then
8: append wi to synw

9: append w to synwi

10: end if
11: end for
12: add w and synw to Dict
13: end if
14: end procedure

score and repeat the process till either one of the sets has no element left. This
greedy approach, although simple, does not provide an optimal match between
the sets being compared. We assume that there are no repeating descriptions
in the descriptive document, hence, the representative set for a document too
will not have synonymous elements i.e. no same action on the same object. This
assumption motivates a one-to-one mapping among the two sets being compared
for similarity.

438 J. Mondal et al.

Algorithm 6. Document-Triplet-Set Processing Algorithm
1: procedure ProcTripProc
2: Input: DtPOS

3: for each tPOS in DtPOS do
4: v ← action
5: Noun ← object
6: Adj ← attribute
7: DictUpdateProc(v, Dict)
8: if Noun is a compound noun then
9: for each noun of Noun do

10: DictUpdateProc(noun, Dict)
11: end for
12: else
13: DictUpdateProc(Noun, Dict)
14: end if
15: for each adj of Adj do
16: DictUpdateProc(adj, Dict)
17: end for
18: end for
19: end procedure

To find an optimum one-to-one mapping among the aforementioned two sets,
we formulate the problem as an assignment problem [14]. In a generic assignment
problem, given the cost of assignment among each pair of elements in two sets,
the task is to find an optimal one-to-one assignment among the elements that
maximizes/minimizes the total cost of assignment. Our problem of finding such a
one-to-one mapping among the representative sets of the descriptive documents
can be formulated in a similar way - given F as the cost of assignment function
among each pair of elements in the two representative sets, the task is to find an
optimal one-to-one assignment among the elements that maximizes the aggregate
similarity score. Since the two sets being compared can have unequal number of
elements, this is a case of an imbalanced assignment problem.

After formulating the problem as a similarity score maximization assignment
problem, we use the Hungarian Method [14] to extract out the matches. This
method takes as input a nxn square cost matrix and post applying a set of matrix
operations, outputs an optimal set of n assignments, one per row and column,
which offer a maximum cumulative assignment score. Since ours is a case of
an imbalanced assignment problem, given 2 sets with m and n triplets each,
we start with a mxn cost matrix, where each cell contains the similarity score
between the corresponding row and column elements of the matrix. Without loss
of generality, we assume n > m, and add zero padding to extend the mxn matrix
to a nxn one. Rest of the steps for applying the Hungarian Method remain the
same, as for a typical score maximization assignment problem. We will refer
Hungarian Method as AssignHung. in the rest of the paper.

Post this assignment, the following subsection defines the similarity and
aggregation functions.

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 439

3.4 Score Calculation

We define four similarity functions for calculating similarity score between two
job description documents D and D′. We will refer simsem function as calculating
semantic similarity between two words described in Algorithm 4. The definition
of the functions are following,

Definition 1. If v1 and v2 are two single-word verbs and Vsim is the similarity
function between two verbs then Vsim is defined as,

Vsim(v1, v2) = simsemv1,v2
(1)

Definition 2. If N1 and N2 are two sets of nouns (nouns can be a set in tPOS

in case of compound noun) and Nsim is the similarity function between two noun
sets then Nsim is defined as,

Nsim(N1, N2) =
(1 ∗ |N1 ∩ N2| +

∑n
i=1

∑m
j=1 simsemN′

1i
,N′

2j

|N ′
1| ∗ |N ′

2|
)

(1 + |N1 ∩ N2|) (2)

where, N ′
1 = N1 − (N1 ∩ N2) and N ′

2 = N2 − (N1 ∩ N2).

Definition 3. If A1 and A2 are two sets of adjectives (adjectives can be a set
in tPOS in case of multiple adjectives corresponding to a noun) and Asim is the
similarity function between two adjective sets then Asim is defined as,

Asim(A1, A2) =
(1 ∗ |A1 ∩ A2| +

∑n
i=1

∑m
j=1 simsemA′

1i
,A′

2j

|A′
1| ∗ |A′

2|
)

(1 + |A1 ∩ A2|) (3)

where, A′
1 = A1 − (A1 ∩ A2) and A′

2 = A2 − (A1 ∩ A2).

Definition 4. If tPOS1 and tPOS2 are two sets of triplets consisting of
(v1, N1, A1) and (v2, N2, A2) respectively. Then, tsim is the similarity function
between two triplet sets and tsim is defined as,

tsim(tPOS1 , tPOS2) =
1

(2 + 1A1∪A2 �=null)

∗ (Vsim(v1, v2) ∗ (1 + Nsim(N1, N2)
∗ (1 + Asim(A1, A2))))

(4)

where 1A1∪A2 �=null = 0, if A1 ∪ A2 = null, 1 otherwise.
Calculating triplet similarity includes finding semantic similarity between

action, object and attributes, where attributes set can be null but others can’t be
null. We have already discussed in Sect. 3.1 that action are actually nothing but
verbs, object are nothing but nouns and attributes are nothing but adjectives.
So, calculating similarity between action, object and attributes boils down to

440 J. Mondal et al.

finding semantic similarity between verbs, corresponding nouns and correspond-
ing adjectives. A triplet tPOS consists of exactly one action or one verb,one
object or a set of nouns (in case of compound noun), and a set of attributes or a
set of adjectives (in case of multiple adjectives). Calculating semantic similarity
between two verbs is straight forward using simsemw1,w2

discussed in Sect. 3.2
and as described in Definition 1. On the other hand, calculating semantic simi-
larity between two noun sets or two adjective sets in (Definitions 2 and 3) is a
bit tricky. Both follow the same rule. So, we will discuss about the noun simi-
larity calculation here. We compute the intersection N1 ∩ N2 between two sets
N1 and N2. We also compute the set difference between both the sets N ′

1, N
′
2

as N1 −N1 ∩N2 and N2 −N1 ∩N2 respectively. Then we compute the pairwise
semantic similarity among elements of N ′

1 and N ′
2 using simsemw1,w2

function.
Next, we take the average of these pair wise semantic similarity and treat it as
one entity simsemnonIntersec

, where

simsemnonIntersec
=

∑n
i=1

∑m
j=1 simsemN′

1i
,N′

2j

|N ′
1| ∗ |N ′

2|
(5)

The other entity is semantic similarity score for N1 ∩N2 which is 1. Finally, we
compute the weighted average of 1 and simsemnonIntersec

where the weights are
|N1∩N2| and 1. After calculating these individual similarity scores we aggregate
them to compute the similarity score between two triplets such that action gets
the highest importance, followed by object and attributes.

Given two documents D and D′ we first compute their corresponding triplet
representation DtPOS

and D′
tPOS

. Lets say, |DtPOS
| = n and |D′

tPOS
| = m.

Without loss of generality, it can also be stated that n ≥ m. Then, the similarity
matrix Matsim has been calculated as,

Matsimi,j = tsim(DtiPOS
,D′

tjPOS

)

∀i, j ∈ n,m
(6)

After Matsim calculation, it is provided as the input matrix to AssignHung.

algorithm, which returns a unique 1 − 1 mapping MapD,D′ . Now the final sim-
ilarity score between two documents simD,D′ is calculated using the following
Eq. 7

simD,D′ =

∑m
k=1 tsim(DtiPOS

,D′
tjPOS

)

n

where MapkD,D′ : DtiPOS
− > D′

tjPOS

∀i, j ∈ n,m

(7)

Following Algorithm 7 actually describes the procedure to calculate the similarity
between two job description documents.

3.5 Experimental Setup and Data-Sets

We used a Spark cluster with 6 executors each having 8 GB of RAM for run-
ning our experiments. Apache Spark frame work has been used to incorporate

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 441

Algorithm 7. Job Description Similarity Calculation Algorithm
1: procedure DocSimCalcProc
2: Input: D, D′

3: Output: simD,D′

4: DtPOS ← DocRepParProc(D)
5: D′

tPOS
← DocRepParProc(D′)

6: ProcTripProc(DtPOS)
7: ProcTripProc(D′

tPOS
)

8: calculate simD,D′by equation 7
9: end procedure

parallelism to carry out the experiments. All the codes have been written in
python using pySpark library. Cloudant services have been incorporated as
database resource. We also used Stanford Core NLP Parser and Wordnet from
NLTK library.

Job description documents from IBM Talent Framework Data have been
used to carry out all the experiments. All the sentences in the job description
documents are grammatically incomplete in the sense that each of them starts
with a verb. Subject noun is missing from each sentence, e.g. “Require analytical
skills”. So we add “You” or “You are” at the beginning of the each sentence
depending upon the form of the verb. If the verb ends with “ing” we added “You
are”, otherwise we added “You” to make the sentences grammatically correct. In
the cases where verbs end with “s” (verb meant to be for third person singular
number) “You” has been treated as a name (third person singular number) and
thus resolves the grammatical issue. Then these grammatically correct sentences
are fed to the Stanford Core NLP Parser for generating dependency tree. As
an estimate of the computation time in this setup, the action-object-attribute
representation and calculation of job description similarity of 500 cross 500 jobs
took 3892.33 s.

4 Evaluation

For testing our method we do Job Family based evaluation. Since we are using
IBM Kenexa talent frameworks, we can utilize its default clubbing of jobs into
job families. The general expectation is that jobs within a family (intra) will
have higher job description similarity scores than those outside the job family
(inter). Let

– F = {F1, F2, ..., Fn} be the set of all job families in the test set.
– Ji = {Ji,1, Ji,2, ..., Ji,ni

} be the set of all jobs in family Fi.
– Intrai be the average similarity between all pairs of jobs within Fi.
– Interi be the average similarity between all pairs (A,B) of jobs such that
A ∈ Fi and B ∈ Fj for all j �= i.

– Ri = Intrai

Interi
.

442 J. Mondal et al.

Then the gross metric of interest to gauge effectiveness of a document similarity
computation method is S =

∑
i |Fi|×Ri∑

i |Fi| , computed over a common test set. So,
higher S value means better performance of the similarity calculation approach.

Since we intend to benchmark our method against existing state of the art
methods, we conduct several experiments with varying corpus of training data
with N1 = 56, N2 = 129 and N3 = 430 documents used for training. POSDC
does not require any training corpus, therefore the corpus varying experiments
are valid only for doc2vec and LDA. Note that the test set consisted of 500
randomly chosen jobs out of the 2344 available in IBM Kenexa talent frameworks,
so that there is representation from each job family in the selected test set. The
test sets selected did not have any of the jobs on which the models were trained,
and were selected separately for the 3 experiments.

As is evident by the bar charts and Table 1, when a large enough corpus is
chosen, LDA gives the best overall performance. Otherwise POSDC performs
better. When we looked at individual job families, neither LDA nor POSDC
completely dominates the other. Doc2vec seems to be consistently inferior to
both LDA and POSDC irrespective of the corpus size.

Table 1. Comparison of S value across methods

N1 N2 N3

POSDC 1.60 1.65 1.59

LDA 1.36 1.37 1.65

DOC2VEC 0.968 0.996 1.01

Total number of job families in IBM Kenexa Talent Frameworks is more than
100. But for the sake of brevity and clarity, we show the bar charts for ten largest
job families (in terms of number of jobs included) for all three training corpus
sizes.

The comparison of Ri values for ten of the biggest job families corresponding
to N1, N2 and N3 can be seen in Figs. 4, 5 and 6 respectively.

Fig. 4. 10 largest job families’ Ri values for N1

Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach 443

Fig. 5. 10 largest job families’ Ri values for N2

Fig. 6. 10 largest job families’ Ri values for N3

5 Conclusion and Future Work

The core novelty of POSDC is that unlike LDA or doc2vec, it doesn’t require any
prior training on large corpus. It uses the inherent semantics of job descriptions
to find the similarity using available dictionary. As can be seen in our results,
it is consistently superior to doc2vec, and even superior to LDA based method
when the corpus available to train is smaller. The future work in this direction
would be to define similar paradigm(s) for other/generic documents.

In the current approach, we have assumed that there is no duplication or
alternate description of the same action-object-attribute triplet within a docu-
ment. If that is not the case, then effectively the same action-object-attribute
triplet in one job may get matched to different ones in another job. This can be
overcome by first matching a job description with itself, and removing pairs of
action-object-attribute triplets that match with a score above a threshold.

Another possible future direction could be more domain specific rather than
being problem specific. Since our motivation to tackle this problem is to find jobs
that are similar, we could combine similarity between job title [8] and POSDC
to improve upon RISE [19].

444 J. Mondal et al.

References

1. Apache Spark. https://spark.apache.org. Accessed 23 May 2017
2. Apache Spark Wiki. https://en.wikipedia.org/wiki/Apache Spark. Accessed 23

May 2017
3. NLTK. http://www.nltk.org. Accessed 23 May 2017
4. Watson Natural Language Understanding Service. Accessed 05 Jan 2017
5. Wordnet NLTK. http://www.nltk.org/howto/wordnet.html. Accessed 23 May

2017
6. Wordnet Synsets. https://wordnet.princeton.edu. Accessed 23 May 2017
7. WUP Similarity. http://www.nltk.org/howto/wordnet.html. Accessed 23 May

2017
8. Ahuja, S., Mondal, J., Singh, S.S., George, D.G.: Similarity computation exploiting

the semantic and syntactic inherent structure among job titles. In: Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 3–18.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 1

9. Aizawa, A.: An information-theoretic perspective of tf-idf measures. Inf.
Proces. Manag. 39(1), 45–65 (2003). http://www.sciencedirect.com/science/
article/pii/S0306457302000213

10. Friedland, L., Allan, J.: Joke retrieval: recognizing the same joke told differently.
In: Proceedings of the 17th ACM Conference on Information and Knowledge Man-
agement, pp. 883–892. ACM (2008)

11. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-
based explicit semantic analysis. In: IJcAI, vol. 7, pp. 1606–1611 (2007)

12. Hu, J., Fang, L., Cao, Y., Zeng, H.J., Li, H., Yang, Q., Chen, Z.: Enhancing text
clustering by leveraging Wikipedia semantics. In: Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 179–186. ACM (2008)

13. Huang, A.: Similarity measures for text document clustering. In: Proceedings of the
Sixth New Zealand Computer Science Research Student Conference (NZCSRSC
2008), Christchurch, New Zealand, pp. 49–56 (2008)

14. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res.
Logist. Q. 2(1–2), 83–97 (1955)

15. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
CoRR abs/1405.4053 (2014). http://arxiv.org/abs/1405.4053

16. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing (1999)

17. Matveeva, I., Levow, G.A., Farahat, A., Royer, C.: Generalized latent semantic
analysis for term representation. In: Proceedings of the of RANLP (2005)

18. Pak, A.N., Chung, C.W.: A Wikipedia matching approach to contextual advertis-
ing. World Wide Web 13(3), 251–274 (2010)

19. Pimplikar, R.R., Kannan, K., Mondal, A., Mondal, J., Saxena, S., Parija, G.,
Devulapalli, C.: RISE: resolution of identity through similarity establishment on
unstructured job descriptions. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 19–36. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 2

https://spark.apache.org
https://en.wikipedia.org/wiki/Apache_Spark
http://www.nltk.org
http://www.nltk.org/howto/wordnet.html
https://wordnet.princeton.edu
http://www.nltk.org/howto/wordnet.html
https://doi.org/10.1007/978-3-319-69035-3_1
http://www.sciencedirect.com/science/article/pii/S0306457302000213
http://www.sciencedirect.com/science/article/pii/S0306457302000213
http://arxiv.org/abs/1405.4053
https://doi.org/10.1007/978-3-319-69035-3_2

	Benchmarking of a Novel POS Tagging Based Semantic Similarity Approach for Job Description Similarity Computation
	1 Introduction
	2 Literature Survey
	3 Methodology
	3.1 Document Representation
	3.2 Document Parsing and Dictionary Creation
	3.3 Assignment Problem Formulation
	3.4 Score Calculation
	3.5 Experimental Setup and Data-Sets

	4 Evaluation
	5 Conclusion and Future Work
	References

